
Subhajit Adhikari et al., International Journal of Science and Advanced Information Technology, 3 (2), March – April 2014, 40 - 43

40

An automatic and efficient foreground object extraction scheme
Subhajit Adhikari1, Joydeep Kar2, Jayati Ghosh Dastidar3

1 St. Xavier’s College, Kolkata, India, subhajit15dec@gmail.com
2 St. Xavier’s College, Kolkata, India, jydp.91@gmail.com

3 St. Xavier’s College, Kolkata, India, j.ghoshdastidar@sxccal.edu

ABSTRACT

This paper presents a method to differentiate the foreground
objects from the background of a color image. Firstly a color
image of any size is input for processing. The algorithm
converts it to a grayscale image. Next we apply canny edge
detector to find the boundary of the foreground object. We
concentrate to find the maximum distance between each
boundary pixel column wise and row wise and we fill the
region that is bound by the edges. Thus we are able to extract
the grayscale values of pixels that are in the bounded region
and convert the grayscale image back to original color image
containing only the foreground object.

Key words: boundary pixel, bounded region, component,
edge, foreground object.

1. INTRODUCTION

Segmentation is the process that subdivides an image into its
constituent parts or objects [1]. Many techniques are proposed
to deal with the image segmentation problem such as:

(a) Histogram-Based techniques [1]: this assumes the image to
be composed of a number of constant intensity objects in a
well-separated background.

(b) Edge-based techniques: where edges are detected and
objects are isolated as a result of that.

(c) Region-Based Techniques: where objects are detected
according to their homogeneity criteria. Usually, splitting
techniques followed by merging ones are involved.

(d) Markov Random Field-Based Techniques: where prior
knowledge of the true image together with expensive
computations are required.

Image processing systems [1] usually start by an edge
detection process followed by a feature extraction technique.
Edge detection is implemented to reduce the amount of
information in the input image. Feature extraction aims to
detect the regions of interest (RoI). The edge detection process
reduces the amount of data to be processed but it provides no
information about the contents of the image. Thus, further
processing is required for the edge-detected-closed-shape

objects. Edges define the boundaries [2] between regions in an
image, which helps with segmentation and object recognition.

Region filling [2] is the process of “coloring in” a definite
image area or region. Region may be defined at the pixel or
geometric level. At the pixel level, we describe a region either
in terms of bounding pixels that outline it or as the totality of
pixels that comprise it. The concept of Boundary defined
region and Interior defined region [2] is shown above in Figure
1.

In this paper the concept of Edge-based technique is used to
detect foreground objects. We propose a simple method that
applies the Canny edge detector [3] to detect the boundary of
the foreground object. We use the concept of Boundary
defined region as a unique value i.e. “1” to fill the region
bounded by the edges to form the edge detected image. Then
we deal with the actual positions of the boundary pixels. Our
aim is to detect the extreme pixels on the boundary and to fill
the intermediate region. To do this we just replace the values
of the boundary pixels with their positions i.e. firstly with the
row number in which the pixel is present fixing the column of
that position and vice-versa. Then we compute the intersection
of the two approaches and extract the pixels accordingly.
Experimentally we have taken RGB color images with simple
background and we are able to extract the foreground object in
a very short amount of time (sec) using varying image sizes.

2. LITERATURE REVIEW
The hexagonal hit-miss transform [1] accepts the input image
and produces an edge detected image analyzed by the WST. A
novel algorithm called the filling algorithm reads the WST lines
and determines the closed shape objects. The mosaic technique
is applied to the output of the filling algorithm as to enhance the
detection performance.

Figure 1: Two types of region

 ISSN 2278-3083
Volume 3, No.2, March - April 2014

International Journal of Science and Applied Information Technology
Available Online at http://warse.org/pdfs/2014/ijsait02322014.pdf

Subhajit Adhikari et al., International Journal of Science and Advanced Information Technology, 3 (2), March – April 2014, 40 - 43

41

According to the authors in [2], Canny’s method is preferred
since it produces single pixel thick, continuous edges.

The authors in paper [3] discussed the most commonly used
edge detection techniques of Gradient-based and Laplacian
based Edge Detection and under noisy conditions.

In paper [4], all image processing operations generally aim at a
better recognition of objects of interest, i.e., at finding suitable
local features that can be distinguished from other objects and
from the background.

In paper [5], a perfect method for object recognition with full
boundary detection by combining affine scale invariant feature
transform (ASIFT) and a region merging algorithm is
proposed.

A new region growing algorithm is proposed in paper [6],
based on the vector angle color similarity measure and the use
of the principal component of the covariance matrix as the
"characteristic" color of the region, with the goal of a region-
based segmentation which is perceptually-based.

 In paper [7], the authors propose to extend the watershed
segmentation tool to the multi-dimensional case by using the
“bit mixing” approach.

In paper [8], two automatic techniques - range data
segmentation and camera pose estimation are discussed.

According to the authors in paper [9], the exemplar-based
texture synthesis, proposes the approach that employs an
exemplar-based texture synthesis technique modulated by a
unified scheme for determining the fill order of the target
region.

In paper [10], early approaches extended from monochrome
edge detection and more recent vector space approaches are
addressed.

In paper [11], input image is pre-process to accentuate or
remove a band of spatial frequencies and to locate in an image
where there is a sudden variation in the grey level of pixels.

3. METHOD

Our proposed method is to find the foreground object from a
color image. In order to do this we first take a color image of
any size & then we convert it to gray scale image. Then we
apply canny edge detection. The parameters of canny is set to
0.04 & 0.10 as low and high threshold; and sigma is set to 1.5
[2]. Now we have the edge detected image. Boundary pixels are
of value “1” & all other pixels are of value “0”. To get the
foreground object we have to fill the region bounded by the
pixels that are of value “1”.We use the simplified idea of
Convex hull properties [12], start finding the extreme points
scanning boundary pixels row wise and column wise starting
from the first occurrence of one boundary pixel. To do this we

replace the position of the “1”s with the value of row and find
the maximum element without changing the column and vice
versa. Thus we are able to find the maximum values
corresponding to two directions row wise and column wise and

fill the Boundary defined region with the value “1”. We extract
the pixels accordingly. Thus we have two different
representations of foreground objects, one is row wise and
another is column wise. We compare and find the intersection
of the two representations. We fill the positions and finally
extract the pixels from the gray scale image and convert into
color image. Figure 2 above depicts the extraction process.

 4. ALGORITHM

1. Take a color image of any size and store it to a 2D array.

2. Convert the image into grayscale image and store in a 2D
array named, G.

3. Apply canny edge detector with low and high threshold
and sigma and save it to matrix BW1 and convert into a 2D
matrix, C of type double.

Edge detected image is a binary image that contains “1” and
“0” values. Pixels on the boundary are of value “1” and all
other pixel values are “0”.

Color image

Grayscale image

Edge Detected

Replace value ‘1’ with the
row number

Find the maximum row value
corresponding to each column

Find the maximum column
value corresponding to each

row

Find row wise representation
of the image

Find column wise
representation of the image

Compute the intersection

Fetch the grayscale pixel
value

Convert to color image
with foreground object

Replace value ‘1’ with the
column number

Figure 2: Block Diagram for Object Extraction

Subhajit Adhikari et al., International Journal of Science and Advanced Information Technology, 3 (2), March – April 2014, 40 - 43

42

4. Replace value ‘1’ with the row number corresponding to
each ‘1’ i.e the pixels in the boundary of matrix C and save
it a separate matrix D.

5. Find the maximum row value corresponding to each
column of the matrix D and save it to an array as k2 (col) .

6. Loop columnwise.

7. Loop rowwise.

8. IF an element of the matrix D is greater than 0
a. Save the row value of the 1st occurrence of a

boundary pixel to a variable k3.
b. Loop from k3 to k2 (col) i.e. k2 (col) returns

maximum row number for the column.
c. Consider a 2D matrix E and set the value “1” to fill

the region inside the boundary pixels.

9. Repeat the steps 4-8.

Obtain matrix D1 that holds the column number in place of
each and every boundary pixels that is of value ‘1’. Then
make a loop changing the dimension i.e the row wise and
column wise and obtain a separate matrix E1 that holds the
region inside the bundary pixels.

10. Compare the two matrices E and E1 to find the
intersection portion and extract the portion from the
grayscale image and convert into color image to form the
foreground object .

5. RESULT

We have used MATLAB R2009a for implementing and testing
our algorithm. We have used different color images with not
very complex background and of different sizes. The table
given below (Table 1) shows the execution time of our
algorithm on some test images. We have run the algorithm on a
computer which has a CPU of clock speed 2.8GHz and a RAM
of size 2 GB. Figure 3 shows the effect of our algorithm on
some of the test images. The images shown here are not of the
original size. We have tried to quantify the deviation in object
extraction. We calculated the R-Square and Sum of Squares due
to error.

Sum of Squares Due to Error - This statistic measures the total
deviation of the response values from the fit to the response
values. It is also called the summed square of residuals and is
usually labeled as SSE (shown below). Here yi is the observed

data value and
^
y
i is the predicted value from the fit. wi is the

weighing applied to each data point; usually wi = 1.

Table 1: Summary of Execution Time

Figure 3: Foreground object extraction

Original
Image(test21.jpg)

Edge detected Image

Object Extracted Image

Original
Image(test4.jpg)

Edge detected Image

 Object Extracted Image

Original
Image(test30.jpg)

Edge detected Image

Object Extracted Image

Original
Image(test28.jpg)

Edge detected Image

Object Extracted Image

Image(.jpg) Size Pixels Time elapsed (in second)

test21 324*412 133488 0.555734146684879
test4 376*528 198528 0.636240589679871
test8 438*533 233454 0.814277172213658

test40 600*400 240000 1.04278616790370
test30 422*600 253200 1.131813784918985

test27 424*800 339200 1.349281825944964
test28 600*722 433200 1.500231680847290
test26 800*587 469600 1.605358465310959
test49 1000*768 768000 1.689927277448329
test 1 1050*746 783300 2.926293942857143

test25 1200*797 956400 4.035249371428572
test2 1221*817 997557 4.603776379525045

test15 1366*768 1049088 4.890780525714286
test17 1546*870 1345020 6.385910857142857
test48 1920*1200 2304000 7.822265498570967

test53 2560*1600 4096000 9.555098898647401

Subhajit Adhikari et al., International Journal of Science and Advanced Information Technology, 3 (2), March – April 2014, 40 - 43

43

A value closer to 0 indicates that the model has a smaller
random error component, and that the fit will be more useful for
prediction.

R-Square - This statistic measures how successful the fit is
in explaining the variation of the data. Put another way, R-
square is the square of the correlation between the response
values and the predicted response values. It is also called the
square of the multiple correlation coefficients and the
coefficient of multiple determinations. R-square is defined as
the ratio of the sum of squares of the regression (SSR) and the

total sum of squares (SST). Here
^
y
i is the predicted value from

the fit,
^
y is the mean of the observed data yi is the observed

data value. wi is the weighting applied to each data point,
usually wi=1. R-square can take on any value between 0 and 1,
with a value closer to 1 indicating that a greater proportion of
variance is accounted for by the model. For example, an R-
square value of 0.8234 means that the fit explains 82.34% of
the total variation in the data about the average.

In our test result we get the value of SSE is “0” which means
that the model has almost none random error component.

Also the value of the R-square is “1” i.e. the fit explains 100%
of the total variation in the data about the average.

residual = data – fit

Residuals are defined as the difference between the observed
values of the response variable and the values that are predicted
by the model. When you fit a model that is appropriate for your
data, the residuals approximate independent random errors. We
have graphically shown the fit curves in Figure 4.

6. CONCLUSION

Overall our algorithm takes no human interaction for
processing an image. No parameters are to be specified by the
user. In future this method can be extended to process color
images having more complex background.

REFERENCES

1. Rami Qahwaji and Roger Green, Detection of Closed
Regions in Digital Images, IJCA, 01/2001, 8.

2. Ehsan Nadernejad, Sara Sharifzadeh, Hamid Hassanpour,
Edge Detection Techniques: Evaluations and
Comparisons, Applied Mathematical Sciences, 2008,Vol.
2, no. 31, 1507 - 1520.

3. Raman Maini and Himanshu Aggarwal, Study and
Comparison of Various Image Edge Detection
Techniques, IJIP, January/February 2009, Volume (3),
Issue (1).

4. Krishna Kant Singh, Akansha Singh, A Study Of Image
Segmentation Algorithms For Different Types Of
Images, IJCSI, 09/2010, Vol. 7, Issue 5.

5. Reza Oji, An Automatic Algorithm For Object
Recognition And Detection Based On Asift Keypoints,
SIPIJ, 10/ 2012,Vol.3, No.5.

6. Slawo Wesolkowski and Paul Fieguth, Color Image
Segmentation Using Vector Angle-Based Region
Growing, SPIE 4421, 6/6/2002, 9th Congress of the
International Colour Association.

7. Jocelyn Chanussot and Patrick Lambert, Watershed
Approaches For Color Image Segmentation, NSIP,
1999, page 129-133. Bogaziçi University Printhouse.

8. Yizhou Yu, Andras Ferencz, and Jitendra Malik,
Extracting Objects from Range and Radiance Images,
IEEE Transactions on Visualization and Computer
Graphics, October-December 2001, Vol. 7, No. 4.

9. Criminisi, P. Perez and K. Toyama, Region Filling and
Object Removal by Exemplar-Based Image Inpainting,
IEEE Transactions on Image Processing, 09/ 2004, VOL.
13, NO. 9.

10. Shu-Yu Zhu, Konstantinos N. Plataniotis, Anastasios N.
Venetsanopoulos, Comprehensive analysis of edge
detection in color image processing, Opt. Eng. 38(4),
612-625, Apr 01, 1999. doi:10.1117/1.602105.

11. Manpreet Kaur, Sumeet Kaur, A New Approach to Edge
Detection using rule based Fuzzy Logic, JGRCS, 09/
2011, Volume 2, No. 9.

12. Xianquan Zhang and Zhenjun Tang,Jinhui Yu,Mingming
Guo, A Fast Convex Hull Algorithm for Binary Image,
Informatica 34 (2010) 369-376.

Figure 4: Curve Fit

