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 
Abstract: The problem of three-dimensional free convective heat 
and mass transfer flow of an incompressible viscous fluid past an 
infinite vertical porous plate through porous medium with uniform 
free steam velocity and sinusoidal plate temperature and 
concentration are discussed. The porous medium is bounded by a 
vertical plane surface. The surface absorbs the fluid with a periodic 
transverse suction velocity. The governing equations are solved by 
regular perturbation technique. The expressions for velocity field, 
temperature field, concentration field, skin friction at the plate in 
the direction of the main flow, the rate of heat transfer in terms of 
Nusselt number, the rate of mass transfer in terms of Sherwood 
number, first order skin friction, Nusselt number and Sherwood 
number are obtained and are demonstrated in graphs for different 
values of parameters involved. 
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INTRODUCTION 
A number of scholars have devoted their extensive research 
on the study of free and force convective three-dimensional 
flow with heat and mass transfer due to its day-to-day 
applications in science and technology. The phenomenon of 
heat and mass transfer are observed in buoyancy induced 
motions in the atmosphere, in water bodies, quasi 
solid-bodies such as earth and so on. The free convective heat 
transfer flows play an important rule in chemical 
engineering, turbo-machinery and aerospace technology. In 
industrial applications many transport exists where the 
transfer of heat and mass takes place simultaneously as a 
result of combined buoyancy effects due to thermal diffusion 
and chemical species diffusion. The study of such flows was 
initiated by Lighthill [1] who studied the effects of free steam 
oscillations on the flow of a viscous incompressible fluid past 
an infinite plate. Stuart [2] further extended it to study a 
two-dimensional oscillatory flow past an infinite, porous 
plate with constant suction. Soundalgekar [3] studied the 
flow past an infinite vertical plate oscillating in its own plane 
and with the wall temperature. Also Messiha [4] investigated 
the two dimensional oscillatory flow when the plate is 
subjected to a time-dependent suction. The effects of different 
arrangements and configurations of the suction holes and 
slits have been studied extensively by various scholars and 

 
 

have been complied by Lachmann [5]. Oscillatory 
three-dimensional flow past an infinite vertical porous plate 
with thermal diffusion and chemical reaction in presence of 
heat sink has been presented by Ahmed et al. [6]. The effect 
of transverse sinusoidal suction on the steady flow along a 
plane wall has been presented by Gersten and Gross [7]. The 
flow in the boundary layer becomes three-dimensional by 
considering this type of suction. Singh et al. has investigated 
the boundary layer flow and heat transfer on a horizontal 
plane whose temperature differs from that ambient fluid. 
 
Rapits [8] investigated the problem of unsteady flow through 
a porous medium bounded by an infinite porous plate 
sbjected to a constant suction and variable temperature. 
Further Rapids and Perdikis [9] studied the unsteady 
two-dimensional free convective flows through highly 
porous medium. The problem of three-dimensional 
fluctuating flow and heat transfer through a porous medium 
with variable permeability was represented by Singh et al. 
[10]. Ahmed et al. [11] studied the three-dimensional free 
convective flow and heat transfer through a porous medium.  
 
Further Singh and Thakar [12] have analyzed the effects of 
periodic suction velocity on three-dimensional viscous fluid 
with heat and mass transfer. Also Guria and Jana [13] 
studied the effect of buoyancy forces and time dependent 
periodic suction on three-dimensional flow past a vertical 
porous plate. Jain and Sharma [14] and Jain and Gupta [15] 
have studied three-dimensional coutte flow past with slip 
boundary conditions and suction velocity vary sinusoidaly. 
Aboeldahab and Azzam [15] have studied unsteady 
three-dimensional combined heat and mass transfer for 
convective flow over a stretching surface. 
 

The aim of the present work is to investigate the free 
convection, the heat and mass transfer effects on the steady 
three dimensional flow of a viscous incompressible fluid past 
a vertical porous plate with periodic suction along the 
breadth, in the presence of a heat sink. We assume that the 
free stream velocity is uniform. We further assume that the 
temperature and species concentration at the plate are 
sinusoidal along the breadth.  
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BASIC EQUATIONS 
A coordinate system is introduced with the plate lying 
vertically along the XZ plane, such that the X-axis is oriented 
along the length of the plate in the direction of the buoyancy 
force and the Y-axis is perpendicular to the plane of the plate 
and directed into the fluid region. The plate is assumed to 
have a variable suction velocity distribution (along the width 
of the plate) of the form: 

 w 0
z

v z V 1 cos
L
      

                                           (1)                                           

where 0V >0 and 0<<<1. Here 0V  is the undisturbed part 
of the suction velocity, L is the wavelength of the periodic 
suction and the negative sign indicates that the suction is 
towards the plate. All the fluid properties are assumed to be 
independent of x, except possibly the the pressure. However, 
the flow remains three dimensional due to the form of the 
suction velocity distribution given above. Let 

ˆ ˆ ˆq u i v j w k  
r be the fluid velocity at the point 

 x , y , z where ˆ ˆ ˆi , j , k  are the unit vectors along X-axis, 
Y-axis and Z-axis respectively.  The free stream velocity U is 
assumed to be uniform.  
 
 
 
 
 
 
 
 
 
 
 
 
 
                    Fig-1. Flow configuration 
The equations governing the fluid motion are 
 
Equation of continuity  
 

                   
v w

0
y z

 
 

 
                                              (2)                                                                                       

Momentum equations 
 

   

 
2 2

2 2

u u
v w g T T g C C

y z

u u
U u

y z K

 



 
       

 

   
    

  

                (3) 

2 2

2 2

v v p u u1v w v
y z y y z K

      
             

          (4)                                                    

2 2

2 2

w w p w w1v w w
y z z y z K

      
             

      (5)                                                     

 
Energy equation 

 2 2
0

2 2
p

Q T TT T T T
v w

y z Cy z
     

     
    

         (6)                                   

Species continuity equation: 

 

2 2

M 2 2

2 2

T 2 2

C C C C
v w D

y z y z

T T
D

y z

    
        

  
 

  

                         (7)                                           

The symbols are defined in the nomenclature. 
      
              The relevant boundary conditions are: 

 

 

w

w

w

At y 0 : u 0 , v v , w 0 ,
z

T T T T 1 A cos ,
L

z
C C C C 1 A cos

L

 

 

   
      

 
      

 

&
                 (8)  

0At y : u U , v V , w 0 , T T

, C C , p p


 

     

 
&          (9) 

We introduce the following non dimensional quantities: 

 
 

 

 

0 0 0 0

0

p 0w w

T w w

2
M 0w

w 0
2 2

0

0
2

y z u v U wy , z , u , v , U , w ,
L L V V V V

Q LT T C C
, Q , , Pr ,

C VT T C C

D T T Lg T T
Sc , Sr , Gr ,

D VC C

Lg C C V L pGm , Re , p ,
V

L
V Kp

p , K
L

L

 

 

 










     

  
     

  

  
  

 

 
  

    
 

 
   

 

(10) 

The non dimensional forms of the equations (2) to (7) are 
v w

0
y z

 
 

 
                                                                  (11)                                                                                                  

 

2 2

2 2

u u 1 u wv w Gr Gm
y z Re y z

1 U u
K

    
            



       (12)                                     

2 2

2 2 2

v v p1 1 v v vv w
y z y Re KRe y z

     
           

     (13)                      

2 2

2 2 2

w w p1 1 w w wv w
y z z Re KRe y z

     
           

    (14)                   

2 2

2 2

1v w Q
y z Pr Re y z

        
         

                   (15)                                                             

2 2

2 2

2 2

2 2

1
v w

y z S c R e y z

S r
R e y z

        
        

    
 

  

                          (16)                                           

 
with relevant boundary conditions 
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 y 0 : u 0 , v 1 Cos z , w 0 ,
1 A cos z , 1 A cos z

y : u U , v 1 , w 0 , 0
, 0 , p p 

        


          
       
   

        (17) 

 
METHOD OF SOLUTION: 

 
We assume the solution of the equations (11) to (16) to be of 
the form: 
                 2

0 1u u y u y , z 0                              (18)                                                                       

                 2
0 1v v y v y , z 0                              (19)                                                                       

                 2
0 1w w y w y , z 0                           (20)                                                       

                  2
0 1p p y p y , z 0                             (21)                                                       

                  2
0 1y y , z 0                                 (22)                                                                         

                  2
0 1y y , z 0             (23)                                                     

0 , 0p p w 0                                                        (24)                                                                                               
Substituting these in the equations (11) to (16) and equating 
the harmonic terms and neglecting 2  we get the following 
set of the differential equations 
 
Zeroth-order equations 

0d v
0

d y
                                                                         (25)                                                                                                        

 
2

0 0
0 0 0 2

d u d u1 1v Gr Gm U u
d y Re Kd y

                  (26)                                                            

2
0 0

0 02

d d1v Q
d y Pr Re d y
 

                                            (27)                                                                                          

2 2
0 0 0

0 2 2

d d d1 Srv
d y Sc Re Red y d y
  

                                     (28) 

First-order equations 
           

1 1v w
0

y z
 

 
 

                                                             (29)                                                                                                         

01
1 1 1

2 2
1 1

12 2

d uu
v Gr Gm

y d y

u u1 1 u
Re Ky z


      


  
  

  

                  (30)                                    

2 2
1 1 1 1

12 2 2

v p v v1 1 1 v
y y Re KRe y z

    
      
    

          (31)                                                             

2 2
1 1 1 1

12 2 2

w p w w1 1 1 w
y z Re KRe y z

    
      

    
        (32)                                                        

 
2 2

01 1 1
1 12 2

d 1v Q
y d y Pr Re y z

      
      
   

              (33)                                                             

 

2 2
01 1 1

1 2 2

2 2
1 1
2 2

d 1v
y d y Sc Re y z

Sr
Re y z

      
     
   

    
 

  

                   (34) 

 
Subject to boundary conditions 

0 0 0 0

1 1

y 0 : u 0 , v 1 , 1 , 1 ,

u 0 , v Cos z

       

   
 

1 1 1w 0 , A cos z , A cos z                            (35)                         

0 0 0 0

1 1

y : u U , v 1 , 0 , 0
, u 0 , v 0

       
 

 

1 1 1 1, w 0 , p 0 , 0 , 0                                  (36) 
The solution of the equations (25) to (28) under the boundary 
conditions (35) and (36) are  

0v 1                                                                               (37)                                                                                                                       
a y

0 e                                                                         (38)                                                                                                                        

  Sc Re y a y
0 1 11 a e a e                                               (39)                     

 a y Sc Re y Re y
0 1 2 1 2u U A e A e A A U e              (40)                                                

where  

 

2 2

1

1
1

2 2

1
2

2

PrRe Pr Re 4 Pr Re Q a SrSc
a , a ,

2 Sc Re a
41 1Gm a Re Gr Re Re KA ,

Re Re 2a Re a a Re a
K K

Gm 1 a
A ,

1Sc Re Sc Re
K

 
 



 


   
   

 


 

 

CROSS FLOW SOLUTION 
 
We shall first consider the equations (29), (31), (32) for 

   1 1v y , z , w y , z and  1p y , z which are 

independent of main flow component 1u , temperature field 

1 and concentration field 1 . 

The suction velocity  wv 1 Cos z     consists of a 
uniform distribution -1 with superimposed weak sinusoidal 
distribution Cos z  . Hence the velocity components v, w 
and p are also separated in to mean and small sinusoidal 
components 1 1v , w  and 1p . 
We assume 1 1v , w and 1p  to be of the following forms: 

 1 11v v y Cos z                                                       (41)                      

 1 11w v y Sin z                                                           (42)                                                                           

 2
1 11p Re p y Cos z                                                  (43)                                                                  

On substitution of (41), (42) and (43), the equation (29) is 
satisfied and the equations (31) and (32) reduce to the 
following ordinary differential equations 
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              112
11 e 11 11

Re pRev R v v
K

          
         (44)                                                         

      2
11 11 11 11

Rev Re v v Re p
K

          
 

                 (45)                                                      

with relevant boundary conditions 

 11 11
1y 0 : v , v 


= 0                             (46)                                                              

       11 11 11y : v 0 , v 0 , p 0                        (47)                                                          
The solutions of these equations are: 

       b y y
11v e e

b
  

                                              (48)                                                                                  

       y
11p A e                                                             (49)                                                                                               

where, A =
 

1b
K
b

   
 
  

,  

b = 

2 2 ReRe Re 4
K

2

     
  , 

 
b

b
 

  
 

Hence the solutions for the velocity components 1 1v , w and 
pressure 1p are as follows 

 y b y
1v e e Cos z

b
         

                                  (50)                                                                   

  y b y
1w e e Sin z                                            (51)                                                                       

 2 y
1 ep R A e Cos z                                                     (52) 

 
SOLUTION FOR FIRST ORDER FLOW, 
CONCENTRATION AND TEMPERATURE FIELD 
 
We now consider the equations (30), (33) and (34). The 
solutions for velocity component u, temperature field   and 
concentration field   are also separated in to mean and 
sinusoidal components 1 1u ,   and 1 . To reduce the partial 
differential equations (30), (33), (34) in to ordinary 
differential equations, we consider the following forms for 

1 1u ,   and 1  . 

            1 11u u y Cos z                                            (53)                                                                                      

            1 11 y Cos z                                             (54)                                                                                      

            1 11 y Cos z                                               (55)                                                                                        

Using the expressions for 1 1 1 1v , u , ,   in (30), (33) and 
(34) we get the following differential equations: 

2
11 11 11 11 0

11 11

Reu Re u u Re v u
K

Re Gr Re Gm

          
 

  
 (56)                           

 2
11 11 11 11 0Pr Re Pr Re Q Pr Re v               (57)                                                     

 
2

11 11 11 11 0

2
11 11

Sc Re Sc Re v

ScSr

           

   
                  (58)                                 

 
with the boundary conditions 

11 11 11y 0 : u 0 , A , A                                  (59)                                                                              

11 11 11y : u 0 , 0 , 0                               (60)                                               
The solutions of the (56), (57) and (58) subject to boundary 
conditions (59) and (60) are 
 

   a b y a yh y
11 0 1 2G e G e G e                            (61)                                     

   

   

a y b a ym y
11 0 1 2

Sc Re y b Sc Re y h y
3 4 5

H e H e H e

H e H e H e

   

    

    

 
               (62) 

 

     

     
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SKIN FRICTION AT THE PLATE 
The non-dimensional skin-friction at the plate in direction of 
the free steam is given by  
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THE CO-EFFICIENT OF RATE OF HEAT 
TRANSFER 
 
The heat flux from the plate to the in terms of Nusselt number 
Nu is given by 
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THE COEFFICIENT OF MASS TRANSFER 
The mass flux at the wall y = 0 in terms of Sherwood number 
Sh is given by 
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RESULTS AND DISCUSSION 
In order to get physical insight in to the problem, we have 
carried out numerical computations from the analytical 
solutions for non-dimensional velocity field, temperature 
field, species concentration field, 1 2 3Q , Q , Q which are 
respectively the amplitudes of the first order skin friction, 
Nusselt number and Sherwood number and their values are 
demonstrated in graphs and tables. We choose air as the 
medium of diffusion. The Prandtl number for air given by Pr 
= 0.71. We consider separately the gases: Helium, Steam and 
Ammonia in ascending order of their Schmidt numbers 
given by Sc = 0.30, 0.60, and 0.78 respectively. These gases 
readily diffuse to form dilute mixtures with air. The values of 
the Grashof number Gr for heat transfer has been chosen as 
10 (externally cooled plate) whereas the values of Grashof 
number Gm for mass transfer is considered to be 15, the free 
steam velocity (U) is selected to be 1, the small reference 
parameter  is chosen as .1, z = 1/3, heat sink parameter Q = 
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1, Soret number Sr = .5  and the remaining parameters 
namely porosity parameter (K),  Reynolds number (Re) and 
suction parameter A are chosen arbitrarily. 
 
The effects of Reynolds number on the velocity field u, 
temperature and concentration against the normal 
co-ordinate y have been presented in figures 2, 3 & 4. It is  
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Fig-2 Velocity profile u versus y when Sc = .6, Pr = .71,  
K = .5 
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Fig-3 Concentration profile u versus y when Sc = .6,  
Pr = .71 
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Fig-4 Temperature profile versus y when Pr = .71 
 

noticed that an increase in Reynolds number leads to increase 
in the fluid velocity u near the plate and it has a reverse effect 
far away from the plate. This is due to the dominance of 
viscous forces over the inertia force near the plate and reverse 
effect far away from the plate. Moreover, figures 3 and 4 
indicate that there is a steady fall in the temperature and 
concentration profile for increasing Reynolds number. 
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Fig-5 Velocity profile u versus y when Sc = .6, Re = .5, K = .5   
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Fig- 6 Velocity profile u versus y when Pr = .71, Re = .5,  
K = .5 
                      Figures 5 & 6 illustrates the variation of 
velocity profile and temperature with various Prandtl 
numbers for diffusing steam in air (species diffusivity > 
momentum diffusivity, Sc = .6). With increasing values of 
Prandtl number, there is clearly a decrease in fluid velocity 
i.e. the flow is decelerated through the boundary layer 
transverse to the plate when the plate is cooled by free 
convection (Gr > 0). Pr encapsulates the ratio of momentum 
diffusivity to thermal diffusivity for a given fluid. It is also 
product of dynamic viscosity and specific heat capacity 
divided by thermal conductivity. Higher Pr fluids will 
therefore posses higher viscosities (and lower thermal 
diffusivities) implying that such fluids will flow slower than 
lower Pr fluids. As a result the velocity will be decreased 
substantially with increasing Prandtl number. 
                Also it is observed that (Figure 6), the fluid 
temperature is reduced asymptotically when the Prandtl 
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number is increased. As the smaller values of Prandtl 
numbers indicate an increase in the thermal conductivity of 
the fluid and therefore, heat is able to diffuse away from the 
fluid more rapidly for higher values of Prandtl number. 
Moreover Figure 6 also shows that the effect of higher Pr 
results in the thinner thermal boundary layer as the higher 
Prandtl number fluid has a lower thermal diffusivity. 
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Fig- 7 Velocity profile u versus y when Pr = .71, Re = .5,  
K = .5 
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Fig-8   Concentration profile versus y when Re = .5 
The velocity profile u and concentration has been exhibited 
in the respective Figures 7 and 8 with different values of 
Schmidt number (Sc). Sc quantifies the relative effectiveness 
of momentum and mass transport by diffusion. Higher values 
of Sc amount to fall in the chemical molecular diffusivity i.e. 
less diffusion take place by species transfer. In the present 
study we have performed calculation for Prandtl number (Pr 
= .71), so that Pr  Sc. Physically this implies that the 
thermal species diffusion regions are of different extents. An 
increase in Sc will suppress concentration in the boundary 
layer thickness. Lower Sc will result in higher concentrations 
i.e. greater molecular (species) diffusivity causing an 
increase in concentration boundary layer thickness. Velocity 
u as shown in Figure 7 is found to decrease strongly with an 
increase in Schmidt number (Sc). Similarly there is a strong 

reduction in species concentration values ( ) as shown in 
Figure 8 with a rise in Schmidt number (Sc). Concentration 
profiles follow a smooth decay from the wall (plate) to the 
edge of the boundary layer; velocity profiles however, as in 
earlier graphs, peak close to the plate and then descend 
thereafter towards the free steam.   
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Fig- 9 Velocity profile u versus y when Pr = .71, Re = .5,  
Sc = .6 
         The behaviour of permeability parameter (K) on the 
fluid velocity u has been shown in Figure 9. A strong 
acceleration in the flow is induced with a rise in permeability 
parameter (K). This is due to the fact that increase in 
permeability of the medium implies that the resistance of the 
medium decreases, as a result of which the fluid velocity is 
accelerated. 
 
Table- 1 Velocity versus y for A when Re = .5, Sc = .6,  
Pr = .71, K = .5 
 

y u (A = .2) u (A = .5) u (A = .7) 
0 0 0 0 
1 2.11149786 2.11191648 2.1125639 
2 2.64465461 2.6446839 2.64472666 
3 2.58331034 2.58331242 2.58331455 
4 2.33498759 2.33498772 2.33498781 
5 2.06092687 2.06092688 2.06092688 
6 1.81789408 1.81789408 1.81789408 

 
Table- 2 Temperature profile versus y for Pr = .71, Re = .5 

y θ (A = .2) θ (A = .5) θ (A = .7) 
0 1.01 1.025 1.035 
1 0.449892 0.450404 0.450745 
2 0.202223 0.202241 0.202248 
3 0.090937 0.0909375 0.09093791 
4 0.040893 0.04089348 0.04089349 
5 0.018389 0.01838939 0.01838939 
6 0.00826953 0.00826953 0.00826953 

 
          The effects of suction parameter on the velocity field u, 
temperature and concentration against the normal 
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co-ordinate y have been presented in Tables 1, 2 and 3 
respectively. It is inferred from these Tables that velocity u, 
concentration and temperature increase with the increasing 
values of suction parameter. 
Table-3 Concentration profile versus y when Sc = .6, Re = .5, 
Pr = .71   

y  (A = .2)  (A = .5)  (A = .7) 
0 1.01 1.025 1.035 
1 0.880814019 0.881409896 0.881807147 
2 0.715275097 0.715298549 0.715314183 
3 0.558164565 0.558165481 0.558166092 
4 0.42621399 0.426214026 0.426214049 
5 0.321465064 0.321465065 0.321465066 
6 0.240718489 0.240718489 0.240718489 
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Fig-10 The amplitude 1Q of the first order skin friction 
versus Re for K = .5, Sc = .6, Pr = .71 
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Fig-11 The amplitude 2Q of the first order Nusselt number 
versus Re for Sc = .6, Pr = .71 
Figures 10, 11 & 12 demonstrate how the amplitude of the 
perturbed part of the skin-friction 1Q , the amplitude 2Q of 
the first order Nusselt number and the change of behaviour 
of 3Q  the amplitude of the first order Sherwood number  are 
effected by the suction parameter A. It is noticed that first 
order skin-friction 1Q , the amplitude of the first order Nusselt 
number 2Q  and the amplitude of the first order Sherwood 
number 3Q increase with the increasing values of suction 
parameter A. 
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Fig-12 The amplitude 3Q of the first order Sherwood number 
versus Re for Sc = .6 
 
CONCLUSIONS: 
1. An increase in Reynolds number leads to increase in the 
fluid velocity u near the plate and it has a reverse effect far 
away from the plate. 
2. There is a steady fall in the temperature and concentration 
profile for increasing Reynolds number. 
3. With increasing values of Prandtl number, there is a 
marked decrease in fluid velocity i.e. the flow is decelerated 
through the boundary layer transverse to the plate when the 
plate is cooled by free convection.  
4. The fluid temperature is reduced asymptotically when the 
Prandtl number increases. 
5. Velocity is found to decrease sharply with an increase in 
Schmidt number. 
6. There is a sharp reduction in species concentration values 
with a rise in Schmidt number. 
7. A marked acceleration in the flow is induced with a rise in 
permeability parameter. 
8. Velocity, concentration and temperature increase with the 
increasing values of suction parameter. 
9. The first order skin-friction 1Q , the amplitude of the first 
order Nusselt number 2Q  and the amplitude of the first order 
Sherwood number 3Q increase with the increasing values of 
suction parameter. 
 
NOMENCLATURE 
             
             A  is the suction parameter 
            C    is the species concentration 
            C  is the species concentration in the free stream 

            wC  is the species concentration at the plate 
            pC   is the specific heat at constant pressure 

            MD   is the chemical molecular diffusivity 
            TD   is the chemical thermal diffusivity 
             g is the acceleration due to gravity 
            Gr is the Grashof number for heat transfer 
            Gm is the Grashof number for mass transfer 
             k is the thermal conductivity 
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            K  is the permeability of porous medium 
            K   is the permeability parameter 
             L is the wave length of the periodic suction 
            p  is the pressure 
            p  is the pressure in the free steam 
             p is the non dimensional pressure 
             p  is the non dimensional in the free steam 

             Q   is the first order heat sink 
             Q is the non dimensional first order heat sink 
             Re is the Reynolds number 
             Sr  is the Soret number 
             Pr is the Prandtl number 
             Sc is the Schmidt number 
             T  is the temperature in the boundary layer 
             wT  is the temperature at the plate 

             T  is the fluid temperature at the free steam 
             U  is the free steam velocity 
             U  is the non dimensional free steam velocity 
              u , v , w  are the components of the fluid velocity 

              u , v , w  are the non dimensional components of 
the fluid velocity 
             0V  is the mean suction velocity 

              x , y , z  is the coordinate system 

             ˆ ˆ ˆi , j , k  are the unit vectors in the increasing 
direction of x , y , z  
 
Greek symbols: 
              
               is the thermal diffusivity 
               is the coefficient of volume expansion for heat 
transfer 
               is the coefficient of volume expansion for mass 
transfer 
               is the kinematic viscosity 
               is the density of the fluid 
               is a small reference parameter 
               is the non dimensional temperature 
               is the non dimensional concentration 
               is the coefficient of viscosity 
 
and the other symbols have their usual meanings. 
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