
А. Anopriyenko et al., International Journal of Science and Advanced Information Technology, 2 (4), July – August 2013, 36-40

36


ABSTRACT

The present article concerns itself with the description of real
numbers converter into basic positional notations (binary,
denary, hexadecimal) with the controlled accuracy of
fractional part of converted number formation. Here the
converter functionality and the peculiarities of
implementation of the used algorithms of converting long
numbers from one numerical notation into the other without
making use of the processor input/output are specified.
Moreover, the analysis of the program action period while
converting the numbers of different exponents has been
carried out.

Keywords: Numerical notation, Real number conversion,
Converter, High-precision arithmetic, Controlled accuracy.

1. INTRODUCTION

The numbers and the numerical notations, which produce
these numbers, underlie the modern electronic computer
engineering. The numerical notation may be understood as a
concrete number representation with the help of written
characters. The numerical notation (abbreviation NN is often
used) is, in fact, a symbolic method of number designation,
and it also gives each number (and lots of numbers in whole)
the unique form and reflects the algebraic and arithmetic
structure of numbers.

The parameters of computer systems and hardware, first of all
speed and reliability index, vary depending on the
effectiveness of the numerical notation [1-2].

In computer engineering the use is made of positional
notations, which are identified by the integral number  —
base number ( > 1).

The numbers, expressed by binary NN ( = 2), are used in the
computer operations performed by a processor: notation,
reading, addition, etc. The numbers presented in hexadecimal
NN (hexadecimal format,  = 16) are used in computer for
memory cell addressing. The Indo-arabic denary numerical
notation with the base of  = 10 is the most wide-spread and
customary for a human. The integral number without the sign

x1 in numerical notation with the base  is presented in the
form of the finite linear combination of the number exponents:

1

1 1 2 0
0

... ,
n

k
n n k

k

x a a a a


 


   (1)

where ak — the integral numbers (numeral), which meet the
inequality 0 ka   ; n — digit count x1; k — index (the
number of digit).

Any integral number may be represented by the finite digit
count n. The real number without the digit x2 in numerical
notation with the base  is also presented in the form of finite
linear combination of the number exponents:

1

2 1 2 0 1 2
0 1

... , ... ,
n m

k l
n n m k l

k l

x b b b c c c b c



 

 

      (2)

where bk, ck — digits of integer and fractional part of the digit
x2, meeting the inequality 0 (,)k kb c   ; n, m — digit counts
of integer and fractional parts of x2 with indexes k and l
respectively.

However, not any real number may be represented as a finite
digit count [3-7]. For example, lots of irrational numbers are
represented by the infinite fraction and is often fixed in round
figures in the definite digit. Such number as x3 in numerical
notation with the base  may be represented in the form of the
finite linear combination of integer part orders and the infinite
linear combination of orders of its fractional part:

1

3 1 2 0 1 2 3
0 1

... , ... ,
n

k l
n n k l

k l

x b b b c c c b c
 


 

 

      (3)

The appropriate regulations (algorithms) are used for
conversion of the number from one positional notation into the
other. In the general case such algorithm boils down to the
following operations:

1. Using the arithmetic of the new numerical notation:

while converting the number from the current numerical
notation with the base 1 into the new numerical notation
with the base 2, it is necessary to fix the expansion,
foundation coefficient and the indexes of orders of
numerical notation with the base 2, using the arithmetic
of the numerical notation with the base 2 and make all the
operations in this notation.

2. Using the arithmetic of the current numerical notation:
while converting the number from the current numerical
notation with the base 1 into the new numerical notation
with the base 2, it is necessary:

Software Implementation of Real Number Conversion into Basic Positional Notations
with Controlled Accuracy

А. Anopriyenko 1, S. Ivanitsa 2, S. Kulibaba 3
1 PhD, professor, Donetsk National Technical University (DonNTU). Ukraine, anoprien@сs.dgtu.donetsk.ua

 2 PhD student, Donetsk National Technical University (DonNTU). Ukraine, isv@сs.dgtu.donetsk.ua
3 MSc, Donetsk National Technical University (DonNTU). Ukraine

 ISSN 2278-3083
Volume 2, No.4, July – August 2013

International Journal of Science and Applied Information Technology
Available Online at http://warse.org/pdfs/ijsait03242013.pdf

А. Anopriyenko et al., International Journal of Science and Advanced Information Technology, 2 (4), July – August 2013, 36-40

37

 to divide the integer part of the number represented
in NN with the base 1, into the base of NN with the
base 2, marking out the excesses. The last, written
in a reverse order, make the integer part of the
number in NN with the base 2;

 to multiply sequentially the fractional part of the
number, written in NN with the base 1, by the base
of the new NN with the base 2, marking out the
integer parts, which make the notation of the
fractional part in NN with the base 2.

The process of converting the numbers of large digit capacity
from one NN into the other appears to be rather
labor-consuming for manual calculation. This entails the use
of different software tools, which are called
program-converters for such operations. Particularly, each
high-accuracy computing engine (Mathcad, Mathematic,
MATLAB, etc. [8-9].) is able to convert and do arithmetic of
the numbers in different numerical notations.

Also when developing the software for high-accuracy
computing systems, the programmer during debugging of a
program code has to analyze the intermediate outcome
presented in the form of the set of machine words. Since the
machine word is in fact binary number, it often happens that
human perception needs the binary number presented in a
more compact hexadecimal format or in the form of the
decimal number.

The main goals of the present research can be formulated as:
1. The program implementation of algorithms of inverse

conversion of real numbers in 2, 10, 16 NN.
2. The research of opportunities of the created converter that

makes use of arithmetic's for conversion of numbers,
exceeding possibilities of the PC central processor.

The received results of the research and engineering were
approved at the III international scientific-technical
conference "Information Management Systems and Computer
Monitoring" which has taken place in Donetsk National
Technical University on 16–18th of April, 2012.

2. SOFTWARE IMPLEMENTATION

The idea of creation of this software product originates in the
cycle of the researches confirming efficiency of conversion
into post-binary formats of numbers with a floating point
[5–7], and while working over these numbers the task was that
of converting of decimal numbers into binary with the help of
getting high-accuracy real numbers (up to 10 000 signs after
the point).

Before getting down to creation of the own converter, the
attempt was made to find the ready-made program meant for
conversion of fractional numbers with the necessary accuracy.
However there were no full-function converter among those
that have been considered that was able to prescribe the

required accuracy of the converted number. The majority of
the considered programs (including the standard calculator in
Windows 7) worked only with integers. From among those
software products which after all had coped with converting of
fractional numbers, it is possible to point out, such programs
as: “.:DOS:. Conversion of numbers” [10]; “Fedchenko’s
Converter” [11] and web services: “Notation online” [12];
“Wolfram Alpha” [13].

However none of the listed software products was in
conformity with qualifying standards of the accuracy of
converting of the fractional part of a number. Besides, any of
the converters stated above didn't take into account the
peculiarities of real numbers, lying in the fact that the majority
of such numbers can't be presented in various notations
identically. Therefore there arose the necessity of taking into
account the error of fractional numbers converting, for
example, when converting from decimal notation into the
binary one. For more flexible check of the result it is necessary
to take account of possibility of the choice of quantity of digits
after a point.

The key parameters of the considered converters are specified
in Table 1 with the indication of possibility of the choice of
converting accuracy — the number of significant digits m of
fractional part of the converted number.

Table 1: The parameters of the considered
converters with converting accuracy

Program-converter
or web service

Programming
language

Choice of
converting
accuracy

m

Calculator in Windows 7 С#/VB.NET – –
Notation online PHP Yes 8

Fedchenko’s Converter С++ No 12
.:DOS:. Conversion of

numbers Visual Basic No 232

Wolfram Alpha Mathematica No 2066

It should be pointed out that the Wolfram Alpha web service
possesses the maximum accuracy of fractional numbers
conversion among the considered products. However the
procedure of converting the number is not quite convenient,
since because of the absence of the choice of converting
accuracy the result is read out piece by piece and it is necessary
to update the result each time to get a new portion. The result
received by the Wolfram Alpha service is read out in the form
of the graphic file and it is necessary to additionally apply
means of character recognition to use it as text data.

Thus, the created bin-dec-hex fractional number converter (in
abbreviated form bdh-converter) is deprived of the bugs that a
number of analogs stated above have, and in fact is able to
operate with real numbers of any length (the set limit in 10 000
signs after a point may be increased if necessary).

The bdh-converter program carries out interconversion into
binary, decimal and hexadecimal NN. The converter is

А. Anopriyenko et al., International Journal of Science and Advanced Information Technology, 2 (4), July – August 2013, 36-40

38

implemented in the Java language and occupies about 200 Kb
of disk space. The choice of the Java programming language is
conditioned, first of all, by a cross-platform, the convenience
of the description of model-based processes and the turbo
speed [14-15]. The operating space of the bdh-converter
program is presented in Figure 1.

Figure 1: Operating space of bdh-converter with the indication of

basic fields: 1 – entry field; 2 – the choice of numerical notation for
conversion; 3 – history of operations; 4 – status line; 5 – the choice of

output accuracy; 6 – interactive keyboard

An entry field (Fig. 1, field 1) is intended for number notation
which needs to be converted into another notation. The input
of initial number can be made with the help of a personal
computer keyboard, a clipboard or by the instrumentality of
the additional interactive (virtual) keyboard (Fig. 1, field 6).
Along with this the input line undergoes the analysis of
correctness of number input. In the engineering normalized
notation the input of symbols in the chosen notation, the
character of the entered number, the divider of fractional and
integer parts, and also the character of the exponent е with the
number input mark is permitted. If the input is made
incorrectly, the entry line is marked out with a red color.

The selecting field between the notations (Fig. 1, field 2) is
dominant for the choice of the converting direction. While
choosing one of the selectors in NN, there is a conversion of
initial number into the chosen system, with regard for the
fixed error which is specified by the quantity of the significant
characters after a point. The conversion being implemented,
the chosen NN becomes current.

The number of significant digits after a point is fixed with the
help of the scroll box and the “+” and “–” buttons (Fig. 1,
field 5). The current value of accuracy is displayed over the
scroll box, and to its left and to the right boundary values of
accuracy (in the current implementation 0  10 000) are
indicated. The reading of the scroll box position happens only
during the conversion of input data.

The conversion into the new NN being made, the conversion
result replaces the initial number in the entry field, and is also
logged in the history (Fig. 1, field 3). After the switching of the
numerical notations there happens the activity change of

buttons of the virtual keyboard (only those keys which
correspond with the current numerical notation are always
accessible).

The sequence of actions carried out by the user is fixed in the
history of converting operations in the format: “initial number,
the direction of conversion, the result and converting time”.
Such format of fixation makes it possible to observe all the
operations performed by the user. For example, in the history
the following information is reflected in figure 1: the user
entered decimal number 0.51 and got its binary equivalent
with an accuracy of 1 000 digits after a point.

The “Clear the history” button carries out data cleaning in the
history field, and the “Save the History” button aims at saving
the history of converting operations of converting in a text file.

In the status line (Fig. 1, field 4) the time of the last converting
in milliseconds, and also the pictogram of activity peculiar of
the majority of Java-applications are displayed.

The existence of the multilingual interface, such as Russian,
Ukrainian, English and German, is also a distinctive feature of
bdh-converter. During the application start the language of the
interface is being fixed automatically, depending on the
chosen locale in the operating system of the user. Later on the
language may be changed in menu item “Options”.

Thus, the following features may be singled out as the
peculiarities of the bdh-converter:

1. Cross-platform. This program is being coded in the Java

language, which virtual machine enables it to start
applications both in Windows OS, and in *nix-like
systems.

2. User-friendly interface. Due to the growth of tablet
computers and touch screens, the presence of the keyboard
display is hailed, because the standard keyboard display is
not always practical. Also, the main functions of the
program are duplicated in combinations of keys for a fast
call.

3. Controlled accuracy of conversion.
4. Keeping the history of converting with the possibility of

saving in a file.
5. Loading of the initial data from the file. It is not always

convenient to enter long numbers by hand, especially,
when they are the results of preceding calculations. In
some cases such data are stored as a text in a file. The
program may input the text into the number entry field.

6. Multilanguage interface.

The peculiarity of bdh-converter, unlike similar converters,
stretches further its functionality and concerns also an
algorithmic base. First of all, the program does not use
mathematical capability of the PC central processor since any
of today’s PC processors isn’t able to do so accurate
calculations.

А. Anopriyenko et al., International Journal of Science and Advanced Information Technology, 2 (4), July – August 2013, 36-40

39

The program presents all the data in the form of character
string, and makes the necessary conversions, using the
mechanisms of character-stepped processing. Such procedures
implement program mathematics (i.e. all the mathematical
operations are performed as the text string operations), which
speed of calculation is lower than that of calculations with
hardware support.

However during the work even with the longest numbers, the
waiting period doesn't put the program into the forced
closedown mode. The block diagram of algorithm of the
bdh-converter is shown in Fig. 2, 3.

Figure 2: The block diagram of algorithm
of the bdh-converter (the beginning)

Figure 3: The block diagram of algorithm

of the bdh-converter (the end)

The conversion of numbers of different orders from 10 NN
into 2 NN in the whole radius of accuracy of the result
presentation was being made to assess the program speed. As
the test numbers the approximate values of physical constants
were taken [16]: NA = 6.022140781810+23 mole–1 —
Avogadro constant; gn = 9.80665 мс–2 — the standard
acceleration of a free fall on the Earth surface;
me = 9.1093821510–31 kg — electron mass.The results of
operating time of the program are presented in Fig. 4a.

It should be pointed out that the initial decimal numbers of
different orders were converted into binary numbers of the
maximum accuracy (10 000 characters after a point) with the
values of time investment which aren't exceeding 0.25 sec.

The results of program operating time during back conversion
of the received binary values of test numbers into the initial
10-mal notation are shown in Fig. 4b.

The converting time has considerably increased because the
input binary number has the same accuracy of representation,
as well as the expected decimal number. However, Avogadro
constant, owing to a positive exponent, is represented by the
program as an integral number (the algorithm of integers
conversion is involved only), and the time of its conversion in
the whole radius of accuracy is identical: 52 ms. It should be
noted that another two binary numbers of different orders were
converted into the initial decimal numbers with the maximum
accuracy with the values of time investment which weren’t
exceeding 9 min.

a) b)

Figure 4: The converting time of test numbers – accuracy of the
result representation diagram (а – from 10 NN into 2 NN; b – from 2

NN into 10 NN)

3. CONCLUSION

Thus, the introduced bdh-converter is a good means of getting
numbers in various numerical notations nowadays. The
topicality of the program, except the described differences,
may be expressed by two more important aspects:

1. During the software development for high-accuracy
computing systems, a programmer needs software tools
for the analysis of the intermediate outcome. The

А. Anopriyenko et al., International Journal of Science and Advanced Information Technology, 2 (4), July – August 2013, 36-40

40

programming tool set should have a program, which is
able to convert the numbers into the various numerical
notations.

2. Recently the growth of number of experts in computer
science and technologies is observed. Consequently, the
increasing number of students of computer profession in
institutes of higher education begin studying from the
basis of informatics, there they face the representation of
real number in various notations. In such a case the
bdh-converter program may be not only the working tool
for programmers or engineers of computer systems, but
the trainer for students as well.

REFERENCES

1. Anopriyenko A. Tetralogic and tetracodes: an effective

method for information coding. 15th IMACS World
Congress on Scientific Computation, Modelling and
Applied Mathematics. Berlin, August 24-29, 1997. Vol.
4. Artificial Intelligence and Computer Science. – Berlin:
Wissenschaft und Technik Verlag. – 1997, p. 751-754.

2. Anopriyenko A., Svjatnyi V., Reuter A. Extended logical
and numerical basis for computer simulation. Short
Papers Proceedings of the 1997 European Simulation
Multiconference ESM'97. Istanbul, June 1-4, 1997 –
Istanbul, SCS, 1997, p. 21-22.

3. Bailey D.H. High-Precision Arithmetic in Scientic
Computation. Computing in Science and Engineering,
May-Jun, 2005, p. 54-61, http://crd.lbl.gov/
dhbailey/dhbpapers/high-prec-arith.pdf.

4. Bailey D.H., Borwein J.M., High-Precision Numerical
Integration: Progress and Challenges. July 14, 2009,
http://www.davidhbailey.com/dhbpapers/hp-num-int.pdf

5. Bailey D.H. Resolving numerical anomalies in
scientific computation, manuscript, Jan 2008.
http://www.davidhbailey.com/dhbpapers/numerical-bugs
.pdf.

6. Bailey D.H., Jonathan M.B. High-precision
computation and mathematical physics. XII Advanced
Computing and Analysis Techniques in Physics
Research, 2008,
http://www.davidhbailey.com/dhbpapers/dhb-jmb-acat08
.pdf.

7. Bailey D. H., Barrio R. and Borwein J. M. High precision
computation: Mathematical physics and dynamics.
Applied Mathematics and Computation, vol. 218 (2012),
p. 10106-10121.

8. High-Precision Software Directory.
http://crd-legacy.lbl.gov/~dhbailey/mpdist/.

9. Bailey D.H., Yozo Hida, Xiaoye S. Li and Brandon
Thompson, ARPREC: An Arbitrary Precision
Computation Package, 2002,
 http://crd.lbl.gov/~dhbailey/dhbpapers/arprec.pdf.

10. The program to convert numbers from one number
system to another with breeding translation step by
step. http://pascalstudy.narod.ru/loading/opred.zip.

11. Fedchenko’s Converter.
 http://instrument-p.narod.ru/_progr/konvert.htm.

12. Translation numbers in binary, hexadecimal, decimal,
octal number system online.
 http://math.semestr.ru/inf/index.php.

13. Wolfram Alpha: Computational Knowledge.
http://www.wolframalpha.com.

14. Kahan W. and Darcy J. How Java's Floating-Point
Hurts Everyone Everywhere, available at
http://www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf,
1998.

15. David H.B. Java meets numerical analysis, Scientific
Programming, vol. 12 (2004), no. 1, pg. 59-60.

16. Fundamental Physical Constants — Complete Listing.
http://physics.nist.gov/cuu/Constants/Table/allascii.txt.

