
Narendrababu Reddy.G et al., International Journal of Wireless Communications and Network Technologies, 4(3), April - May 2015, 43-47

43

A Weighted Mean Time Selective Scheduling Strategy for Load Balancing
of Independent Tasks in Cloud Environment

Narendrababu Reddy.G1, Dr. S. Phani Kumar2,
1Asst.Prof.,GNITS, Research Scholar, GITAM,Hyderabad,gnbreddy25@gmail.com

2Prof. & HOD, CSE Department, GITAM University, Hyderabad, phanikumar.s@gitam.edu

ABSTRACT

 Cloud computing nowadays becomes quite popular

among a community of cloud users by offering a variety of
resources. In cloud computing environments, resources
and infrastructure are provided as a service over internet
on demand. These resources need to be provisioned to the
end users in most efficient manner to satisfy the SLAs.
Load balancing of independent tasks in cloud computing
environment is a crucial issue of resources allocation to
the user requirements. In this paper we are presenting a
new heuristic scheduling strategy for allocation of cloud
resources to end users tasks on demand basis, which aims
to achieve well balanced load across virtual machines for
maximizing the throughput. This algorithm uses certain
heuristics to select between two algorithms so that overall
make-span of tasks on the machines is minimized. We
evaluate our provisioning heuristics by comparing with
existing load balancing and scheduling algorithms. Our
approach illustrates that overall make-span of tasks on
given set of VMs minimizes significantly in different
scenarios.

Key Words— Cloud computing, Load balancing,
Make-span, Min-Min, Max-Min.

1. INTRODUCTION

With the rapid development of processing and storage
technologies and evolution of internet, computing
resources have become cheaper, more powerful and more
ubiquitously available than ever before. This technological
trend has enabled the realization of a new computing
model called Cloud Computing, in which resources are
provided as general utilities that can be leased and released
by users through the internet in an on-demand fashion.

 According to Rajkumar Buyya et al.[1] “A Cloud is a
type of parallel and distributed system consisting of a
collection of inter-connected and virtualized computers
that are dynamically provisioned and presented as one or
more unified computing resource(s) based on service-level
agreements established through negotiation between the
service provider and consumers.” Computing is being
transformed to a model consisting of services that are
commoditized and delivered in a manner similar to
traditional utilities such as water, electricity, gas and
telephone. In such a model, users access services based on

their requirements without regard to where the services are
hosted or how they are delivered.

 Cloud computing [2] is an entirely internet based
approach where all the applications and files are hosted on
a cloud which consists of thousands of computers
interlinked together in a complex manner. Cloud
computing incorporate concepts of parallel and distributed
computing to provide shared resources: hard ware,
software and information to computers are other devices
on demand. The end users can use these resources over a
network on-demand basis as a “pay- per- use” model. The
customer is interested in reducing the overall execution
time of tasks on the machines. This leads to problems in
scheduling of customer tasks within available resources.

 In cloud platforms, load balancing (or resource
allocation) takes place at two levels. First, when an
application is uploaded to the cloud, the load balancer
assigns the required instances to physical computers.
Second, when an application receives multiple incoming
requests, these requests should be each assigned to a
specific application to balance the computational load
across a set of instances of the same application. Load
balancing must take into account the consideration of all
kinds of cloud users. It must fulfill the requirements of all
its users. The cloud users expect their jobs to be completed
in fastest possible manner with high availability of
resources. On the other hand the cloud provider invests
such a huge capital with the aim of maximum utilization of
all the installed resources in efficient and effective manner.
Both cloud users and cloud providers except maximum
throughput and improved performance for the money they
invest. The main objective of the load balancing methods
is to speed up the execution of applications on resources
whose workload varies at run time in unpredictable
way[13].

 Motivated by this problem, we propose a new load
balancing algorithm for cloud systems to allocate
resources to tasks using min-min or min-max algorithm
and then scheduling them on either space shared or time
shared basis. The rest of this paper is organized as follows.
The second section describes the related works on existing
load balancing techniques. Section three describes the
proposed load balancing algorithm. Section four presents
experimental results along with performance evaluation of
the algorithm in comparison with existing algorithms
followed by concluding remarks in section five.

 ISSN 2319 - 6629
Volume 4, No.3, April - May 2015

International Journal of Wireless Communications and Networking Technologies
Available Online at http://warse.org/pdfs/2015/ijwcnt02432015.pdf

Narendrababu Reddy.G et al., International Journal of Wireless Communications and Network Technologies, 4(3), April - May 2015, 43-47

44

 2. RELATED WORKS

 Load balancing [3] is a process of reassigning the total

load to the individual nodes of the collective system to
make resource utilization effective and to improve the
response time of the job, simultaneously removing a
condition in which some of the nodes are over loaded and
some others are under loaded. The goal of load balancing
is improving the performance by balancing the load among
the various resources to achieve optimal resource
utilization, maximum throughput, shortest response time
and avoiding overload. With proper load balancing,
resource consumption can be kept to a minimum which
will further reduce energy consumption.

 To distribute load on different systems we use
generally traditional algorithms like those used in web
servers, but these algorithms do not always give the
expected performance with large scale and distinct
structure of service oriented data centers [4]. To overcome
the shortcomings of these algorithms, load balancing has
been widely studied by researchers and implemented by
computer vendors in distributed systems.

 In general load balancing algorithms follow two major
classifications [5]:

 Depending on how the charge is distributed and
how processes are allocated to nodes(system load);

 Depending on the information status of the nodes
(system topology).
 In the first case it designed as central approach,
distributed approach or hybrid approach, in the second
case as static approach, dynamic or adaptive approach [6].
 A. Classification according to the System Load
 a) Centralized approach: In this approach, a single
node is responsible for managing the distribution within
the whole system.
 b) Distributed approach: In this approach, each node
independently builds its own load vector by collecting the
load information of other nodes. Decisions are made
locally using local load vectors. This approach is more
suitable for widely distributed systems such as cloud
computing.
 c) Mixed approach: A combination of above two
approaches to take advantage of each approach.
B. Classification according to the System Topology
 a) Static approach: This approach is generally defined
in the design or implementation of the system.
 b) Dynamic approach: This approach takes into
account the current state of the system during load
balancing decisions. This approach is more suitable for
widely distributed systems such as cloud computing.
 c) Adaptive approach: This approach adapts the load
distribution to system status changes, by changing their
parameters dynamically and even their algorithms. This
approach is able to offer better performance when the
system state changes frequently [6], [7].

 To achieve the load balancing in cloud computing
environment, so many resource provisioning algorithm
have been proposed based on various factors like spatial

distribution of cloud nodes, storage/replication, point of
failure, algorithm complexity etc.In resource sharing
environments, such as grids and clouds, a privileged
resource management system is designed to manage how
these resources are used.
 Houle et al.[8] consider algorithms for static load
balancing on trees treating that the total load is a fixed one.
In [9], a New Time Optimizing Probabilistic Load
Balancing Algorithm in Grid Computing is presented. This
algorithm chooses the resources based on better past status
and least completion time. The main purpose of this
algorithm is to establish load balancing and reduce
response time. In [10], a Task Load Balancing Strategy for
Grid Computing is presented. In this, a hierarchical load
balancing strategy and associated algorithms based on
neighborhood property is discussed. This strategy
privileges local balancing first i.e load balance within sites
without communication between sites, then upper
hierarchical balancing will take place and so on. Yagoubi
proposed in [11], a hierarchical load balancing model as a
new frame work to balance computing load in a GRID.
This model suffers from communication bottlenecks.

3. PROPOSED ALGORITHM

To achieve our goal of minimizing the overall make-
span of tasks on virtual machines and provide better
quality of services, we design an algorithm that assigns
tasks to best machines in such a way that it provides
satisfactory performance to both, cloud users and
providers. The algorithm is designed to make choice
between Min-Min and Max-Min scheduling algorithm
based on certain criteria.

Min-Min algorithm follows the following procedure:
Phase1: It first computes the completion time of cloudlets
on each VM and then for each cloudlet it chooses the VM
which process the cloudlet in minimum possible time.
Phase2: Then among all the cloudlets in MT the cloud let
with minimum overall completion time is chosen and is
allocated to VM on which minimum execution delay is
excepted. The cloudlet is removed from the list of MT and
the process continues until MT list is empty.

Max-Min algorithm follows the following procedure:
Max-Min algorithm works similarly like Min-Min in
phase 1. In phase 2, Max-Min allocates the cloudlet with
maximum expected completion time to VM, i.e longer task
is first allocated a VM. Max-Min algorithm allocates
considerable long task (cloudlet) to one VM and smaller
tasks to another VM based on their completion time. Min-
Min on the other hand is useful when all the tasks are
almost of same size. When all the tasks are of similar sizes
then Min-Min allocates the cloudlet to a VM on which it
executes in minimum possible time. This not only ensures
that overall make-span of tasks on VM is reduced but also
provide minimum delays in processing of tasks.

Using Cloud Sim[12] tool a simulation set-up was
prepared to better understanding the working of resource
allocation and task scheduling algorithms with the aim to

Narendrababu Reddy.G et al., International Journal of Wireless Communications and Network Technologies, 4(3), April - May 2015, 43-47

45

achieve load balancing in cloud environment. In the
simulation tasks are modelled as cloudlets and machines
are modelled as VMs on which cloudlets are executed and
cloud itself is modelled as a data centre.

 Let ‘V’ denotes the number of VMs and ‘T’ denotes
the number of tasks. Execution time of ‘ith’ task on ‘jth’
VM is calculated using:

 Exeij = []
[]

 ---------------- (1)

All the tasks will be sorted according to minimum
execution time.

Expected completion time of task on a VM is calculated
using :

 Compij = Exeij + Waitj ------------------------- (2)
‘Waitj’ is the time for which ‘ith’ task has to wait for

‘jth’ VM to get ready.
Average completion time:

Average_Compij =
([])

 ------------ (3)

Now to select between Max-Min and Min-Min,
standard deviation (SD) is used.

SD = Σ([] _ [])
√

 --------- (4)

Then, the sorted task list is searched for a location
where the difference between two consecutive values of
‘Compij’ of tasks is sufficiently large as compared with
other tasks, using the relation: Compij > SD. Based upon
location following methods are invoked:

Case1: If the location is present in the upper half of the
list then it implies that the list has greater number of
sufficiently long tasks as compared to short tasks(i.e tasks
of similar sizes are greater). In this case Min-Min
outperforms Max-Min and hence Min-Min is invoked.

Case 2:if the location lies in the lower half of the list
then it implies that list contains large number of short tasks
but fewer long tasks. In this case Max-Min outperforms
Min-Min. Hence Max-min is invoked.

Case 3: If no such location exist, that implies that all
tasks are of almost same sizes with no major difference
between any two tasks sizes (i.e difference < SD). In this
case following conditions are used:
 If(SD< Average_Compij), then the list contains all

small size tasks. In this Min-Min is executed to
allocate a VM to task.

 If(SD>= Average_Compij), then Max-Min is
executed to allocate a VM to task.

After allocation of a VM to a task that task is removed
from the list of meta tasks and the process continues until
all tasks are allocated to a VM.

 Algorithm:

1.Inputs: Tasks sizes and MIPS of VM.
2. for all Tasks T in meta-tasks [MT]

 for all VMs

 Exeij = []
[]

 3. Sort all tasks in MT in ascending order of their
execution time.
 4. While MT is not empty

 for all Tasks T in meta-tasks [MT]
 for all VMs

 Compij = Exeij + Waitj
 5. for all Tasks T in meta-tasks [MT]
 find the task with minimum completion time and
the resource that process it in minimum time.
 6. If more than one resource obtains this minimum
 Then
 Select the VM which has been first initiated on
FCFS basis.
7. Calculate SD using equation (4)
8. Find out location ‘L’ in MT where the difference
between two consecutive values of Compij > SD
 9. IF ‘L’ is present in the upper half or
 SD < Average_Compij
 Then
 Allocate VM to task using Min-Min.
 Else
 Allocate VM to task using Max-Min.
 10. Remove allocated task from MT
End While.

4. EXPERIMENTAL RESULTS

 Performance Metrics: Make span of given cloudlets on
given set of VMs is used as the performance metrics in
this resource provisioning technique in cloud computing
environment. Throughput of the heterogeneous system is
the measure of the make span. Lesser the value of the
make span of allocation algorithm better is the resource
utilization.
 To evaluate and compare the proposed strategy, a
simulation environment has been setup using
CloudSim[12]. The proposed policy is simulated in the
following environment:

a) Cloudlets (tasks) are attributed by their file size.

b) VM capabilities are defined in terms of MIPS

c) The environment is static i.e list of tasks ,
resources and attribute values given before
simulation.

 The completion time of each task is calculated in the
simulated environment in milliseconds.

Narendrababu Reddy.G et al., International Journal of Wireless Communications and Network Technologies, 4(3), April - May 2015, 43-47

46

Figure 1: Make span of tasks without proposed algorithm

Figure 1 shows the overall make span of five cloudlets
(Tasks T1,T2,T3,T4 & T5) on two VMs of different
capacities without using proposed algorithm.

 Figure 2: Make span of tasks with proposed algorithm

 Figure 2 shows the overall make span of five cloud

lets with proposed algorithm.

 Figure 3: Makespan before & after load balancing.

Figure 3 illustrates the comparison of makespan before

and after load balancing using the proposed weighted
mean time selective algorithm. The X-axis represents the
number of tasks and the Y-axis represents the makespan in
milliseconds. With the proposed algorithm the makespan
is reduced considerably. With more number of tasks, the
difference in make span time is quite high and the
algorithm provides the best results.

Figure4: Comparison with different algorithms.
 Figure 4 shows the comparison of make span for FCFS,
RR and proposed algorithms. The X-axis shows the
number of tasks and the Y-axis shows make span in
milliseconds. It is clearly evident from the graph that the
weighted mean time algorithm is more efficient when
compared with other regular algorithms.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

VM1 VM2

T5

T4

T3

T2

T1

0

200

400

600

800

1000

1200

1400

1600

1800

2000

VM1 VM2

T5

T4

T3

T2

T1

0

1000

2000

3000

4000

5000

6000

10 20 30 40

Before
LB

After
LB

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20 40 60

FCFS

RR

Propos
ed

Narendrababu Reddy.G et al., International Journal of Wireless Communications and Network Technologies, 4(3), April - May 2015, 43-47

47

5. CONCLUSION
Resource allocation on the cloud aims at avoiding under
utilization of resources by balancing the nodes with
appropriate tasks. The main objective of the load
balancing algorithms is to utilize the resources effectively
to reduce the make span i.e the overall completion time of
the tasks. The algorithm proposed in this paper ensures
that all resources are efficiently utilized and tasks are
executed with minimum make span when compared with
other existing algorithms. In future, we plan to extend this
algorithm to jobs with dependent tasks i.e for work flow
applications.

REFERENCES

[1] Rajkumar Buyya, C.S.Yeo,S.Venugopal,J.Broberg,
I.Brandic, “Cloud computing and emerging IT
platforms: Vision, hype, and reality for delivering
computing as the 5th utility” in : Future Generation
Computer Systems vol. 25, 2009, pp.599-616

[2] Qi Zhang, Lu Cheng, Raouf Boutaba, “Cloud
computing: state of the art and research challenges”
in: J Internet Serv Appl 2010, pp.7-18

[3] K.Ramana, A.Subrayanam and A.Ananda Rao,
“Comparative Analysis of Distributed Web Server
System Load Balancing Algorithms Using Qualitative
Parameters”’ VSRD-IJCSIT, vol.1(8),2011, pp.592-
600.

[4] Yi Lu, Qiaomin Xie, A.Geller, J
R.Larus,A.Greenberg: “A Novel Load Balancing
Algorithm for Dynamically Scalable Web Services,
IFIP PERFORMANCE 2011, 29th International
Symposium on Computer Performance, Modelling,
Measurements and Evaluation 2011, 18-20 October
2011, Amsterdam, Netherlands.

[5] Elarbi Badidi, “Architecture of service oriented
distribution of objects”. Doctoral Thesis 20 July 2000.

[6] N.Shivaratri, P.Krueger and M.Singhal, “Load
distributing for locally distributed systems”, IEEE
Computer 25(2),pp.33-44, December 1992.

[7] T.L Casavant and J.G Kuhl, “A Taxonomy of
Scheduling in General Purpose Disrtributed
Computing Systems”. IEEE Transcations on Software
Engineering,14(2),pp.141-154, February 1988.

[8] M.Houle, A.Symnovis, D.Wood, Dimension-
exchange algorithms for load balancing on trees, in
proc. Of 9th Int. Colloquium on Structural Information
and Communication Complexity, Andros, Greece,
June 2002, pp 181-196.

[9] M.Moradi, M.A. Dezfuli,, M.H.Safavi, Department of
Computer and IT Engineering, Amirkabir University
of Technology ,Tehran, Iran, A New Time Optimizing

probabilistic Load Balancing Algorithm in Grid
Computing IEEE 978-1-4244-6349-7/10. 2010.

[10] B. Yagoubi, Y.Slimani, Taski load balancing strategy
for Grid Computing, Journal of Computer Science
3(3) (2007) pp186-194

[11] B. Yagoubi, Distributed load balancing model for
Grid Computing, in : African Conference on Research
in Computer Science and Applied Mathematics,
October, 2008,pp631-638.

[12] R.N. Calheiros, R.Ranjan, C.A.F.D.Rose, R.Buyya,
CloudSim: A Novel frame work for modeling and
simulation of cloud computing environments and
evaluation of resources provisioning algorithms,
Software:Practice and Experience 41 (2011) 23-50.

[13] D.L Eager, E.D. Lazowska, J.Zahorjan, Adaptive load
sharing in Homogeneous distributed systems, The
IEEE Transactions on Software Engineering
12(5),1986, 662-675.

[14] G.Narendrababu Reddy, S.Phani Kumar, Review of
Load Balancing Techniques in Cloud Computing
Environment: Challenges and Algorithms,
International Journal of Advanced Research in
Computer Science, Vol 5, No.4, (2014) pp 157-162.

