
Hye-Kyung Yang et al., International Journal of Science and Advanced Information Technology, 4 (2), March – April 2015, 12 - 15

12


ABSTRACT

In this project, we propose simple search engine for good
restaurant based on Lucene. The project goal is to
recommend that we want to find some restaurant
information, such as restaurant name and food name. Using
this search engine, we do not have to research restaurant
information in web-site. We can easily find restaurant
information using this search engine. The search engine was
developed by JSP and Java. The search engine was
constructed in the following way. First, we can create index
on restaurant information. Before creating index, we should
collect restaurant information from website. We will explain
how to obtain these data. After that, we can start searching
information that we want to find. We show results in the web
page format.

Key words : engine, index, Lucene, restaurant, search,

1. INTRODUCTION
Lucene is open source information retrieval software

library [1]. It is supported by the Apache Software
Foundation and is released under the Apache Software
License. Lucene has been ported to other programming
languages including Delphi, Perl, C#, C++, Python, Ruby,
and PHP [1]. Therefore, we use to develop simple engine for
good restaurant based on Lucene. The project goal is to
recommend that we want to find some restaurant
information, such as restaurant name and food name. Using
this search engine, we do not have to research restaurant
information in web-site. We can easily find restaurant
information using this search engine. The search engine was
developed by Java based program. The search engine was
constructed in the following way. First, we can create index
on restaurant information. Before creating index, we should
collect restaurant information. The restaurant information
can be obtained from website. We will explain how to obtain
information from website. After that, we created index with
the model according to the text of parsing data. Create all
possible terms in the index which are searched by network
users as well as help people to manage and order extensive
information and enable network users to quickly and easily
retrieve any information they need. After indexing the
documents, we can start searching information we need. The
system shows to present results in the web page format.

The rest of the paper is organized as follows. Section 2
presents system architecture. Section 3 presents web parsing
method. Section 4 presents creating index and Section 5
presents searching index. Section 6 concludes the paper.

This research was supported by Basic Science Research Program through

the National Research Foundation of Korea(NRF) funded by the Ministry of
Education, Science and Technology(No. 2012R1A1A2006850).

2. SYSTEM ARCHITECTURE
This section is system architecture part. The part presents

to develop the simple search engine structure. Figure 1 shows
the search engine structure.

Figure 1: System Structure

First, we have to collect good restaurants information. The

method used web parsing. After that, we can create index
with the model according to the text of parsing data. After
indexing the documents, users can start to search
information users need. Search requests are submitted by the
users and information retrieval systems to preprocess and
search the information eventually return user the
information.

In this project, Lucene Development kit version is
Lucene-4.7.8, it can also require java runtime environment
above JDK1.6 version and need to import JAR package in to
Eclipse.

3. WEB PARSING
Before creating index, we should collect restaurant data,

such as restaurant name, location and some information.
Therefore, we can get web data using web crawler or web
parsing. We got data from Naver blogs. However, Naver does
not allow web robots so that we tried to use web parsing.
Furthermore Naver provides searching open API, we can
easily do web parsing.

Figure 2 shows NaverOpenAPI[2] Code. We can get blog
data using these codes. Figure 3 shows parsing results. The
good restaurant data collected total 381 documents.

A Search Engine built using Open Source Software Technologies*
Hye-Kyung Yang1, Minsoo Lee2

1Department of Computer Science and Engineering, Ewha Womans University, Korea, yang88710@naver.com
2Department of Computer Science and Engineering, Ewha Womans University, Korea, mlee@ewha.ac.kr

 ISSN 2278-3083
Volume 4, No.2, March - April 2015

International Journal of Science and Applied Information Technology
Available Online at http://www.warse.org/ijsait/static/pdf/file/ijsait02422015.pdf

Hye-Kyung Yang et al., International Journal of Science and Advanced Information Technology, 4 (2), March – April 2015, 12 - 15

13

Figure 2: NaverOpenAPI Code

Figure 3: parsing results

4. CREATE INDEX
This section explains how to create indexing. Indexing

can greatly improve the speed of information retrieval. In
Lucene, an index is composed of segments, a segment is
made up of documents, a document is composed of fields, and
many terms consist of a field. The index process of Lucene is
started from add Document method of IndexWriter. In
Figure 4, show some creating index codes. In the API of
Lucene, the main role of IndexWriter is to add documents to
the indexing which provides us with the main interface for
indexing.

First of all, creating indexing IndexWriter object which
used StandardAnlyzer as an analysis tool, in order to
generate indexing and store it into directory. We should
separate indexing for fields in the documents, because
collected document is TEXT file format. Figure 5 show
separated indexing for fields and then stored terms of fields.

Figure 4: Create indexing code

Figure 5: Store terms of fields

We tried to use StringTokenizer, that allows an

application to break a string into tokens [3]. If the term meet
a word “링크(link)”, the next string data will be stored each
field. The method is we can easily show page of results.

Hye-Kyung Yang et al., International Journal of Science and Advanced Information Technology, 4 (2), March – April 2015, 12 - 15

14

5. SEARCH INDEX
After indexing, the system established a search class. As

we mentioned previously, we show search results in the web
page format, as shown in Figure 6. The search pages were
developed by JSP.

Figure 6: search pages

First, we tried to use basic searching module of Lucene.

However, the basic search module has some problems. These
are missing data and ranking. In the first problem of missing
data, for example, if we input keyword is “대구(Daegu)”, we
can’t get any results, as shown in Figure 7. However, Look at
this Figure 8. Collected dataset has document including this
keyword which has “대구맛집”. In this searching module

think “대구” and “대구맛집” is different keywords.

Therefore, we should use WildCardQuery method.

Supported wildcards are ‘*’, which matches any character
sequence (including the empty one) and ‘?’, which matches
any single character. ‘\’ is the escape character [4]. In other
words, wildcards look like SQL ‘like’ query. The codes are as
follows Figure 9.

Figure 7: missing results

Figure 8: search results - keyword is “대구맛집”

Figure 9: WildCardquery code

However, the method also has a problem. When using

WildcardQuery, the score is always 1.0. Because of this
problem, the lowest relevant document can be located to high
rank. We solved the problem using BooleanQuery with
WildcardQuery. The codes are as follows Figure 10.

Figure 10: BooleanQuery with WildcardQuery codes

The codes contained WildcardQuery,TermQuery and

BooleanQuery. This method is a query that matches
document matching Boolean combination of other queries,
e.g TermQuery and WildcardQuery and other queries.
BooleanClause.Occuer.SHOULD operator indicates that
should appear in the matching documents [5].

BooleanClause.Occuer.MUST operator indicates that
must appear in the matching documents [5]. In this project,
we want to find more correct results. Thus, the keyword has
to contain the title of document. Figure 11 shows the results
pages for input keyword.

Figure 11: Results page for input keyword

In this project, we used scoring method, as shown the

Figure 12. The code usually uses to calculate document score
in the Lucene. We got each of document score using this
scoring method.

Hye-Kyung Yang et al., International Journal of Science and Advanced Information Technology, 4 (2), March – April 2015, 12 - 15

15

Figure 12: Score code

6. CONCLUSION
This section explains how to create indexing. Indexing

can greatly improve the speed of information retrieval. In
Lucene, an index is composed of segments, a segment is
made up of documents, a document is composed of fields, and
many terms consist of a field. The index process of Lucene is
started from add Document method of IndexWriter. In
Figure 4, show some creating index codes. In the API of
Lucene, the main role of IndexWriter is to add documents to
the indexing which provides us with the main interface for
indexing.

REFERENCES
1. Lucene wikipedia ,

http://en.wikipedia.org/wiki/Lucene
2. Naver Open API,

http://developer.naver.com/wiki/pages/OpenAPI
3. JAVA Stringtokenizer,

http://www.tutorialspoint.com/java/util/java_util_strin
gtokenizer.htm

4. Lucene WildCardQuery,
https://lucene.apache.org/core/4_0_0/core/org/apache/
lucene/search/WildcardQuery.html

5. Lucene BooleanQuery,
http://lucene.apache.org/core/3_0_3/api/all/org/apache
/lucene/search/BooleanClause.Occur.html

