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ABSTRACT 

Due to the increased risk of exposure to violent and harmful 

content brought about by the spread of online video content, 

robust systems for automatic detection and filtering have to be 

developed. This research suggests a novel method for deep 

learning-based violent content detection in videos. Our model 

examines both temporal and spatial characteristics in video 

frames by utilizing the power of recurrent neural networks 

(RNNs) and convolutional neural networks (CNNs).The 

suggested system uses a two-stream architecture, where one 

stream is used for temporal information using bidirectional 

LSTM (Long Short-Term Memory) networks to capture 

sequential dependencies, and the other stream is devoted to 

spatial analysis using 3D CNNs for frame-level understanding 

[1]. To ensure strong generalization, the model is additionally 

trained on a varied dataset that includes both violent and non- 

violent content. Transfer learning is used with pre- trained deep 

learning models on large-scale datasets to improve the model's 

performance [5]. Comprehensive tests show how well the 

suggested method works to reliably identify violent content in 

videos of different genres and settings. The system 

demonstrates its potential for incorporation into online video 

platforms to give viewers a safer and more secure experience 

by achieving state-of-the-art outcomes in terms of precision, 

recall, and F1 score [4]. The suggested deep learning-based 

approach supports further initiatives to lessen the negative 

impacts of violent content in digital media and promote a safe 

and healthy online community [1]. Using Deep Learning to 

Address the Problem of Violent Video Detection: A Bright 

Future for Security and Safety. 

The proliferation of violent content is a key concern posed by 

the ever-increasing abundance of online video content. This puts 

personal safety, public safety, and platforms' capacity to 

properly filter information at risk. Presenting deep learning, a 

potent technique that presents a viable way to automatically 

identify violent content in videos [2]. To sum up, deep learning 

presents a potent and exciting way to address the pressing 

problem of violent video content. We can create a more secure 

online environment for everyone by utilizing this technology 

properly and resolving the issues it raises [5]. Further 

investigation into cross-modality learning and real-time 

detection shows promise for even higher efficiency and 

accuracy. 

 

Key words: Deep Learning Methods, Multi Model Feature 

Extraction, Machine Learning, Fight, Violent Flow, Motion 

feature extraction, Feature fusion baseline. 

1. INTRODUCTION 

 
Due to the ongoing rise in abnormal behaviour in different 

contexts, human behaviours detection in general and violence 

detection in particular have recently gained significant 

attention in Computer Vision (CV) research. Additionally, 

because of the complexity of the environment (i.e., social 

interaction) and the challenge associated with extracting a 

particular characteristic that is associated with a particular 

occurrence, violence detection is one of the most challenging 

problems in CV [3]. 

To put it another way, accurately detecting a violent situation 

requires two main feature extraction methods: 1) Spatial or 

shape feature extraction, and 2) Temporal or time features 

extractions. The spatial features represent the relationships or 

interactions between single frame pixels, but they are 

insufficient to identify the violence. 

In the meanwhile, the most well-liked study in violence 

detection uses surveillance footage to extract spatiotemporal 

elements that aid in the clear identification of violent cases. In 

order to improve overall classification performance, this paper 

proposed various architectures based on extracting 

spatiotemporal features using various techniques (e.g., 3D 

Convolutional Neural Network (CNN) Convolutional Long 

Short-Term Memory (Conv-LSTM) networks integrating 

transfer learning with LSTM or Conv-LSTM). Additionally, 

the architectures included a combination of attention modules 

(i.e., channel attention and spatial attention). 

Based on the UBI-Fights video data, a great deal of important 

work has been done recently in the area of violence detection. 

For instance, in order to provide weak/self- supervised 

learning, Bruno Manuel Degrading in suggests a complex 

iterative learning framework based on Bayesian filtration for 

the instances of unlabeled input. Further more, the author 

employed the late decision fusion ensemble technique to 

improve the overall performance of three models using the 

random forest algorithm, which has fifty decision trees [2]. 

The results showed that this framework performs 0.819 for the 

Area Under the Curve (AUC) metric and 0.284 for the Equal 

Error Rate (EER) measure on the UBI-fights data. Proposing 

different architectures based on integrating the Convolutional 

Block Attention Modules (CBAM) with various layers such as 

ConvLSTM2D or Conv2d&LSTM layers; to catch the 

spatiotemporal features, and increase the focus on the 

important ones. 
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Furthermore, the using for Categorical Focal Loss function 

(CFL) through the training, increases the focus on the 

important features, and overcomes the drawback of class 

imbalance data. Making two Comparisons to declare the 

significance of the proposed work results, by comparing 

the simply proposed architectures with other complicated 

ones; and also with respect to the state-of-the-art on the same 

data. 

 

Nevertheless, we uncover a feature that many violent video 

identification algorithms in use today have overlooked: 

there are instances in which the audio-visual data's semantic 

information does not match up within the same violent film. 

Some videographers, for instance, use the contrast of audio- 

visual semantics to artistically enhance their videos. They 

might play calming music during a combat scenario. Even 

if these movies are still categorized as violent, there is a 

clear inconsistency between the semantics of the two 

modalities because the auditory signal is non-violent and the 

visual signal [1]. The only way for the model to fully utilize 

complementarity between multimodal features through 

fusion is if they share the same semantics. Direct merger of 

multimodal characteristics is not appropriate in the 

aforementioned scenario. 

The complete application of multimodal data will be 

hampered by an issue known as the heterogeneity gap, which 

may emerge because the auditory and visual signals 

represent data of two distinct modalities. Shared subspace 

learning, which attempts to incorporate data of many 

modalities into an intermediate common space where the 

heterogeneity can be viewed as having been eradicated, is the 

mainstream approach to deal with it [5]. The model might 

pick up some pertinent information regarding the correlation 

between audio-visual data implicitly throughout this process. 

However, we think that explicitly introducing correlation 

knowledge during the training phase benefits the model 

more, particularly when working with data that is 

semantically non-corresponding. 

 

2 . DEEP LEARNING METHODS 

 

In recent days, deep learning methodology have reached 

remarkable results in computer vision. Deep neural 

networks have also been utilized for violent video detection. 

In the Mediaeval affective task 2015, Fudan- Huawei 

designed a violent video detection system consisting of two 

stream networks and LSTM networks. Some conventional 

motion and audio features were used as complementary 

information The approach combined visual, movement and 

audio elements in a late fusion manner, producing the most 

impressive outcomes of the year. Zhou et al devised a model 

called Fight Net to identify visual violence interaction [2], 

the method relies on a classic action recognition model that 

operates on temporal segments. Given the extensive 

application of 3D Conv Nets in comprehending video 

content, certain researchers have begun employing them for 

the purpose of detecting violence in videos. In 3D Conv Net 

was used to extracted spatiotemporal features, whereas 

Song et al. built an end-to-end violent video detection system 

based on 3D Conv Net. 

While the methods mentioned earlier have shown reasonably 

positive outcomes, there remains ample room for enhancing 

the effectiveness of current violent video detection techniques. 

In this paper, we introduce a model designed for detecting 

violent content in videos. The utilization of the pseudo-3D 

model (P3D), as suggested in [3], is employed to capture short- 

term spatiotemporal features from the input video. The P3D 

model comprises pseudo 3D blocks, serving as substitutes for 

the original 3D Conv Net kernels to streamline computations. 

Following the P3D network, we integrate an LSTM network to 

extract long-term features from the video. 

 

3. PROPOSED METHOD 

 

The architecture of our model is depicted in initially, three 

distinct types of features namely, appearance, motion, and 

audio features are extracted from the video. Subsequently, we 

establish a feature fusion baseline utilizing shared subspace 

learning to combine these three features. Finally, the fusion 

network incorporates semantic correspondence information 

through a combination of multitask learning and semantic 

embedding learning. 

 

3.1 Multimodal Feature Extraction 

 

Violent videos commonly encompass the following elements 

Appearance Information: Includes items like firearms and cold 

arms. Involves gory scenes or situations where people are 

lying down. Motion Information: Encompasses activities such 

as fighting, chasing, and shooting [1]. Audio Information: 

Typical audio accompaniments in violent videos consist of 

screams, explosions, and gunshots. Given the analysis above, 

we opt to use three key features to characterize violent videos: 

appearance, motion, and audio features. 

 

3.2 Appearance Feature Extraction 

 

The current techniques for extracting appearance features 

have reached a relatively advanced stage. A widely adopted 

model for processing frame sequences is the 3D Conv Net, 

which excels in capturing spatiotemporal information 

compared to its 2D counterpart. In this context, we employ the 

pseudo-3D model (P3D) as proposed in to extract short-term 

spatiotemporal features from the input video. The P3D model 

is composed of pseudo 3D blocks, strategically replacing the 

original 3D Conv Net kernel to streamline computations. To 

further enhance feature extraction, we incorporate an LSTM 

network after the P3D model, facilitating the capture of long- 

term features from the video. 

 

3.3 Motion Feature Extraction 

 

The frameworks employed for extracting appearance and 

motion features share a notable resemblance. However, the 

distinction lies in the fact that the former operates on 

individual video frames, while the latter works on stacked 
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optical flow displacement fields between consecutive 

frames. Opting for optical flow in motion feature extraction is 

grounded in its capacity to explicitly express motion 

information compared to video frames, making it a more 

suitable choice for this purpose. 

 

3.4 Audio Feature Extraction 

 

For audio feature extraction, we leverage the widely used 

VG Gish [4] network. This network is derived from the 

classic VGG network and has demonstrated superior 

performance compared to traditional sound processing 

methods, particularly on extensive voice datasets like Audio 

Set[4]. We have introduced modifications to the original VG 

Gish network, replacing the last three fully connected layers 

with a global average pooling layer to mitigate over fitting. 

The audio signal extracted from the video undergoes 

processing to generate a mel spectrogram with a size of 96 × 

64. This spectrogram is then fed into the VG Gish network, 

resulting in a 128-dimensional feature (Fau) that effectively 

represents the audio feature of the video. 

 

4. FEATURE FUSION BASELINE 

 

In contrast to late fusion, which operates on decision-level 

scores, feature-level fusion has the advantage of incorporating 

more information, leading to better results. Given that audio- 

visual data represent two distinct modalities that may exhibit 

a heterogeneity gap, shared subspace learning emerges as a 

widely adopted method to address this issue [2]. 

The fundamental principle of shared subspace learning 

involves mitigating the heterogeneity among different modal 

features through projection transformations and harnessing 

the complementarity of multimodal features. In the following 

sections, we will delve into the details of our shared 

subspace learning approach. 

 

5. DATASETS 

 

Due to the challenges associated with collecting extensive 

violent data, there is currently a scarcity of large-scale public 

datasets specifically dedicated to violent videos. Our 

experiments address this limitation by utilizing three 

publicly available datasets: Hockey Fight [1], Violent Flow 

[3], and VSD2015. The videos in these datasets typically 

have durations ranging from 2 to 10 seconds. scene and 

semantic information remaining relatively consistent. In 

these datasets, the task of violent video detection is 

essentially transformed into a binary classification problem, 

distinguishing between violent and non-violent content. 

Hockey Fight: This dataset features relatively simple scenes, 

primarily centered around one specific violent scenario: 

fights. However [1], it lacks audio data and is employed 

mainly to assess the effectiveness of appearance and motion 

features. 

Violent Flow: Upon investigation, it is noted that nearly all 

audio data in this dataset does not contain violent audio events 

such as explosions and gunshots. 

Consequently, the majority of audio data is classified as non- 

violent from an auditory perspective. The visual violence label of 

each video in this dataset closely aligns with the overall video 

violence label. Due to this strong correlation, experiments 

regarding semantic correspondence are not conducted on this 

dataset. 

 

6. IMPLEMENTATION DETAILS 

 

The extraction of three key video features— appearance, 

motion, and audio—utilizes deep learning methods in a 

separate manner. 

Appearance Feature Extraction: For appearance features, all 

frames extracted from the input video are initially set to a size 

of 224 × 224, randomly cropped from the resized 240 × 320 

video frames. Successive non-overlapping frames (16 in total) 

form a clip, sent through the P3D199 model pretrained on 

Kinetics-400 [2]. This process yields a temporal local feature 

with 2048 dimensions. These temporal local features are then 

processed through an LSTM network, and the final output of 

the LSTM (512 dimensions) is regarded as the temporal global 

feature of the input. 

 

7. CONCLUSION 

 

This paper conducts a thorough analysis of the violence 

detection in surveillance videos task using UBI-Fights as a 

reference dataset in order to assess the proposed work. The 

analysis is conducted in three steps: 

1) Provide a thorough and lucid explanation of the problem case 

study and challenges by reviewing the most recent related work 

on the same data. 

2) Develop various architectures that satisfy the requirements 

identified in the first step. 

3) Assess the proposed work by contrasting it with the state-

of- the-art work and each other. 

The UBI-Fights dataset is used to implement and assess six 

distinct architectures. The Convolutional Block Attention 

Module(CBAM) was integrated with three basic architectures 

that were created from the ground up as a spatiotemporal 

feature extractor, the ConvLSTM2D or Conv2D&LSTM 

layers; the other three have a similar integration procedure 

based on ResNet50, VGG16, or Mobile Net. The channel 

attention module and the spatial attention module are the two 

primary attention modules found in the CBAM [3]. 

They are both built in a sequential manner to draw the 

architectures' attention to the most crucial elements, such as the 

character of human interactions, while ignoring the less 

crucial ones, such as environmental features. Furthermore, the 

application of Category Focal Loss (CFL) as a loss function 

during the training of the architectures, lessens the issues with 

imbalanced data, and sharpens the models' emphasis on the 

most key components. 

 

The Equal Error Rate (EER) and Area Under the Curve (AUC) 

metrics serve as the foundation for the evaluation criteria and 

metrics. Additionally, the assessment is completed using two 

primary comparisons: 
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1) Comparison of ablation studies, which shows how well 

the simple suggested architectures perform compared to the 

other complex ones. 

2) Comparison of state-of-the-art, which indicates how 

innovative the proposed work performs compared to the 

published papers on the UBI-Fights data. 

The performance results of the comparison steps show that 

the Conv2d&LSTM-based architecture can obtain a high 

performance of 0.0507 for the AUC metric and 0.9493 for 

the AUC metric. 
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