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ABSTRACT 

In this work, we used the finite element method (FEM) and 
the multiconductor transmission lines (MTL) method for 
designing an UHF magnetic resonance imaging (MRI) probe. 
This radio frequency (RF) volume coil quasi-transverse 
electromagnetic (quasi-TEM) type, based on the use of 16 
microstrip transmission line elements has been developed for in 
vivo hydrogen magnetic resonance (H1MR) application on 
small animals at a field of 8T. The quasi-TEM resonator coil 
compared with the shielded birdcage coil is characterized major 
advantages: simple coil structure, high-quality factor and 
completely distributed circuit. The implemented numerical tool 
allows the determination of the primary parameters, matrices 
[L] and [C], and simulates the frequency response of the 
reflection coefficient of the RF excitation port of the resonator, 
which allows us to estimate the level of adaptation of this RF 
volume coil for imaging small animals at Larmor frequency of 
340 MHz. 

Keywords :UHF-MRI probe; microstrip quasi-TEM resonator; 
FEM method; electromagnetic parameters; resonant modes. 

1. INTRODUCTION 
The structures of the TEM resonator had their first 

descriptions in the patents [1, 2], then several articles have been 
published on the modeling TEM resonator subject [3, 4]. 
Vaughan et al have developed a model based on transmission 
lines [3]. Although the modeling performance of RF resonators 
in high magnetic fields requires a physical approach that goes 
beyond the conventional concepts of lumped circuits, Tropp 
has developed a lumped model circuit which operates at a 
relatively low frequency of 143 MHz [4]. Bogdanov et al have 
developed a TEM resonator model based on lumped circuits at 
the operating frequency of 200 MHz [5]. At higher frequencies 
this model becomes divergent. In this paper, the model of 
multiconductor transmission lines which includes the exact 
calculation of the primary parameters matrices is developed to 
efficiently design the behavior of the loaded TEM resonator (i.e 
quasi-TEM) at the Larmor frequency of 340 MHz. 

2. THEORY 

The quasi-TEM resonator is considered as a system of n+1 
multiconductor transmission lines, the geometric and physical 
properties of the resonator are uniform in the z direction of 
propagation of currents and voltages. The relationship between 

the vector Î  of natural currents nii ˆ..........1̂  and the vector 

V̂ of natural tensions nvv ˆ..........ˆ1  are expressed by the 
Telegraphist equations: 

)(ˆˆ)(ˆ
zIZ

dz
zVd

                                            (1.a) 

)(ˆˆ)(ˆ zVY
dz

zId
                                              (1.b) 

Complex impedance and admittance matrices per unit 
length Ẑ , Ŷ  are symmetric and of order n. They are also 
formed by symmetric and real matrices of order n: resistance R, 
inductance L, capacitance C and conductance G, so that:  

jLRZ ˆ                                                (2.a) 

jCGY ˆ                                                 (2.b) 
Where ω is the angular frequency. 

The matrices L, C and G are positive definite and can be 
determined by energy considerations. The fundamental 
assumption for the determination of these matrices is that the 
distribution of the electromagnetic field is larger in the 
orthogonal plane to the length of the resonator. Under this 
quasi-TEM condition electromagnetic field distribution is 
identical to that resulting from static excitation of the resonator, 
which allows the determination of the matrices L, C and G 
from the solution of Laplace's equation in the transverse plane 
of the resonator [6-9]. In the case where n+1 conductors are 
surrounded by a medium of conductivity σ, permittivity ε and 
permeability μ, then L, C and G are related by: 

nICLLC                                             (3.a) 
 nIGLLG                                           (3.b) 

Where nI  is the identity matrix of order n. 
The propagation equations of the natural currents and 

voltages are obtained from equations (1.a) and (1.b): 

)(ˆˆˆ)(ˆ
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zVYZ
dz

zVd
                                            (4.a) 

)(ˆˆˆ)(ˆ
2

2

zIZY
dz

zId
                                            (4.b) 

In equations (4.a) and (4.b) the product of matrices Ẑ  and 
Ŷ  is a full matrix, the voltage (current) on a conductor 
depends on the voltages (currents) on the other conductors, the 
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solution of these equations goes through a suitable 
diagonalization of matrices YZ ˆˆ  and ZY ˆˆ  [10, 11]. The change 
of variables leading to the diagonalization is given by: 

)(ˆˆ)(ˆ zVTzV mV                                             (5.a) 

)(ˆˆ)(ˆ zITzI mI                                                 (5.b) 

Matrices VT̂ and IT̂  express the passage of the natural 

current )(ˆ zI  and voltage )(ˆ zV  vectors to current and voltage 
eigenvectors which define the modes of propagation. 
Substituting the transformation given in (5.a) and (5.b) in 
equations (4.a) and (4.b) we have: 

)(ˆˆˆˆˆ)(ˆ
2

2

zVTYZT
dz

zVd
mVV

m                                  (6.a) 

)(ˆˆˆˆˆ)(ˆ
2

2

zITZYT
dz

zId
mII

m                                      (6.b) 

The solution of equations (6.a) and (6.b) amounts to finding 

matrices VT̂ and IT̂  such that: 

 2ˆˆˆˆˆ VV TYZT                                                  (7.a) 

 2ˆˆˆˆˆ II TZYT                                                   (7.b) 

Where   )ˆ............ˆ(ˆ 22
1

2
ndiag    is a diagonal matrix 

containing the eigen values 22
1 ˆ............ˆ n  corresponding to 

the propagation constants of different modes. The 

determination of the eigenvectors 
kVT̂ and 

kIT̂ and eigen 

values 2ˆk (k = 1……. n) leads to the solutions of equations 
(6.a) and (6.b), which leads to: 

)ˆˆ(ˆ)(ˆ ˆˆ   m
z

m
z

V VeVeTzV                           (8.a) 

)ˆˆ(ˆ)(ˆ ˆˆ   m
z

m
z

I IeIeTzI                               (8.b) 

The general solution (8.a) and (8.b) contains 4n unknowns 

in the vector 
mV̂ , 

mV̂ , 
mÎ  and 

mÎ  of size n. The number of 
unknowns can be reduced to 2n by substituting (8a) in (1b): 

           dz
zIdYzV )(ˆˆ)(ˆ 1

 

)ˆˆ(ˆˆˆˆ)(ˆ ˆˆ11   m
z

m
z

III IeIeTTTYzV             (9) 

A characteristic impedance matrix is defined as [10]: 
11 ˆˆˆˆ  IIc TTYZ                                                     (10) 

then: 
       )ˆˆ(ˆˆ)(ˆ ˆˆ   m

z
m

z
Ic IeIeTZzV                          (11.a) 

        )ˆˆ(ˆ)(ˆ ˆˆ   m
z

m
z

I IeIeTzI                                (11.b) 

The solution is completed by the determination of the 

incident and reflected current amplitudes vectors 
mÎ , 

mÎ . 
These vectors are determined by the boundary conditions 
imposed at the point of abscissa z = 0 and z = l (l is the length 
of the resonator). The network of passive loads SẐ  and sources 

SV̂  connected to the end z = 0 of the resonator will provide n 
equations relating the n tensions )0(V̂  to the n current )0(Î  
while the passive charges network 

LẐ  and possible sources 
LV̂  

connected to the end z = l  of the resonator provide n equations 
relating the n tensions )(ˆ lV  to the n current )(ˆ lI : 

   )0(ˆˆˆ)0(ˆ IZVV SS                                          (12.a) 

   )(ˆˆˆ)(ˆ lIZVlV LL                                          (12.b) 
The application of boundary conditions (12.a) and (12.b) to 

equations (11.a) and (11.b) allows expressing the natural 
currents and voltages at any point z along the coupled lines of 
the resonator using the chain matrix: 
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Evaluation of natural currents and voltages at the points of 
abscissa z = 0 and z = l and the elimination of the of incident 
and reflected wave amplitudes currents 

mÎ , gives the 
expressions of the sub matrices: 

cIIc YTlTZl ˆˆ)cosh(ˆˆ)(ˆ 1
11

                          (14.a) 
1

12
ˆ)sinh(ˆˆ)(ˆ  IIc TlTZl                            (14.b) 

cII YTlTl ˆˆ)sinh(ˆ)(ˆ 1
21

                             (14.c) 
1

22
ˆ)cosh(ˆ)(ˆ  II TlTl                                  (14.d) 

Once the chain matrix formed the input impedance matrix 
of the resonator can be calculated taking into account the 
absence of sources at the end z = l of the resonator: 

))l(Φ̂Ẑ)l(Φ̂(
))l(Φ̂)l(Φ̂Ẑ(

)(Î
)(V̂Ẑ

L

L
in

2111

1222

0
0




                   (15) 

By having the input impedance matrix (15), the quasi-TEM 
resonator and the network connected to the end z = 0 are 
simulated as a lumped circuit [4, 5]. The current delivered by 
the RF source allows the calculation of the input impedance 

inz  and reflection coefficient S11 seen by this RF source [11]: 

S
S

S
in R

i
v

z                                                       (16) 

Sin

Sin

Rz
Rz

S



11
                                                   (17) 

Where RS is the impedance of the RF source and the power 
cable, typically equal to 50Ω. 

3. RESULTS 

The quasi-TEM resonator schematically shown in figure 1-a 
consists of 16 microstrip conductors 0.64 cm wide and 38 μm 
thick. These microstrips are arranged on the inside of a plexiglas 
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cylinder 7.25 cm in diameter, the outer surface of the cylinder 
diameter of 10.5 cm is completely covered with copper of 
thickness 38 μm and is the ground plane. The plexiglas material 
used in the design has a relative dielectric constant (εr) 3.3 at 
interest frequency (340 MHz).The length of the resonator is 
comparatively sized with respect to the wavelength in free space 
λ0, l = 0.177 λ0. 

 
a) 

 
b) 

Figure 1: (a) Schematic of the quasi-TEM resonator, (b) Structure 
with the boundary conditions specified for the potential. 

3.1 Evaluation of the primary electromagnetic (EM) 
parameters 

Using our FEM approach under FreeFEM environment 
[12], the primary parameters matrices per unit length of the 
quasi-TEM resonator are obtained by solving the Laplace’s 
equation: 

0)(   tt                                               (18) 

0V  on the èmei conductor and 0  on all other 
conductors. 

The geometric structure of the resonator and the boundary 
conditions on the electrical potential   set for conductors are 
shown in figure 1-b. 

The finite element method (FEM) is used to solve the 
equation (18). Figure 2.a shows triangular FEM-meshes of the 
resonator and the electrical potential   is estimated at the 
vertices of triangles from the boundary conditions defined for 
the structure, figure 2.b shows the obtained distribution of 
electric potential inside the resonator. 

The calculation of electric potential on the orthogonal plane 
to the length of the resonator allows the determination of the 
first line of capacitance C. 

 



jl

ji nV
C 

0
,

1                                                   (19) 

 

 
a) 

   
b) 

Figure 2: (a) FEM-Meshes of the structure, (b) Distribution of the 
potential. 

Solving the Laplace equation by replacing all dielectrics 
with air provides the capacity matrix C0, the matrix inductance 
matrices L is expressed by: 

                     jiji CL ,000,                                        (20) 
Table 1 lists the first column of the matrices C, C0 and L 

obtained by the FEM method. This information is sufficient to 
reconstruct the complete matrices since they are circulant [6-9]. 

 

Table 1.  EM parameters of the MRI resonator. 

Colonne 
C 

(pF/m) 
C0 

(pF/m
) 

L 
(nH/m) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

52.180 
-10.270 
-0.984 
-0.315 
-0.179 
-0.127 
-0.101 
-0.090 
-0.086 
-0.090 
-0.101 
-0.127 
-0.179 
-0.315 
-0.984 

-10.270 

23.363 
-5.529 
-0.804 
-0.323 
-0.191 
-0.136 
-0.109 
-0.097 
-0.093 
-0.097 
-0.109 
-0.136 
-0.191 
-0.323 
-0.804 
-5.529 

0.557 
0.158 
0.070 
0.039 
0.025 
0.019 
0.015 
0.014 
0.013 
0.014 
0.015 
0.019 
0.025 
0.039 
0.070 
0.158 
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3.2 Multiconductor transmission lines model 
predictions 

When the primary EM parameters are numerically 
determined, it is possible to estimate the resonance spectrum S11 
of the resonator shown in figure 3 using our programs. 

 
 

Figure 3: Schematic circuit of the quasi-TEM UHF-MRI probe. 

The simulated model is excited by an RF voltage source of 
impedance 50 Ω. This model is adjusted so that the mode of 
interest occurs at a frequency of 340 MHz, this is achieved by 
adjusting capacitors CL-n and CS-n (n = 1,...,16) connected at the 
ends of the resonator at 1.85 pF. As shown in figure 4, a level 
of reflection of 93.86 dB is obtained by adjusting the 
adaptation capacitor CM to 5.98 pF.  
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Figure 4: Sizing of the adaptation capacitor of the UHF-MRI probe. 

The simulated frequency response of S11 at the RF port of 
our designed UHF-MRI probe is shown in figure 5. The curve 
presents a minimum at the chosen resonant frequency, i.e., 340 
MHz. The obtained minimum of reflection for the quasi-TEM 
resonator is very low  (-93.86 dB) at the resonance frequency. 

The resonance frequencies and levels of reflection 
associated to the eight resonant modes are listed in table 2. 
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Figure 5: Reverse transmission, S11, at the RF port of our designed 

UHF-MRI resonator. 

3.3 Comparison with the lumped circuit model 

To validate the model of multiconductor transmission lines, 
an equivalent lumped circuit model is developed for 
comparison. In this model the coupled transmission lines 
resonator are treated as inductors with mutual coupling between 
them. The equivalent lumped circuit of the quasi-TEM probe is 
shown in figure 6, while figure 7 shows the frequency response 
which we obtained for this circuit. 

For the first mode, the circuit has a minimum of reflection of 
-27.63 dB obtained at the resonant frequency of 363 MHz. From 
figures 5 and 7, it appears clearly that multiconductor 
transmission lines model is adapted to design quasi-TEM UHF-
MRI probes more than lumped circuit model. 

 

Figure 6: Lumped circuit model of the quasi-TEM UHF-MRI probe. 

Table 2.  Resonant modes of the quasi-TEM UHF-MRI 
resonator. 

Modes Frequency 
(MHz) 

S11  
(dB) 

0 
1 
2 
3 
4 
5 
6 
7 

299 
340 
387 
424 
452 
472 
486 
494 

-38.22 
-93. 86 
-27.17 
-58.78 
-24.98 
-27.36 
-10.12 
-04.68 
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Figure 7: Frequency response of the quasi-TEM resonator 
using lumped elements. 

4. CONCLUSION 

In this paper the multiconductor transmission lines model 
has been developed and successfully implemented to analyze 
and design a 16 microstrip lines quasi-TEM resonator for small 
animal imaging at 8T. 

The multiconductor transmission lines model has been 
applied to a system of small dimension, its theoretical 
foundations and implementations allow evaluating the 
resonance spectrum of the UHF-MRI resonator.  

The resonant frequency of mode 1 can be adjusted by means 
of end capacitors while the level of adaptation of the resonator 
is adjusted by means of the capacitor fed by the RF source. 

The simulation of the frequency response of the model in 
lumped circuits shows a considerable discrepancy with that of 
the multiconductor transmission lines model, which allows us to 
confirm the usefulness of the distributed model. 
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