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 
ABSTRACT 
 
Nonlinear tapered waveguide sections are often needed in the 
microwave/millimeter-wave system to connect the two 
waveguides of different radii. The presence of such a taper 
inevitably introduces unwanted parasitic modes and 
reflections. The modal matching technique is a powerful 
computer friendly method for analyzing horn antennas or 
nonlinear waveguides in which the actual profile is replaced 
by a series of uniform waveguide sections. The waveguides 
can have any cross section and can be propagating either 
cylindrical or spherical modes. The mode matching technique 
involves matching of the total modal field at each junction 
between uniform sections so that conservation of power is 
maintained. From this process, the amplitudes of the separate 
modes at the output of a junction have been deduced in terms 
of the amplitudes of the mode spectrum at the input to the 
junction. Each junction along the length has its own 
scattering matrix. The matrices for all junctions have been be 
cascaded and an overall scattering matrix has been formed. 
The overall scattering matrix contains the input reflection 
coefficient and the output transmission coefficient. 
 
A modal matching field analytical technique has been 
developed for the analysis of arbitrarily shaped nonlinear 
waveguide tapers. For a typical practical case, different type, 
like, linear, parabolic, exponential and raised cosine shape 
profile have been taken and it have been found that the raised 
cosine shape profile nonlinear taper is most suitable since it 
has minimal shape variation at both ends (input as well as 
output) thereby ensuring minimal reflections, with maximum 
transmission in the desired mode with appreciably low mode 
conversion.   
 
The developed analysis should be useful to the microwave 
practitioners in the analysis and design of nonlinear tapers 
and for final contour selection having optimum performance 
for the high power microwave/millimeter wave devices and 
systems. 
 
Key words : Cylindrical waveguide, field analysis, mode 
matching technique , nonlinear taper.  
 

 
 

 
1. INTRODUCTION 
 
Inhomogeneous transmission lines and waveguide in form of 
tapered matching sections or tapered waveguide transition are 
frequently needed for variety of applications. For the intended 
use where the output of the high power microwave /millimeter 
wave devices are connected with the input of the system using 
these energy, requires a tapered circular waveguide 
transitions which connectes these two sides having different 
radii. The problem in the design of these inhomogeneous 
waveguides is basically of specifying a distributed 
inhomogeneity for minimum mode conversion and/or 
minimum reflection over a specific frequency range. If the 
physical length of the device is at the same time kept at a 
minimum, the power loss will also be minimum. 
 
The presence of a taper in the waveguide section inevitably 
introduces unwanted parasitic modes.  The requirements for 
tapers are a good match at the input port and prescribed 
spurious mode suppression at the output port with a taper 
length as short as possible. The special difficulties are 
encountered in the design nonliner tapers when: 
 
1. The taper input the working mode is very close to cutoff. 

Input reflections as well as forward and backward 
scattered modes have to be considered. 

2. In the case the ratio of the input to output waveguide radii 
is large so that there is strong excitation of many 
unwanted modes. 

3. For the higher-order operating modes, the higher and 
lower undesired neighboring modes also gets coupled.  
TEmp modes with m > 0 couple not only to TEmp modes but 
also excite TMmq modes. 

4. In the case when at the taper throat, the external charge 
particles are also present, like, in the case of accelerators 
and microwave/millimeter-wave electron beam devices, 
which behave like an anisotropic dielectric, excite 
additional parasitic modes. 
 

The modal matching technique is a powerful method of 
analyzing horn antennas, will be adopted here for our case of 
the nonlinear waveguide taper section in which the actual 
taper profile is replaced by a series of uniform waveguide 
sections. The waveguides can have any cross section and can 
be propagating any modes. The mode matching technique 
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involves matching the total modal field at each junction 
between uniform sections so that conservation of power is 
maintained. From this process, the amplitudes of the separate 
modes at the output of a junction can be deduced in terms of 
the amplitudes of the mode spectrum at the input to the 
junction. The number of propagating and evanescent modes, 
which are needed to represent the total power, must be found 
by trial and error. The power of the modal matching 
technique stems from the fact that the amplitudes of the 
modes can be expressed as the components of a scattering 
matrix. Each junction along the length has its own scattering 
matrix. The matrices for all junctions can be cascaded and an 
overall scattering matrix derived from horn. The process of 
computing the overall scattering matrix can be decoupled 
from the process of obtaining the elements of a particular 
scattering matrix. The later will depend on the geometry of 
the waveguide, but the formal is quite general. Thus, the basic 
technique can readily be extended to different geometries. 
The overall scattering matrix for the taper contains the input 
reflection coefficient and the output transmission coefficient 
will be computed. 
 
The concept of mode matching at the junction was first 
attempted in the late 1960s and early 1970s by Wexler [1], 
Masterman and Clarricoats [2] and English [3]. However, the 
process of computing the coefficient is lengthy and because of 
limited computer power was available, it was not possible to 
do more than simple computations.   The computational 
emphasis was on reducing the number of modes to the 
minimum so that a numerical solution could be obtained.  It 
was the arrival of powerful computers which enabled the 
concept to be applied to the analysis of complete tapers or 
horns. It was firstly developed by James [4], [5] and Kuhn and 
Hombach [6].  The mode matching technique involves a large 
amount of computation because there will be large number of 
modes to be matched across each junction and a large number 
of junctions along the waveguide/horn [7].  
 
In the present paper, to analyze and design a nonlinear 
waveguide taper, the modal matching field analysis is 
presented which involves matching of the total modal field at 
each junction between uniform sections so that conservation 
of power is maintained. The overall scattering matrix for the 
whole taper has been obtained which contains the input 
reflection coefficient and the output transmission coefficient 
[7]. The developed technique has been applied for a practical 
high power gyrotron oscillator under development [8], where 
the cylindrical output section of the RF interaction cavity 
operating in the TE03 mode is connected with the collector of 
the device using a nonlinear cylindrical taper. To design this 
nonlinear taper different shape profile, like, linear, parabolic, 
exponential and raised cosine is taken and analyzed for the 
transmission and reflection in the desired operating mode to 
finalize the optimum shape profile [9]. 
 
2. ANALYSIS 
 

The modal matching technique is used for obtaining the 
overall transmission and reflection coefficient of a waveguide  
 

 
Figure 1: Block diagram showing scattering matrix with forward 

and reflection coefficients 
 
in the different operating modes. The waveguide is 
represented as a box, where [A] and [B] are column matrices 
containing the forward and reflection coefficients of all the 
modes looking into the waveguide from the source side. 
Similarly [C] and [D] represent column matrices containing 
the forward and reflections coefficient of all the modes 
looking into the aperture of the waveguide from the outside. 
The characteristics of the tapered waveguide is then given by 
a scattering matrix[S], 
 
 
   

 
 

B A
S

D C

   
   

          ,                         
(1) 

where, [S] is the scattering matrix: 

 
   
   

11 12

21 22

S S
S

S S

 
  
    .                         (2) 

 
The elements of [S] are the square matrixes describing the 
power coupling between all the modes at the input with all the 
modes at the output of the tapered guide. The reflection 
coefficient for the tapered guide is    
    
    11B S A   .                          (3) 

 
For many tapered guide case, there will only be one mode at 
the input, in this case [A] will be 
 

 

1
0
:
:

A

 
 
 
 
 
         .                                         (4) 

 
The length of column matrix depends on the number of modes 
at the output of waveguide. The transmission coefficient of 
the waveguide, from which the aperture fields are determined 
as: 
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    21D S A    .                          (5) 
 
 
 
2.1 Scattering Matrix of a Uniform Section 
 
The scattering matrix elements for a uniform section of guide 
are 
 
     11 22 0S S                            (6) 

 
     12 21S S V    ,                         (7) 

 
where, [V] is an N×N diagonal matrix with the elements Vnn = 
exp(-γn ), where  is the length of the section and γn is the 
propagation constant for the nth mode in the waveguide (1 < n 
< N).  In principle, the waveguide section could contain lossy 
material so that γn is complex. However, this would lead to 
extensive computation and is generally unnecessary since the 
influence of lossy materials can usually be adequately 
accounted by perturbation approach. The propagation 
coefficient is normally either purely imaginary (γn = jβn) for 
travelling modes or is purely real (γn = αn) for evanescent 
modes. In both cases, the elements of matrices are real. A 
substantial number of evanescent modes are included in the 
analysis. This is because the uniform sections will be 
relatively short in length so that the amplitude of a decaying 
wave may still be significant by the time the wave reaches the 
next junction. 
 
2.2 Scattering Matrix of a Junction 
 
The derivation of the scattering matrix at the junction is more 
complicated, since it involves matching of total power in all 
the modes on both sides of the junctions.  The number of 
modes on the left hand side of the junction and the number of 
modes on the right hand side of the junction can in general be 
arbitrary. However, it simplifies the analysis and the 
computational procedure if the number of modes N is the 
same on both sides of the junction and assumed in the present 
analysis. 

 
Figure 2: Junction between two sections of cylindrical waveguide 

 
Each uniform waveguide section contains travelling waves in 
which the transverse electric fields can be represented as a 

spectrum of N nodes. The transverse electric and magnetic 
modal functions on the left hand side of the junction are 
represented by the subscript L (i.e., enL and hnL), and those on 
the right hand side of the junction by the subscript R. 
 
The electric and magnetic fields on the left hand side are, 

    
1

exp exp
N

L n n n n nL
n

E A z B z e 


                                 (8) 

    
1

exp exp
N

L n n n n nL
n

H A z B z h 


     ,                         (9) 

where An and B n are the forward and reflected coefficients of 
mode n on the left hand side of the junction. 
 
On the right hand side of the junction, the fields have the form 
 

    
1

exp exp
N

R n n n n nR
n

E C z D z e 


                             (10) 

 

    
1

exp exp
N

R n n n n nR
n

H C z D z h 


                         (11) 

 
where Cn and Dn are the forward and reflected amplitude 
coefficients of mode n on the right hand side of the junction, 
looking into the junction. 
 
The total transverse fields must match across the junction. If 
the junction is at z = 0, then, 
 

   
1

1

NN
n n nL n n nRn

n

A B e C D e




        ,                             (12) 

 

   
1

1

NN
n n nL n n nRn

n

A B h C D h




      .                             (13) 

 
If the cross section area of the waveguide on the left hand side 
of the junction is SL and that on the right hand side of the 
junction is SR, the boundary conditions give that the 
transverse electric fields over the area (SR – SL) will be zero. 
The fields over the area SL will be continuous.  The continuity 
of fields and the orthogonality relationship between modes 
leads to a pair of simultaneous matrix equations. 
 
 [P] [ [A] + [B] ] =[Q] [ [C] + [D] ]   ,                          (14)    

                                                                        
 [P]T

 [ [D] – [C] ] =[R] [ [A] – [B] ] ,                          (15) 
 

where [A] and [B] are N element column matrices in the 
section on the left hand side of the junction containing the 
unknown modal coefficients A1 to AN  and B1 to BN. Similarly, 
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[C] and [D] are N element column matrices for the right hand 
side of the junction containing the unknown modal 
coefficients C1 to CN and D1 to DN. 

 
The matrix [P] is an N×N square matrix whose elements are 
integrals representing the mutual coupled pair between mode 
i on the left hand side and mode j in the right hand side: 

 .
L

ij iL jR L
S

P e h ds     .                                                       (16) 

 
The matrix [P]T is the transpose of [P], i.e., the rows and 
columns are interchanged.  The matrix [Q] is an N×N 
diagonal matrix describing the self coupled power between 
modes on the right hand side of the junction. The elements are 
integrals over the area SR as: 
 

 .
R

jj iR jR
S

Q e h ds      .                                                        (17) 

 
Similarly, the matrix [R] is an N×N diagonal matrix 
describing the self coupled power between modes on the left 
hand side of the junction. The elements are integral over the 
area SL 

 

 .
L

ii iL jR
S

R e h ds     .                                                                                    (18) 

 
The above three coupling integrals are mode matching 
equations contain information about the type of waveguide on 
either side of the junction.  They are evaluated for the 
appropriate taper cross-section.  This can be evaluated either 
analytically or numerically for all modal combinations at each 
junction. Analytical evaluation is only possible in some cases 
and involve considerable mathematics though saves 
considerable computer time. 
 
Equation (16), (17), and (18) are rearranged into the 
scattering matrix form. This gives the elements of [S] from 
equations 
 
           

       

         

             

11 1
11

11
12

11
21

11 1
22

       –   

  2     

  2        

               

T T

TT

TT

T T

S R P Q P R P Q P

S R P Q P P

S Q P R P P

S Q P R P Q P R P

 





 

                 

         

   
   

       
  

 



  

 

        

   (19) 

 
In the above analysis, it is assumed that the area SR is greater 
than the area SL.  Otherwise, the elements of [S] in equation 
(2) becomes 

  22 21

12 11

S S
S

S S
 

  
 

  .                                                                     (20) 

 

2.3 Cascading of Scattering Matrix 
 
The whole nonlinear waveguide taper section is divided into a 
number of uniform sections and junctions. For instance, the 
whole nonlinear taper has divided into 50 junctions and 49 
uniform sections. Each junction or section can be represented 
by its own scattering matrix with a box as shown in figure 2 
and represented by equation (2).  [S] represents the scattering 
matrix of an individual uniform junction or section.  The 
scattering matrix of the total nonlinear taper is made up of a 
series of scattering matrices as shown in figure 3. 

 
Figure 3: Single Scattering Matrix divided into a number of 

cascaded S Matrix 
 
Scattering matrices are particularly useful because it is 
straightforward to cascade two scattering matrix.  If these two 
scattering matrices have elements 
 

11 12

21 22

a a
a

a a

S S
S

S S

 
        

                                                                (21) 

 
and   

11 12

21 22

b b
b

b b

S S
S

S S

 
        

  .                                                           (22) 

 
Then, the cascaded scattering matrix is  
 

11 12

21 22

c c
c

c c

S S
S

S S

 
        

                                                 (23) 

where 
 

 
1

11 12 11 22 11 21 11
c a b a a a aS S I S S S S S


                              

     (24) 

 

 
1

12 12 11 22 12
c a b a bS S I S S S


                     

                          (25) 

 

 
1

21 21 22 11 21
c b a b bS S I S S S


                     

                           (26) 

 

 
1

22 21 22 11 22 12 22
c b a b a a aS S I S S S S S


                              

.  (27) 
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Here, [I] is a unit matrix and [ ]-1

 represents the inverse 
matrix. The cascading process has the advantage that the 
exact number of junctions and sections does not have to be 
known at the start of the analysis as the process proceeds from 
the input to the output in a logical fashion [10]. 
 
The next stage is to determine the scattering matrices of the 
separate sections. These can be of two forms, either a uniform 
section or a junction between two uniform sections. 
 
 
2.4 Number of Modes and Sections 
 
Time taken to compute the input and output coefficients for 
the nonlinear taper depends on the number of modes and the 
number of sections. The time is proportional to the number of 
sections and approximately proportional to the square of the 
number of modes. The number of sections and the number of 
modes has to be judiciously taken so that the desired accuracy 
is achieved without unnecessary increasing computation 
time. The total number of modes depends on the relative 
diameters at each junction and must be chosen by repeat tests. 
The larger the change in diameter, the more modes will be 
excited locally and the higher the level of mode conversion. 
 
2.5 Scattering Matrix Formulation for the Cylindrical 
Waveguide Nonlinear Taper 
 
The total nonlinear circular waveguide taper length is divided 
into step discontinuity.  Larger the number of sections taken, 
higher the accuracy in the analysis results obtained. The usual 
choice of the testing eigenmodes as being those of the smaller 
guide for enforcing continuity and as those of the smaller 
guide for enforcing the magnetic continuity at each junction is 
justified rigorously. The waveguide type can be arbitrary but 
the two waveguides must be identical to the cross section of 
the smaller waveguide. Also, all guides are required to posses 
the same axis.  This simplifies the analysis since only modes 
with zero azimuthal variation (TE0,n) need to be considered. 
As fields defined left of the junctions and right of the 
junctions as the sum of normal modes of respective 
waveguides.  The set of equations (8)-(11) are used 
considering equal number of modes, N modes being present in 
both left and right sides of junction. Here, N is chosen large 
for convergence [11]. 
 
In equations (8)-(11) enL,R and hnL,R are the normalized vector 
functions for the nth mode. In the circular waveguide, TE 
eigenmodes for the transverse electric fields can be calculated 
on either side of junction using the relation 
 

   

 
'

0.5 ' '' ' 2 2
'

sin ( )

cos( )( )

mn
m

m
mn

mn mnm mn mn
m

rm J m unit r
r a

e
rJ m J m unit

a a






     

  
        

                 

.  (28) 

 
For our mode of interest TE0,3,  Substitute m = 0 and n = 3 for 

calculation of desired eigenmode. For m = 0, m  = 1 and 
' 10.174mn  . 

 
Also                   mn mnh z e        .                                        (29) 
 
Equation (29) can be rewritten as, 
 

03 03h z e          .                                                                (30) 
 
For both side of junctions, the normalization of Lne and Lnh  
using (17) 

 .Ln Ln nn
SL

e h ds R                                                                             

 
and from the orthogonality of waveguide mode,  
 

 . 0Ln Ln
SL

e h ds     .                                                       (31) 

 
Matching the electric field and magnetic fields over the 
common apertures between the two regions: 
 
EL= ER inside SL,  EL Rnh =ER Rnh inside SL  .                (32)   
 
So,  one can modify the equation (31) as, 
 

   . .
L R

L Rn R Rn
S S

E h ds E h ds        .                              (33) 

 
Since, the electric field is null at the conductor surface, 
making up the surface SR-SL, the integral limit on the right 
hand side may be modified as 
 

   . .
L R

L Rn R Rn
S S

E h ds E h ds          .                             (34) 

 
Using the properties, 
 

   
1

M
n n nn n n nnn

A B P C D Q


                                  (35) 

 
where  
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 .
L

nn Ln Rn
S

P e h ds   and  .
R

nn Rn Rn
S

Q e h ds  . 

 
The other boundary condition required is, L RH H within 
SL.  Following  
 

   . .
L R

Ln L Ln R
S S

e H ds e H ds    . 

 
With similar line of reasoning yields 
 

   
1

N

nn n n nn n n
n

R A B p C D


                                 (36) 

 .mm Lm Lm
SL

R e h ds  . 

 
Equations (35) and (36) may be rewritten into a matrix form 
as: 
 

     P A B Q C D       ,                                                (37) 
 

      TR A B P D C       .                                            (38) 
 

Above equation is converted into a scattering matrix format 
relating the normalized output vector B and D to the 
normalized input vector A and B. Matrices [S11], [S12], [S21] 
and [S22] are derived from [P], [P]T, [R] and [Q] matrices 
using matrix math and equations (37) and (38) as: 
 

               
           

           

               

1 1
11

1
12

1
21

1 1
22

2

2

T T

T T

T T

T T

S R R P P R P P R

S R R P P P Q

S Q Q P P P R

S Q Q P P Q P P Q

 





 

         

    


     


          

   (39) 

 
This is the calculation at single junction. So, calculation for 
transmission coefficient S21 is sufficient for our analysis. The 
cascading equation (26) is used only for S21 for two junctions 
a and b. 
 
3.  RESULTS AND DISCUSSION 
 
A nonlinear tapered cylindrical waveguide often needed in 
the microwave/millimeter-wave system to connect the two 
waveguides of different radii. The problem in the design of 
these inhomogeneous waveguides is basically of specifying a 
distributed inhomogeneity for minimum mode conversion 

and/or minimum reflection over a specific frequency range. If 
the physical length of the device is at the same time kept at a 
minimum, the power loss will also be minimum. The 
presence of such a taper in a waveguide section inevitably 
introduces unwanted parasitic modes whereas one wishes  
that tapers should have a good match at the input port and 
prescribed spurious mode suppression at the output port 
keeping the taper length as short as possible. Various shape 
profile nonlinear tapers are used for the purpose. In order to 
analyse the performance of these nonlinear tapers various 
techniques are available. 
 
In the present paper, we have adapted the mode matching 
field analytical technique which involves matching of the 
total modal field at each junction between uniform sections so 
that conservation of power is maintained. From this process, 
the amplitudes of the separate modes at the output of a 
junction have been deduced in terms of the amplitudes of the 
mode spectrum at the input to the junction. Total length of the 
taper is divided into a large number of section /junctions. 
Each junction along the length has its own scattering matrix. 
The matrices for all junctions have been be cascaded and an 
overall scattering matrix has been formed. The overall 
scattering matrix contains the input reflection coefficient and 
the output transmission coefficient for the inividual modes. 
 
The developed modal matching technique has been applied  
for the 200kW 42GHz gyrotron oscillator under 
developement, with which our group is also involved.  Here, a 
nonlinear tapered cylindrical waveguide section having a 
total length of 350.00 mm connects the cylndrical output 
section of the RF interaction cavity of radius 13.99 mm 
operating in the TE03 mode with the collector of radius 42.50 
mm of the device.  
 
Taking above taper dimension, nonlinear taper different 
shape profile, like, linear, parabolic, exponential and raised 
cosine have been analyzed for the transmission (S21) and 
reflection coefficients (S11) in the desired TE03 operating 
mode using mode matching technique.  
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Using the specific shape profile functions with the given input 
and output radii and length, taper counters are generated. 
Then, these contours which are smooth curve is approximated 
into the desired number of steps. Typically, figure 4 shows the 
step approximation of raised cosine function taper used for the 
analysis. The number of steps is increased in the analysis for 
converging results with desired level of accuracy. The number of 
sections taken is important issue. More number of steps taken, 
less the approximation, and better the transmission of power 
in every profile. Total power transmission in all modes is 
dependent on profile along with its dependency on the no. of 
sections. Profile of taper is responsible for mode conversion 
issue and also somewhat affected to the total power arrived at 
the output in all modes. After certain large enough sections, 
the mode conversion and transmission is saturated to certain 
value.  Even increase in sections further remains those 
quantities unaffected. The transmission power is almost 
approaches to one while reflected power is very less as the 
waveguide is overmoded. 
 
3.1. S-Parameter Analysis with Frequency Sweep 
 
Analysis frequency range is taken from 40GHz to 45GHz. 
Transmission coefficient (S21) is plotted with frequency 
range. Our concern is calculation and observation of S11 and 
S21 at 42GHz for each of basic design.  Incident mode at input 
of taper is TE0,3 . S21 is total power transmitted at the output of 
taper retained in TE0,3 mode. Transmission power calculation 
in desired mode is our objective.  

 

 
Figure 5: Transmission characteristics of basic profiles with 

frequency 
 

From figure 5, one can observe the total transmission and 
reflection of the RF waves for the different shape profile taper 
designs for the desired operating TE0,3 mode and gyrotron 
oscillation frequency of 42GHz. When the reflected waves are 
negligible in overmoded nonlinear waveguide then, total RF 
transmission in a desired mode can be taken corresponding to 
S21.  Table below showing the analytical transmitted power in 
desired TE0,3 mode at output along with the transmission 
coefficient. The incident power in TE0,3 mode is consider as 
unity. 

 
Table 1: Basic Profile Transmission Coefficients and 

Transmitted power at 42 GHz. 
 

Profile S21 Transmitted power 
at output in TE03 

mode 
Linear 89.9% 80.8% 
Parabolic 71.5% 51.1% 
Exponential 32.5% 10.6% 
Raised Cosine 93.9% 88.1% 

 
 
The analytical transmission coefficient for the desired 

operating mode among the four practical shape profile 
selected, the raised cosine nonlinear taper provides maximum 
transmission and minimum reflection.  This result 
corroborates with the earlier findings reported in the 
literature [12]. 

4. CONCLUSION 
 
A modal matching field analytical techniques have been 
developed for the analysis of arbitrrily shaped nonlinear 
waveguide tapers. The developed technique could easily be 
used to develop recursive computer codes for the desired 
accuracy. For a typical practical case, different type, like, 
linear, parabolic, expontial and raised cosine shaper profile 
have been taken and it have been found that the raised cosine 
shape profile nonlinear taper has been found most suitable 
since it has minimal shaper variation at both ends (input as 
well as output) thereby ensuring minimal reflections, with 
minimum transmission in the desired mode with appreciably 
low mode conversion. 
 
It is hoped that the present analysis will be useful to the 
microwave practitioners in the analysis and design of 
optimum performance nonlinear tapers for its final contour 
selection and adaption in the high power 
microwave/millimeter wave devices and systems   

REFERENCES 
 
1. A. Wexler. Solution of waveguide discontinuities by 

modal analysis, IEEE Transactions on MTT, vol-15, no. 
9, pp. 508-517, 1967. 

2. P. H. Masterman and P. J. B. Clarricoats. Computer 
field matching solution of waveguide transverse 
discontinuities, Proceeding of IEE, vol.118, no.1, 1971. 

3.  P. G. Suchoski and R. V. Ramaswamy. Design of Single 
Mode Step Tapered Waveguide Sections, IEEE 
Journal of Quantum Electronics, vol. QE-23, pp. 
205-211, 1987. 

32 34 36 38 40 42 44 46 48
0

10

20

30

40

50

60

70

80

90

100

 Frequency in GHz

 T
ra

ns
m

is
si

on
 c

oe
ffi

ci
en

t S
21

 in
 %

 incident mode =TE03,Output mode=TE03 

 

 

Parabolic
Linear
Exponential
Raised Cosine



D. S. Nagarkoti et al., International Journal of  Microwaves Applications, 1(1), November-December 2012, 05-12 
 

12 
@ 2012,  IJMA  All Rights Reserved 

 

 

4. G. L. James. Analysis and Design of TE11-to HE11 
Corrugated Cylindrical Waveguide Mode 
Converters, IEEE Transactions on MTT, vol-29, 
pp.1059-1066, 1981. 

5.  G. L. James. On the Problem of Applying Mode 
Matching Techniques in Analyzing Conical 
Waveguide Discontinuities, IEEE Transactions on 
MTT, vol-31, pp. 718-723, 1981. 

6.  R. W. Scharstein and A. T. Adams. Thick Circular Iris 
in a TE11Mode Circular Waveguide, IEEE 
Transaction on Microwave Theory & Techniques,” vol. 
36, pp. 1529-1531,1988. 

7. D. S. Nagarkoti. Design, Analysis & Optimization of 
the Cylindrical Waveguide Nonlinear Tapers, M Tech 
Dissertation, Dept of Electronics Engg., Inst of Tech., 
Banaras Hindu University, Varanasi, India, 2009. 

8. M. V. Kartikeyan, Arun Kumar, S. Kamakshi, P. K. Jain, 
S. Illy, E. Borie, B. Piosczyk, and M. K. Thumm, 
“RF–Behavior of a 200 kW, CW Gyrotron” IEEE 
Transaction on Plasma Science, vol. 36, pp. 631-636, 
June 2008. 

9. Rajeev Sharma, R. P. Gupta and P. K. Jain. Synthesis of 
Non-Linear Cylindrical Waveguide Tapers having 
Different Shape Profile, Symposium on Vacuum 
Electron Devices and Applications, VEDA-2011, 
RKGIT, Ghaziabad, 18-19 November 2011. 

10. W. A.  Huting and K. J. Webb. Numerical Analysis of 
Rectangular and Circular Waveguide Tapers, IEEE 
Trans. on Magnetics, vol. 25, pp. 3095-3097, 1989. 

11.  P. G. Suchoski and R. V. Ramaswamy. Design of Single 
Mode Step Tapered Waveguide Sections, IEEE 
Journal of Quantum Electronics, Vol. QE-23, pp. 
205-211, 1987. 

12. K. L. Chan and S. R. Judah.  Mode Matching Analysis 
of a waveguide junction formed by a circular and a 
large elliptic waveguide, proceeding IEE: Microwave 
Antennas Propagation, vol. 145, No.1, pp. 123-127, 
1998. 


