
 Jagadish S Kallimani et al.,International Journal of Advances in Computer Science and Technology , 1(2), November-December 2012, 23-28

23
 @ 2012, IJACST All Rights Reserved


Abstract: The purpose of summary of an article is to facilitate
quick and accurate identification of the topic of published
document. The objective is to save a prospective reader’s time and
effort in finding the useful information in a given article.
This paper considers the task of text normalization in concatinative
Text To Speech (TTS) synthesis for Kannada language. The main
focus is to have a single document summarization tool based on
statistical approach. This deals on how non standard Kannada
words - acronyms, abbreviations, proper names derived from other
languages or clutters, phone numbers, decimal numbers, fractions,
ordinary numbers, sequence of numbers, money, dates, measures,
titles, times and symbols - are preprocessed before passing it to the
TTS system as an input. The paper also discusses about the
methodology used to normalize the non Kannada text present in the
input text to get an equivalent Kannada as output. The method uses
a fast lexical analyzer, Jflex to scan the input to find the non
standard words in the given input document.

Keywords: Grapheme to Phoneme (G2P), Linear Predictive
Coding (LPC), Non Standard Words (NSW), Text-To-Speech
(TTS) Synthesis.

INTRODUCTION
 A TTS synthesizer generates speech from a given text.
Although TTS is not yet able to replicate the quality of
recorded human speech, it has improved greatly in recent
years. There exist different synthesis technologies suitable
for different applications. A non-general system could have a
limited vocabulary support and limitations in the length of
spoken utterances.
 Multilingual speech processing has become an interesting
area to the research community for many years and the field
is receiving renewed interest owing to two strong driving
forces [1]. Technical advances in speech recognition and
synthesis are posing new challenges and opportunities to
researchers. For instance, discriminative features are seeing
wide application by the speech recognition community, but
additional issues arise when using such features in a
multilingual setting. Another situation is the apparent
convergence of speech recognition and speech synthesis
technologies in the form of statistical parametric
methodologies. This convergence enables the investigation
of new approaches to unified modeling for automatic speech
recognition and TTS synthesis as well as cross-lingual
speaker adaptation for TTS. The second driving force is the
impetus being provided by both government and industry for
technologies to break down domestic and international

language barriers. Speech signal of an utterance in a
language s the only physical event that can be recorded and
reproduced. The signal can be further processed in two
directions – signal and linguistic processing. During
linguistic processing, signals are cut into chunks of varying
degrees of abstraction such as acoustic-phonetic segments,
allophones, phonemes, morphophonemes, etc, will be
ultimately correlated with the letters in the script of a
language.
 Basically, there is no simple metric that could be applied
to any TTS system and which would reveal the overall quality
of the system. One reason for this is that it is usually not very
meaningful to assess TTS systems in isolation, but it is often
more useful to evaluate them in different applications in
which the system would be used in practice. Different
applications have differing needs from a TTS system.
 The easiest way to create synthetic speech is to
concatenate audio samples of natural speech, such as
individual words or sometimes phrases. This concatenation
method guarantees high quality and genuineness, but usually
limited by vocabulary and usually available in one voice [2].
This technique is very suitable for some broadcast and
information systems. However, it is quite obvious that
creating a database of all words and common names from the
entire world will be such a hard task. Thus, for unlimited
speech synthesis using real TTS technology, we have to
operate shorter samples of speech signal, such as phonemes,
syllables and diaphones.

MOTIVATION
 The text input to the TTS system may not be pure
Kannada text. It may contain some Non-Standard Words
(NSW) like acronyms, abbreviations, proper names derived
from other languages or clutters, phone numbers, decimal
numbers, fractions, ordinary numbers, sequence of numbers,
money, dates, measures, titles, times and symbols [3]. The
natural language processing module of an advanced TTS
should be able to handle such NSW also. Standard words are
those, whose pronunciation can be obtained from the
Grapheme to Phoneme (G2P) rules. A G2P converter maps a
word to a sequence of phones. All the NSW must be
expanded into the corresponding Kannada grapheme form
before sending to the G2P module for phonetic expansion.
This module should also take a decision of how a NSW is
being pronounced. For example, a phone number should not
be read like an ordinary number. Each digit in the phone
number must be treated as a single number and must be read
in isolation.

Normalization of Non Standard Words for
 Kannada Speech Synthesis

Jagadish S Kallimani1, Srinivasa K G2, Eswara Reddy B3
1Research Scholer, Department of Computer Science and Engineering, JNTU Kakinada, AP, India, jsk_msrit@rediffmail.com

2Department of Computer Science and Engineering, M S Ramaiah Institute of Technology, Bangalore, India,
srinivasa.kg@gmail.com

3Department of Computer Science and Engineering, Jawaharlal Nehru Technological University,
Anantapur, Andhra Pradesh, India, eswarcsejntu@gmail.com

 ISSN 2320 2629
Volume 1, No.2, November – December 2012

International Journal of Information Technology Infrastructure
Available Online at http://warse.org/pdfs/ijacst04112012.pdf

 Jagadish S Kallimani et al.,International Journal of Advances in Computer Science and Technology , 1(2), November-December 2012, 23-28

24
 @ 2012, IJACST All Rights Reserved

PROPOSED SYSTEM
 It is an attempt to analyze and normalize the input
Kannada text to get the efficient speech output. The major
issue involved in normalizing the Kannada text is to handle
NSW particularly.
The objectives are to:
• Understand the complexities of text normalization.
• Understand the various available text normalization

systems with their characteristics, functionality and
tradeoffs.

• Understand the practical design and implementation
issues of text normalization systems for several Indian
languages.

• Develop an efficient text normalizer for Kannada
language, which can be used for obtaining speech outputs
from Kannada TTS system.

TEXT NORMALIZATION
 Text normalization is the process of normalizing
non-standard form of text such as number, year, date, time,
acronym and abbreviation into standard form. For example,
Dr would sound like doctor, 7th would sound like seventh,
and so on. Moreover, certain numbers have to be pronounced
as individual digits or as a whole. For example, a phone
number such as 91234567809 will be pronounced nine one
two three four five six seven eight zero nine, but it will be
pronounced as nine thousand one hundred twenty three
crores forty five lakhs sixty seven thousand eight hundred
and nine if it is referred as a measurement.
This section gives description of various text normalization
techniques for various languages.

Tokenization and classification
 In all languages, whitespace is the most commonly used
delimiter between words and is extensively employed for
tokenization. But sometimes, the token will not be
recognized as a single token, but split up into two or more
tokens. For example, consider a telephone number, +91 012
5678 1231. This should be identified as a single token of type
Telephone Number, but if tokenization is exclusively based
on whitespace, then we get four tokens. Later, every token
have to go through a token identification process that
identifies its token type. This approach might not even be
feasible for some languages. For example, Chinese and
Japanese do not use any form of whitespace between words.
 In our approach to text normalization, tokenization and
classification are achieved in a single step. We have used
Flex, an automatic generator tool for high-performance
scanners (Mason, 1990), which is primarily used by compiler
writers to develop scanners that break up a character stream
into a sequence of tokens in the front-end of a compiler. Flex
takes a set of regular expressions as input and generates a
scanner as output that will scan an input stream for the
tokens represented by the regular expression. A scanner
works as a lexical analyzer, recognizes lexical patterns in the
input text, and thereby groups input characters into tokens.
Tokens are specified using patterns. An effort is made to
identify various non-standard representations of the words in
Kannada text. Various formats of each NSW category are
defined through regular expressions. English language

characters and Arabic numerals are also processed as they
appear frequently in Kannada text.
 The input text is chunked into sentences based on the
sentence delimiter PurN Viram. When the generated lexical
analyzer is run on each sentence, it analyses the text looking
for strings which match one of its patterns. If it finds more
than one match, it selects the one that matches the largest
chunk of text. If it finds two or more matches of the same
length, the first matching rule is chosen. So, by defining
regular expressions that match the formats of the various
token types, we can automatically extract the token that best
fits the given token description. In case of ambiguity between
two or more token types for a particular token, the lexical
analyzer has been configured to output the possible
categories with the token to facilitate token sense
disambiguation at a later stage. Using this approach, we can
complete tokenization and classification.

Token sense disambiguation
 Once the tokens are extracted from the input text, the
type of each tokens need to be identified. Identification of
token type involves high degree of ambiguity. For example,
1977 could be of the type Year, or of the type Cardinal
Number and 1.25 could be of the type Float, or of the type
Time. Disambiguation is generally handled by manual,
hand-crafted and context-dependent rules. However, such
rules are very difficult to write, maintain, and adapt to new
domains. Token sense disambiguation can be mapped to a
general homograph disambiguation problem (Yarowsky,
1996). We have used decision tree based data-driven
techniques to address this issue.

Decision trees and decision lists
 Decision trees are models based on self learning
procedures that sort the instances in the learning data. The
decision tree algorithm selects both the best attribute and the
question to be asked about that attribute. The selection is
based on what attribute and question about it divide the
learning data in order to get the best predictive value for the
classification. When a token is issued to the tree for
disambiguation, a decision is made by traversing the tree
starting from the root, taking various paths satisfying the
conditions at intermediate nodes, till the leaf. The path taken
depends on various contextual features defined for the token.
The leaf node contains the predictive value for the decision.
Decision lists are a special class of decision trees. Decision
lists may be the simplest model for hierarchal decision
making. Despite their simplicity, they can be used for
representing a wide range of classifiers. A decision list can be
viewed as a hierarchy of rules. When a classification is
needed, the first rule in the hierarchy is addressed. If this rule
suggests a classification, then its decision is taken to be the
classification of the decision list. Otherwise, the second rule
in the hierarchy is addressed. If that rule fails to classify as
well, the third rule is addressed, and so on. Often,
programmers prefer presenting decision lists as sequences of
if-then-else statements, intended for classifying an instance
x.

 Jagadish S Kallimani et al.,International Journal of Advances in Computer Science and Technology , 1(2), November-December 2012, 23-28

25
 @ 2012, IJACST All Rights Reserved

Tokenization
 The tokenization undergoes three levels such as:
 Tokenizer
 Splitter and
 Classifier.
 The whitespace is used to tokenize a string of characters
into a separate token. Punctuation and delimiter were
identified and used by the splitter to classify the token.
Context sensitive rules written as whitespace is not a valid
delimiter for tokenizing phone numbers, year, time and
floating point numbers. Finally, the classifier classifies the
token by looking at the contextual rule. Different forms of
delimiters are removed in this step. For each type of token,
regular expression are written in .jflex format. Then using
JFlex toolkit a Lexer file is generated. In this way the whole
tokenization process is performed. All regular expressions
are designed according to predefined semiotic classes and the
rules of the context that are obtained in the previous semiotic
class identification phase. This study is unique as decision
tree and decision list are used for disambiguation. The
generated Lexer file is used in the token expansion phase.
The generated Lexer is a java class file which is then invoked
by a driver class to get the list of tokens. According to the tag
in the list, each type of token expander class is then invoked
for expanding the token.

Verbalization & disambiguation
 The token expander expands the token by verbalizing and
disambiguating the ambiguous token. Verbalization or
standard word generation is the process of converting non
natural language text into standard words or natural
language text. A template based approach such as the lexicon
is used for cardinal, ordinal, acronym, and abbreviations. For
expanding the cardinal number, calculate the position of the
digit rather than dividing by 10. To expand the cardinal
number token:
 Traverse from right to left.
 Map first two digits with lexicon to get the expanded form

(For instance, 100 as hundred).
 After the expanded form of the third digit, insert the token

hundred.
 Get expanded form of each pair of digit after third digit

from the lexicon.
 Insert the token thousand after the expanded form fourth

and fifth digit and lakh after expanded form of sixth and
seventh digit.

These processes continue for each seven digits. Each seven
digit is divided as a separate block. After each of the second
block insert the token crore. So the expanded form of token
39019 is thirty nine thousand and nineteen.
The detailed functional requirement system of the proposed
system is given in Table 1.

Table 1: Functional Requirements
Use Case Name Enter Text in Kannada
Trigger The User runs the Kannada TTS

Normalizer
Basic Path 1. The User enters the Kannada text in

the text box provided.
2. The User clicks the input to file
button.

3. The User then runs the JFlex tool to
tokenize the input text.
4. The System gets locked to prevent
further in puts by the user.
5. The System generates the equivalent
normalized text.
6. The System generates speech file of
the normalized text.
7. The speech file is played out.

Alternative
Paths

Not Applicable.

Post condition Kannada written in English output for
the normalized text.

Exception
Paths

Error message is displayed in case of
exceptions.

Other GUI which is user friendly.

Introduction to JFlex
 A frequently encountered problem in real life application
is that of checking the validity of field entries in a form. For
example, a form field may require a user to enter a strong
password which usually must contain at least one lower case
letter, an upper case letter and a digit. If the user fails to enter
password with such specifications, the program should
respond by alerting the user with appropriate message. The
job of checking the validity of fields in our application
thus properly falls to the lexical analyzer [4]. In this case, the
Graphical User Interface (GUI) form collects the inputs,
constructs an input string from the input fields and
supplied values, and channels the input string to the scanner.
The scanner matches each segm en t of t h e i n p ut
s t r i n g against a regular expression and reports its
observation. Thus the report is generated and given to the
GUI for the user. The user is allowed to correct any
erroneous field as long as it appears. Jflex is a lexical
analyzer generator for Java written i n Java. The main
advantages of Jflex are:

 Full Unicode support
 Fast generated scanners
 Convenient specification syntax
 Platform independent
 JLex compatible

The syntax of the lexical rules section is described by the
following BNF grammar:

Figure 1: The Lexical Rules

Methodology
 Let us consider different samples of Kannada articles and
we can easily find out lots of NSW present within them.
When this document is passed to TTS as input TTS skips this

Lexical Rules: = Rule+
Rule: = [State List] [’^’] RegExp [Look Ahead] Action
| [State List] ’<<EOF>>’ Action
| State Group
State Group: = State List’ {’ Rule+ ’}’
State List: = ’<’ Identifier (’,’ Identifier)* ’>’
Look Ahead: = ’$’ | ’/’ RegExp
Action: =’ {’ Java Code ’}’ | ’|’
RegExp: = RegExp ’|’ RegExp

 Jagadish S Kallimani et al.,International Journal of Advances in Computer Science and Technology , 1(2), November-December 2012, 23-28

26
 @ 2012, IJACST All Rights Reserved

words and pronounces only the characters which are in
Kannada text. This problem is to be addressed in order to get
pleasant and complete speech output.

NSW in Kannada language
 From the above mentioned articles, it is clear that around
7 to 8% of data in any article contains NSW which cannot be
handled by a normal TTS [5][6]. The different NSW in
Kannada articles are:

• Cardinal numbers and Literal Strings
• Ordinal numbers
• Roman Numerals
• Fractions
• Ratios
• Decimal Numbers
• Telephone Numbers
• Date, Year
• E-mail
• Percentage, Alphanumeric strings

 The purpose of the design is to plan the solution for
handling NSW in any article. This phase is the first step in
moving from problem to the solution domain. The design of
the system is the most critical factor affecting the quality of
the software and has a major impact on the later phases,
particularly testing and maintenance.
 System design aims to identify the modules that should
be in the system. We need to know the specification of these
modules and interaction with each other to produce the
desired results. At the end of the system design all the major
modules in the system and their specification are decided [7]
[8]. The following data flow diagrams illustrate the working
of overall system. Figure 2 shows the context diagram of the
normalization of Kannada TTS system. The system accepts
Kannada text as input which requires normalization. It then
produces the normalized Kannada text which is passed to the
TTS to produce equivalent speech output by reading the
corresponding speech file from the speech database.

Figure 2: Normalization of Kannada in TTS System

 The normalizer phase is divided into two modules,
normalize-input-text and process-normalized-text. The
normalize-input-text module takes the initial input and finds
the characters which needs normalization and normalizes
them. Finally process-normalized-text module takes the
normalized text and finds out the corresponding .wav file to
produce speech output.
 Tokenization, expansion and verbalization of tokens [9]
[10] are the major phases, shown in figure 3. In tokenization
we have three steps namely, tokenizing, splitting and
classifying token into different tags like <NUM>, <FLOAT>,
<EMAIL> etc. If the number string is not an ordinary
number, a parameter is set according to the type of the
number string. If the number string is a decimal number (Ex:
23.8756) the number before the dot (.) is treated as one
number and the digits after the dot are spoken in isolation. If
the number string is a date, the delimiters can be '/' or '-' (Ex:
25-10-1999 or 25/10/1999) for all these things we have
regular expression to match these types. In splitter, we are
using punctuation mark to split between different types of
tokens. We also use white space for splitting between tokens.
After token is splitted in to different classes like number,
decimal number etc we use rule based system to classify
ambiguous tokens.

Figure 3: Tokenization, Expansion and Verbalization

 After the normalization of the input text, the
process-character module takes the normalized Kannada
text and breaks it down into words. The words are broken
down into characters. The individual characters are the input
for the produce-phoneme module. The characters are
rearranged according to the rules in Kannada language and
the output phoneme files are produced. The phoneme files
are taken as an input by identify-audio-files module. This
module consults the phoneme file path and speech database
to produce the audio file. The audio file is then fed to the
strip-audio-files module. This module strips-off the silence
in the speech file. After silence removal, the stripped audio
file is input to the merge-audio-file module. The output of
this module is the final concatenated audio file.

THE SYSTEM
 The methodology for normalizing Kannada text is rule
based system rather than the decision tree. The block
diagram for normalizing Kannada language is shown in

Text
Normalizer

Normalized
Text

Kannada
TTS System

Kannada Text
Input

Kannada Speech output

Initial Kannada
Input

Tokenization
using JFlex

Token Expansion
using Rules

Normalized Text in
Kannada

 Jagadish S Kallimani et al.,International Journal of Advances in Computer Science and Technology , 1(2), November-December 2012, 23-28

27
 @ 2012, IJACST All Rights Reserved

figure 4. This model is classified into two main groups
namely:
• Tokenization using Jflex
• Token expansion and verbalization

Tokenization
 This phase is subdivided into:
• Tokenizer
• Splitter
• Classifier
Main job of tokenizer is to identify the token present in the
given text. In order to indentify the tokens we have to write
regular expression for each token in JFlex tool. White space
character is the mostly used delimiter to identify the tokens in
this method. We are also using white space for identifying
the different set of tokens. For each type of token, regular
expression are written in .jflex format. Then using JFlex
toolkit, a lexer file is generated. If a regular expression is
matched then we assign a tag in list[i] and token in list [i+1].
In this way the whole tokenization process is performed. All
regular expressions are designed according to our predefined
semiotic classes and the rules of the context that are obtained
in the previous semiotic class identification phase. This study
is unique, where decision tree and decision list are used for
disambiguation.

Figure 4: Block Diagram of Text Normalization

Punctuation marks are used to split between the token and
context sensitive rules are written to classify these tokens into
different tag names like <NUM>, <FLOAT> etc.
Context sensitive rules are written to classify tokens in to
different set of tag names like <NUM> tag for all numbers,
<FLOAT> tag is for all floating point tokens and so on.
Classifier does not clear all ambiguity between all the tokens.

Token expansion and verbalization

 The generated lexer file is used in the token expansion
phase. The generated lexer is a java class file which is then
invoked by a driver class to get the list of the token.
According to the tag in the list, each type of token expander
class is then invoked for expanding the token. Token
expander expands the token using expansion rules. Consider
a cardinal number. The rule used is to divide the number by
ten and get the remainder. Verbalization or standard word
generation is the process of converting non natural words to
natural language. Lexicon language is used for expansion of
cardinal’s ordinals numbers. For expanding ordinal number,
we use the rule as divide by 10 and take the position of the
numbers. So we scan from the right side and we divide the
number into last three digits and later we divide every 2 digits
and so on we add string like nuru after 3rd digit and after 4th
and 5th we use savira after 6th and 7th digit we put laksha and
so on.
 Consider the number 12345. when we divide it by ten we
get remainder as 5 and verbalization rule checks its position
here it is one so don’t add any extra string after number 5.
Next when we divide the quotient we get 4 but in
verbalization it is in 2nd place so add string hattu, and for 3 it
is nuru and so on. Finally we get the string as hanneradu
savirada muru nura nalavattu aidu.

RESULTS
The process of text normalization for Kannada language has
been considered in the development of efficient
concatenative TTS synthesis. The obtained results are
discussed in this section which shows the GUI developed
tokenization through Jflex and conversion of NSW to their
Kannada form.

Figure 5: Input to the System

Jflex is a tool which accepts .jflex file and convert it to
equivalent java file. These java files are mainly used to make
tokenization in lexical analysis. For the input,

???? 12345 19-03-2011, abc@def.co.in, 123.456

through test.txt input file, the matched tokens generated are
shown below in figure 6.

Splitter

Classifier

Tokenization

Tokenizer

JFlex-
Lexical

Analyzer

Token
Expander

Dis
ambiguatio

n Rule

Token
Expansion

Rule

Look-up
Table
for
Abbreviation
Acronym and
Number

List of Word in
Normalized Form

Text Input

 Jagadish S Kallimani et al.,International Journal of Advances in Computer Science and Technology , 1(2), November-December 2012, 23-28

28
 @ 2012, IJACST All Rights Reserved

Figure 6: Results of the Tokenization
Finally, the output with the normalized text is obtained for
the given input. This is shown in below figure 7.

CONCLUSION
 In this paper, the method for text normalization for
Kannada language using lexical analyzer Jflex has been
discussed. The paper presents the complexities of Kannada
language and the method to normalize the NSW of Kannada.
The proposed rule based system is not able to completely
classify the tokens (such as pin code number, the phone
number, etc) depending on the context.
 The presented work is suitable only for some specialized
cases of the Kannada language but in future for large amount
of complex cases can also be considered. The proposed
system does not handle the context specific text which can be
addressed later.

Figure 7: Results after the Normalization

REFERENCES

[1] Hervé Bourlard, John Dines, Mathew Magimai-Doss,

Philip N Garner, David Imseng, Petr Motlicek, Hui Liang,
Lakshmi Saheer, Fabio Valente, Current trends in
multilingual speech processing, Sa¯dhana¯ Vol. 36, Part
5, October 2011, pp. 885–915._c Indian Academy of
Sciences.

[2] Anand Arokia Raj, Tanuja Sarkar, Satish Chandra
Pammi, Santhosh Yuvraj, Mohit Bansal, Kishore
Prahallad, Alan W Black Text processing for
text-to-speech systems in Indian languages, 2007.

[3] Cohen M, Giangola J, and Balogh J, Voice User Interface
Design. Addison Wesley, 2004.

[4] Elliot Berk, JFlex - The Fast Scanner Generator for Java,
2004, version 1.4.1, http://jflex.de.

[5] Flanagan J, Speech Analysis, Synthesis and Perception.
Springer-Verlag,

[6] History and Development of Speech Synthesis, Helsinki
University of Technology, Retrieved on November 4, 2006.

[7] Julia Zhang. Language Generation and Speech Synthesis
in Dialogues for Language learning, master’s thesis,
http://groups.csail.mit.edu/sls/publications/2004/zhang_t
hesis.pdf. Section 5.6 on page 54.

[8] Paul Taylor, Text to Speech Synthesis. University of
Cambridge, 2007. Pp.71-111, (draft), Retrieved (June, 19,
2008).
http://mi.eng.cam.ac.uk/~pat40/ttsbook_draft_2.pdf.

[9] Peri Bhaskararao, Salient phonetic features of Indian
languages in speech technology, Sa¯dhana¯ Vol. 36, Part
5, October 2011, pp. 587–599._c Indian Academy of
Sciences.

 [10] Sproat R., Black A.W., Chen S., Kumar S., Ostendorf
M, and Richards C., Normalization of non-standard
words, Computer Speech and Language, pp. 287–333,
2001.

List size: 2
Start of tok
Tag: 4 token: ?
Tag: 4 token: ?
Tag: 4 token: ?
Tag: 4 token: ?
Tag: 4 token: 12345
Tag: 4 token: 19-03-2011
Tag: 4 token: ,
Tag: 4 token: abc@def.co.in
Tag: 4 token: ,
Tag: 4 token: 123.456
End of tok

?
punctuation mark
12345
integer number
hanneradu savirada muru nura nalavattu idhu
19-03-2011
the given nor 19-03-2011
hattombhattu
muru
yeradu savirada hannondu
,
punctuation mark
abc@def.co.in
email id
the given mail id is abc@def.co.in
a b c at d e f dot co dot in
,
punctuation mark
123.456
float number
the given float is 123.456
ondu nura ippattu muru
point
nalku idhu aaru

