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ABSTRACT 
 
This paper presents an inspection and review of wired and 
wireless channel equalization techniques and their existing 
hardware implementations in terms of features, similarities, 
and differences. The authors begin with the theory behind 
channel equalization followed by techniques, and the 
technological realizations for achieving the proper filter in 
response to variations of the channel. Included in both the 
techniques and realizations are the rebirth of the use of 
artificial intelligence as a self-learning filter for the weights to 
use by the filtering structure of channel equalizers.  These 
equalizers were compared, contrasted, and their key 
differentiation was identified.  It was found that gaps such as 
complexity and convergence time are potential areas for 
extending the performance and limits of existing channel 
equalizers. 
 
Key words: Equalizers, Adaptive Equalizers, Blind 
Equalizers, Channel Estimation, Decision Feedback 
Equalizers, Filters.  
 
1. INTRODUCTION 
 
As technology advances, data traffic in wired and wireless 
connections continue to rise. It is projected that in 2022, the 
annual global IP traffic is projected to be 396 exabytes per 
month or 4.8 zettabytes per year [1]. The higher the 
information density in storage devices, the more digital 
symbols are pack in time and space resulting in intersymbol 
interference or ISI. In order to mitigate this ISI, it will require 
some equalization. Each type of communication channels and 
data storage devices has its own characteristics and 
specifications, which leads to finding for the right channel 
equalization a challenge or a research topic of interest [2]. 
 
This paper presents an introduction to the problems that are 
being encountered when data is transmitted in a digital 
channel and focuses on the different types of channel 
equalization algorithms, technologies, and hardware that are 
used to mitigate these problems. In digital communication 
systems, noise and intersymbol interference (ISI) are the main 
problems that increase the bit error rate (BER). As technology 
advances further, and in order to mitigate these problems, new 
equalization algorithms are undergoing extensive research. As 
new applications are being developed, traditional equalization 
techniques are not enough to accommodate the present large 

bandwidth technologies such as 5G, data-center applications, 
and the cloud. To achieve a channel that could supplement the 
needs of these applications, we will have to maximize the 
potential bandwidth that our current medium such as wired, 
wireless, and optical channels could provide. By choosing the 
best equalization algorithm that has the lowest or optimal 
BER results, these channels will be utilized in its optimum 
capacity. Thus, these channels at the same time would be able 
to provide more bandwidth. 
 
In order to understand more regarding the attributes that are 
causing these channel impairments and how to mitigate this, 
the channel, noise, and intersymbol interference is discussed 
in section 2 and followed by a thorough discussion of an 
adaptive filter’s mechanism in section 2.1. In the meantime, 
section 1.1 lists the recent surveys and comparative studies on 
channel equalization and discusses the deficiencies of these 
previous surveys and comparative studies regarding channel 
equalization. Finally, section 1.1 gives a summary of the 
review and its implications. 
 
1.1 EXISTING COMPARATIVE SURVEYS AND 
STUDIES 
 
There is a multitude of studies that were conducted for 
specific applications and structures by running comparative 
tests in predetermined channels or parameters such as 
modulation scheme and frequency. A list of conducted studies 
are as follows: Jaya and Vinodha [3] conducted a study using 
particle swarm optimization for finding the optimum solution, 
Randhawa, Sharma, and Dubey [4] conducted a study in 
designing an effective equalizer for multiple-input, 
multiple-output-orthogonal frequency-division multiplexing 
(MIMO-OFDM) systems, Elkassimi, Safi, and Manaut [5] 
created two algorithm to addressed blind channel equalization 
problem, Janjanam, Nunna, and Naraharisetti [6] performed a 
comparative analysis between particle swarm optimization 
(PSO) and teaching-learning based optimization (TLBO), 
Peng et al. compared three types of turbo equalization 
(maximum a posterior (MAP), frequency domain equalization 
(FDE), minimum mean-squared error (MMSE)) in detecting 
faster-than-Nyquist (FTN) signals [7], Moussa et al. proposed 
two blind equalization methods based on optimal bounding 
ellipsoid algorithms [8], Oyerinde [9] performed a 
comparative performance of equalizers for linear 
constellation pre-coded coherent optical orthogonal 
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frequency-division multiplexing systems, Sharma, and 
Mishra [10] performed a comparative analysis of different 
adaptive equalizer algorithms in varying frequency scenarios, 
while Soni and Agarwal [11] performed a comparative 
analysis of different adaptive equalizer algorithms under 
different modulation techniques. All of the studies mentioned 
above performed comparative studies and surveys with 
varying conditions and without the use of an artificial neural 
network-based equalization algorithm. However, there had 
been few that conducted a comparative study in channel 
equalization using artificial neural networks (ANN) as an 
equalization algorithm. 
 
Mota, Leal, and de Castro Lima [12], performed an evaluation 
of different neural networks algorithms such as, multilayer 
perceptron (MLP), functional link artificial neural network 
(FLANN), polynomial perceptron network (PPN), recurrent 
neural network (RNN), and genetic algorithm (GA) using 
different types of training algorithm such as backpropagation 
algorithm. An individual neural network algorithm was tested 
to verify their capability to specific problems. The 
performance showed a varying result as the learning 
algorithm needed to match to each structure to achieved 
optimum results. Regarding the neural weights, a genetic 
algorithm was able to perform better compared to other neural 
networks. 
 
Chen et al. [13], performed a comparative analysis between 
complex-value (CV) B-spline neural network and 
complex-value polynomial-based neural network applied to 
nonlinear iterative frequency-domain decision feedback 
equalization (NIFDDFE) of Hammerstein communication 
channel. Results show that the two have comparable 
computational complexity. However, complex-value B-spline 
nonlinear iterative frequency-domain decision feedback 
equalization outperforms the complex-value 
polynomial-based nonlinear iterative frequency-domain 
decision feedback equalization in terms of accurately 
identifying and inverting Hammerstein systems 
 
Zahid and Meng [14] conducted a comprehensive survey in 
neural network techniques such as multilayer perceptron, 
fuzzy neural network, functional link neural network, 
Chebyshev neural network, radial basis function neural 
network, and recursive neural networks with the addition of 
comparative computational complexity of its corresponding 
training algorithms. Results show the recursive neural 
network equalizers are superior compared to other variants, 
such as functional link artificial neural network being high in 
complexity, multilayer perceptron taking a lot of time for 
training, and radial basis function neural network limited 
usability in blind equalization. In the end, they recommended 
using support vector machines (SVM) for non-linear recursive 
channel equalization, and further research for the best training 
algorithm. 
 
Zhou et al. [15] made a comparative study between different 
types of equalization technologies specific for the application 

of short-reach optical links using 4-level pulse-amplitude 
modulation (PAM4) with three variants of laser transmitters, 
electro-absorption modulator integrated with distributed 
feedback laser (EML), vertical-cavity surface-emitting laser 
(VCSEL), and directly modulated laser (DML). Based on the 
results, linear impairments such as bandwidth limitation and 
chromatic dispersion could be addressed by the feed-forward 
equalizer (FFE), and decision feedback equalizer (DFE). 
However, for nonlinear distortions, it would take a Volterra 
nonlinear equalizer (VNLE) and sparse VNLE to mitigate 
these channel impairments. For severe nonlinear distortions, 
support vector machines and neural networks-based equalizer 
are used. In the end, they had pointed out the potential of 
machine learning becoming the mainstream technology for 
future short-reach optical 4-level pulse-amplitude modulation 
transmission. 
 
These previous studies that were conducted have their 
limitations for its specific application, like a comparative 
study of several equalization algorithms was conducted for 
the purpose of optical media using specific modulation or 
another study was conducted for different types of neural 
networks for Blind equalization. All of the studies were 
conducted using simulation such as MATLAB software. 
These open for the need to list comprehensive equalization 
algorithms regardless of its channel attributes, such as but not 
limited to the modulation scheme, media, frequency, and 
applications. As studies were conducted using simulation, 
these also open the need to list the currently available 
hardware that could be used to perform channel equalization. 
 
This paper aims to provide a survey of the following: filter 
technology, equalization hardware, and equalization 
algorithms. The following Tables will be used for 
comparative analysis. Based on current filter technology, 
implemented or in production equalization schemes are 
always linear. There is no known equalization hardware as of 
this writing that is using neural networks-based equalization 
algorithm. There are several programmable decision feedback 
equalizers in the market, however, most of them are being 
configured using conventional equalization algorithms. The 
paper ends with an analysis of current existing equalization 
algorithms which points to neural networks or machine 
learning as the next-generation equalization technology. 
 
The next chapter (chapter 2) will discuss the theory behind 
channel equalization. It will explain more about the channel, 
noise, intersymbol interference, and the adaptive filter. In 
chapter 3, channel equalization technologies will be 
enumerated and discussed. Here we will notice that the 
majority of existing equalization technologies are using a 
conventional equalization algorithm. Chapter 4 will be a brief 
discussion regarding the currently available equalization 
hardware in the market. This chapter list sample hardware 
coming from different vendors that are using either fixed or 
programmable algorithm. In chapter 5, a comprehensive list 
of equalization algorithms with their specific characteristics 
will be thoroughly discussed. In this chapter, we will be 
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focusing more on artificial intelligence-based equalization as 
the purpose of this paper is to open up further studies for 
next-generation equalization algorithms. In chapter 6, a brief 
summary and comparative analysis of the 5 Tables (filter 
technologies, equalization hardware, and equalization 
algorithms). And in chapter 7 will be the conclusion of this 
paper on how will the artificial intelligence-based 
equalization be the next-generation equalization algorithm 
and why it is superior to other traditional or conventional 
equalization algorithms. 
 
2. REVIEW OF CHANNEL EQUALIZATION THEORY 
 
In digital communications, the 4 main components are a 
transmitter, receiver, channel or medium, and the desired 
signal or data. When a signal passes through a channel, noise 
is added or introduced to the received signal. However, if the 
SNR or signal to noise ratio is high, a matched filter would be 
enough to mitigate this noise. For Gaussian noise, 
Shannon-Hartley Capacity Theorem in Eq. (1) shows that 
capacity C of the channel is equal to the bandwidth (B) 
multiplied by log base 2 of 1 plus signal to noise ratio (SNR). 
The Shannon-Hartley Capacity Theorem shows that the 
information rate is limited by channel capacity. Base on this, it 
is important to note that there is a limitation in increasing the 
symbol rate beyond the Nyquist rate and addressing the 
resulting intersymbol interference by equalization [2].  

 
ܥ = logଶ(1ܤ + SNR)       (1) 

 
Intersymbol interference is interference between symbols that 
occurs at the receiver. In multiple channels or when multiple 
digital symbols are sent to the receiver, intersymbol 
interference or ISI is introduced. Sometimes, to enable higher 
data rates, partial response pulse shaping is used at the 
transmitter which introduced intersymbol interference as well. 
In summary, intersymbol interference is developed by 
transmitting more symbols than independent dimensions [2]. 
 
To better understand what is intersymbol interference, it is 
equated in Eq. (2) and Eq. (3) on how transmitted and 
received signal is. Let us consider the following: transmitted 
signal s(t), u(t) as the basic waveform for transmitting a 
sequence of symbols, T for the symbol interval, and to send 
b୬	 (n as nth symbol), we send b୬u(t− nT) as shown in Eq 
(2) [2], [16]. 
 

(ݐ)ݏ = 	∑ ܾ௡ݐ)ݑ − ݊ܶ)௡        (2) 
 
The received signal r(t) is shown in Eq. (3) based on a 
dispersive channel model. In a symbol, u ∗ hୡ(t) is shown as 
the received waveform or received waveform for a symbol 
v(t), u(t) stands for transmitted signal and hୡ(t) is the impulse 
response of the channel. The desired signal or symbol b୭ is 
transmitted, and as it is received at the receiver, unwanted 
contributions are added coming from the symbol  b୬ or other 
symbols or what is called intersymbol interference or ISI plus 

the noise n(t). Equalization is introduced in order to mitigate 
this intersymbol interference. The main function of an 
equalizer is to recover the correct transmitted symbols. The 
presence of intersymbol interference in the system introduces 
a high bit error rate or BER as it introduces errors and 
difficulties in determining the exact transmitted symbols. 
Thus, equalizers are also coined as filters, as equalizer’s 
function is just to filter out the channel effects [2], [16]. 
 

(ݐ)ݎ = 	∑ ܾ௡ݐ)ݒ − ݊ܶ) + ஶ(ݐ)݊
௞ୀିஶ        (3) 

 
2.1 ADAPTIVE EQUALIZER 
 
Present-day has been mutated to data, knowledge, and 
information acquiring systems, which includes audio, video, 
and data that must be certain in terms of reliability, 
authenticity, and speed. The different emerging challenges to 
achieve these demands in a digital communication system has 
a severe approach. The mobility of communicators, highly 
dependable systems unaffected by the disturbance and 
inconvenience caused due to multipath fading wireless 
channels is one of the cutting edges of today’s system [16]. 
 
In achieving the goals of high data rate to supply the extremity 
of the enormous bandwidth technology materializing 
nowadays, multiple thoroughfares of inputs and outputs 
aggregation are being implemented. Through these schemes, 
linearly increasing the channel capacity leads to channel 
fading that can root into the presence of (intersymbol 
interference) ISI. It introduces failures, inaccuracy, and glitch 
conclusive to the output of the receiver. Up-to-date 
communication systems deal with these problems up to some 
intensity, and to discharge the signal paths and channel 
changes have become more complex [2]. 
 
Channel Equalization deals with the disruptive channel effects 
by filtering it out, hence equalization is also designated as 
“filtering or equalizer” as a filter. This must be “adaptive” on 
account of time-varying channels. The intersymbol 
interference establishes the main intrusion in achieving 
increased digital transmission rates with the required accuracy 
[2], [17]. 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Simple block diagram of an adaptive equalizer 
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Table 1: Equalization Techniques 

 
The main purpose of an adaptive equalizer in Figure 1 is to 
adapt or self-learning as to which the input signal x(n) is being 
processed by the adaptive filter, producing the output signal 
y(n) which is then subtracted from the desired signal d(n) in 
order to remove channel impairments by updating the weights 
or adaptive filter that will minimize the error signal e(n). The 
adaptive filter is usually composed of multiple weights (W) in 
order to achieve optimum results or minimum error signal as 
shown in Figure 2. 
 
 
 
 
 
 
 
 
 

Figure 2: Block Diagram of an Adaptive Filter with multiple 
weights 

3. CHANNEL EQUALIZATION TECHNIQUES 
 
The advent purpose of this comparative study is to scope and 
compare distinct existing filtering methodologies, algorithms, 
and extant hardware under equalization to dispute against ISI. 
The study outlines the aspect of equalization in removing ISI 
and gives a comprehensive description and comparison of all 
the existing filters and equalizers in their respective 
environments. 
 
The first stride of the paper is a review of all the existing main 
filtering technologies and their algorithm constraints before 
the application of advanced nonlinear algorithms. Filter 

technology is to dismiss out-of-band interference preceding to 
low-noise amplification in the receiver and intersymbol 
interference in the received signal. While in the transmitter, 
the filter is utilized to transmit a priori information for 
supervised equalization, and both receive and transmit filters 
are synchronized due to this set of data being transmitted by 
the filter at the transmitter. Resulting in the adjustment of the 
adaptive filter at the receiver. In the absence of this 
mechanism or supervised equalization leads to unsupervised 
or blind techniques [17]. 
 
Table 1, shows that the majority of the existing filters are 
adaptive equalizers implementing minimum mean-squared 
error, and least-squares algorithms. These algorithms have 
been implemented due to its low-complexity and low 
convergence time. Based on Table 1, we could already 
conclude that advanced algorithms such as artificial 
intelligence, machine learning, and support vector machines 
are not yet out in the market or being implemented in 
production. 
 
Although filter technologies have an advantage of their 
capability to endure with time-invariant wireless channel 
attributes, refined processes are essential in channels to 
shorten and diminish the effects of intersymbol interference. 
During the process, channels must be adaptive because of the 
effects of the time variations and also for the channel to 
identify and regulate the changes. In the end, the ability and 
the achievable integrity of communication systems are 
intensely dependent on the system’s learning technique or 
equalization algorithm concerning the channel’s complexity. 
 
 
 

Type Description Algorithm/s 

Comb  [18–20] 
implemented by combining a delayed duplicate of a signal with itself, resulting in a constructive 
or destructive interference by using either Feedforward - Finite Impulse Response or Feedback - 
Infinite Impulse Response 

Feedforward, Feedback 

Wiener Filter or 
Wiener-Kolmogorov  [2], 
[17] 

uses the application of minimum mean square error (MMSE) criterion to minimize the error 
between a desired and random process 

Minimum Mean-Square 
Estimation (MMSE) 

Matched or North [2], [21], 
[22] 

correlates known delayed signal with an unknown signal in order to identify the template within 
the unknown signal and maximize the output signal to noise ratio (SNR) 

Matrix Algebra, Lagrangian, 
Least Squares Estimator 

Kalman Filter or 
Stratonovich-Kalman-Bucy  
[17], [23] 

provides estimates and updating these estimates using weighted average by recursive-in-time 
solution, resulting to higher accuracy by using two steps: step 1 is prediction, for which the 
estimate is produced using a process equation at time instant n-1; and step 2 is filtering, which 
takes the produced estimate and updates it according to the process equation of an observed 
signal at time instant n 

Linear Quadratic Estimation 

Savitzky-Golay  [24], [25] 
a digital filter used to increase the precision of the data and smoothing it, without distorting the 
signal by applying it to a set of digital data points using regression analysis to minimize the sum 
of squares corresponding to the linear functions of the data 

Linear Least Squares 

Kernel Adaptive  [17], 
[26–28] 

minimizes the errors of signal properties by minimizing the loss function through the adaptation 
process by learning sequential sample signals using an online algorithm such as LMS and RLS 

Least Mean Squares (LMS), 
Recursive Least Squares (RLS) 

Hodrick–Prescott  [29], 
[30] 

applied in the raw data to minimize or remove the fluctuations and produced a smoothed-curve 
representation of a time series by removing its cyclical component 

Hodrick–Prescott 
Decomposition 

Turbo Equalizer [31–33] used to minimize the intersymbol interference (ISI) added to a signal that passes through 
dispersive channels and the partial response of modems by implementing LMS, MAP, or BCJR 

Least Mean Square (LMS), 
Maximum a Posteriori (MAP) 
or Bahl, Cocke, Jelinek, and 
Raviv (BCJR) 

Kolmogorov–Zurbenko  
[34], [35] 

a low-pass filter used to eliminate spectral leakage by being implemented as a special window 
function which uses two parameters used in a series of iterations: moving average window and 
number of iterations of the moving average itself 

Kolmogorov–Zurbenko 

Error Output 

x(n-2) x(n-1) x(n) Adaptive 
Weights 

+ - e(n) 

d(n) 
ଶܹ  ଵܹ  ଴ܹ  

Input 

y(n) 
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Table 2:  Equalization Hardware

Device name Equalization type Device 
type 

No. of 
channels Application 

Speed 
(Max) 
(Gbps) 

Protocols 

Texas Instruments 14.2-GBPS 
Quad Channel, Dual Mode Linear 

Equalizer, SN65LVCP1414, 
(Jan-2014) [36], [37] 

Decision Feedback 
Equalizer (DFE) Repeater 4 

Communications, 
Backplane, Cable 

interconnect 
14.2 

10G-SR/LR, 10G-KR, Fibre 
Channel, SAS, SATA, CPRI 

(Common Public Radio 
Interface), OBSAI (Open 

Base Station Standard 
Initiative) 

Texas Instruments 11.3Gb/s Cable 
and PC Board Equalizer, 

TLK1101E, (Oct-07) [38], [39] 

Feed Forward 
Equalization (FFE) Equalizer 1 

Communications, 
Backplane, daughtercard, 
Cable interconnect, SFP+, 

and XFP active cables 

11.3 10G-SR/LR, Fibre Channel 

Texas Instruments Low Pwr Quad 
Ch Repeater with 10.3125 Gbps 

Equalizer and De-Emphasis 
Driver, DS100BR410, (Apr-13) 

[40], [41] 

Feed Forward 
Equalization (FFE) Repeater 4 Front Port, Backplane, 

Peripheral I/O 10.3 

10G-SR/LR, 40G-SR4/LR4, 
SAS1, SAS2, SATA1, 

SATA2, SATA3, Infiniband, 
Fibre Channel, CPRI 

(Common Public Radio 
Interface), OBSAI (Open 

Base Station Standard 
Initiative), Interlaken, sRIO, 

General purpose 

Intel Stratix V Device, GS, GT, 
GX Variants, (Feb-17) [42] 

Programmable 
Decision Feedback 
Equalizer (DFE) 

Transceiver Up to 66 Optical Module LAN, 
Backplane, Peripheral I/O 14.1 PCI Express (PCIe) 

Intel Stratix 10 Device, GX, SX, 
TX Variants, (Jun-19) [43], [44] 

Programmable 
Decision Feedback 
Equalizer (DFE) 

Transceiver Up to 72 

Communications, Data 
center acceleration, 
High-performance 
computing, Radar 
processing, etc. 

400 

16 interfaces from 1GE to 
25GE/32GFC 

Alternatively, 4 x 100GE, 4 
interfaces of 1-14G 

Xilinx® 7 series FPGAs and 
Zynq™-7000 Extensible 

Processing Platform (EPP), GTZ, 
(Mar-18) [45–47] 

Programmable 
Decision Feedback 
Equalizer (DFE) 

Transceiver 8 Optical Module LAN, 
Backplane, Peripheral I/O 28.05 PCI Express (PCIe) 

Microsemi by Microchip 
Multirate 16 Gbps 4-Channel 

Adaptive Channel Extender with 
All-Rate CRU, VSC7223, 

(May-16) [48] 

Programmable 
Decision Feedback 
Equalizer (DFE) 

Transceiver 4 Backplane, Peripheral I/O 16 PCI Express (PCIe) 

4. HARDWARE REALIZATIONS OF CHANNEL 
EQUALIZATION
 
Existing hardware and applications are also tabulated together 
with its specification and protocols as shown in Table 2. 
Accustomed hardware and equipment are narrowed to what is 
existing. Following the research of Murakawa et al. on the 
GRD chip (a group of 15 DSPs connected in a binary-tree 
network that implement a feed-forward neural network), the 
constraints because of complexity and cost in training 
sequence under the swarm algorithm results in an absence of 
material existence [49]. Jorge Pena et al. initiated 
self-reconfigurable adaptive systems that have the capability 
of adapting their own hardware configuration [50]. This 
administers development on performance, flexibility, and 
resources computational cost reductions. Its main downfall is 
its precondition of powerful optimization algorithms in order 
to search in a space of possible hardware configurations not 
sacrificing the complexity of the algorithm implemented 
on-chip. These scenarios only show that the condition of the 
interminable approach of a subsequential algorithm of 
equalization, as the same hardware equipment can have an 
extensive method, techniques, and algorithm. In Table 2, a 
sample of existing hardware models is listed with its 
corresponding vendor, equalization type, device type, sample 
application, bandwidth, and protocols. By definition, 
equalization type means what type of equalizer the device is, 
no. of channels corresponds to number of input and output 

ports it could support, application is the recommended usage 
or where it could be used by its corresponding vendor, speed 
is the maximum supported bandwidth of the channel of the 
corresponding device, and protocols are the supported mode 
of communication as per the device design or architecture. 
Table 2 shows that the older hardware implements a fixed 
equalization algorithm, whether it is decision feedback or 
feed-forward. However, the latest hardware or new variants 
shows that vendors are providing programmable decision 
feedback equalizer. This gives the users an option or open 
strategy of implementing or choosing the best equalization 
algorithm that would fit their systems and applications. This 
also gives the users the capability to test and evaluate latest 
equalization algorithms such as artificial intelligence, 
machine learning, or support vector machines if it would fit or 
improve their system functionality. 
 
5. ARTIFICIAL INTELLIGENCE BASED 
EQUALIZATION 
 
The inceptive or basic algorithm is introduced in the first part; 
it includes Linear and Non-linear Equalizer. These methods’ 
general approach is to generally eliminate intersymbol 
interference. These are designed based on training methods to 
restrict and abrogate the outcome of the channel  response.  
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Table 3: Unsupervised/Blind Equalization Algorithms 
Algorithm Class Description Advantages Linearity Complexity Convergence 

Time 

Bussgang 
[51] 

Iterative 
Adaptation 

A Memory-less function use as a 
compromised device to accurately 
estimate the input data. 

Equivalent concept of equalization 
techniques aside from the preferred 
use of zero-memory nonlinearity 
device. 

Non-Line
ar Low Average 

Sato 
[52] Unsupervised 

Improved algorithm of the previous 
classified technique as (DDE) 
Decision-Directed Equalizers. 

Used for one structural multilevel 
PAM (Pulse Amplitude Modulation) 
within the case of paired signaling. 

Non-Line
ar Low Average 

Godard 
[53] Unsupervised 

Under the family of CMA (Constant 
Modulus Algorithm) determines the 
divergence of the equalizer output 
from a constant modulus and uses it 
for adaptation. 
 

The main purpose is to be a cost 
function that is independent of the 
phase of the preceding output. Used 
for blind equalization in general M-ary 
QAM systems known as (CMA)  
Constant-Modulus Algorithms. 

Non-Line
ar Low Average 

BGR 
(Benveniste 
Goursat-Ruget
) 
[54] 

Unsupervised 

The spread version of the Sato 
algorithm.  Introduced the 
Stop-and-Go algorithm which 
implements Sato’s 
 

Used for the assumption of 
doubly-infinite filter size. Targets the 
approaching start-up adaptation from 
the adjacent part of the optimal tap 
weights. 
 

Non-Line
ar Average Average 

Recursive 
Least Squares 
Adaptive 
[54] 

Diversified 
The inversed covariance matrix was 
used by the wireless channel in this 
equalization technique. 

This technique is the main framework 
of the evolving era of the equalization 
algorithms but as a counter the 
outcomes are poor. 

Non-Line
ar Low Slow 

Exponentially 
Weighted 
Recursive 
Least Squares 
[55] 

Diversified 

An advanced version of RLS ( 
Recursive Least Squares Adaptive 
Algorithm). It is designed to partly 
decline the holdings of 
comparatively foregoing received 
data 

Forgetting factors is used in the 
algorithm. It adapts its adapting 
essence in the time-varying channels. 

Non-Line
ar Average Above 

average 

Quantized 
State 
Recursive 
Least Squares 
[56] 

Diversified 

This is a group of four different 
algorithms that are complementary 
to the RLS (Recursive Least 
Squares) but differ in the type of 
approach. 

This lessens the computational 
complexity and upgrades the 
convergence in relative to time 

Non-linea
r 

Above 
average 

Above 
average 

5. ARTIFICIAL INTELLIGENCE BASED 
EQUALIZATION 
 
The inceptive or basic algorithm is introduced in the first part; 
it includes Linear and Non-linear Equalizer. These methods’ 
general approach is to generally eliminate intersymbol 
interference. These are designed based on training methods to 
restrict and abrogate the outcome of the channel  response. 
Training techniques aids to determine the convenient 
coefficients of the adaptive filter.There are two types of 
adaptive equalizer, the linear and non-linear. In linear, the 
system performs inferior to assertive channel conditions [57]. 
The zero forcing equalizer (ZF) and minimum mean square 
error equalizer (MMSE) are the linear equalizers.  
 
While non-linear equalizer has a stage to change the 
successive outputs of the equalizer. The maximum likelihood 
sequence equalizer (MLSE), successive interference 
cancellation (SIC), and decision feedback equalizer (DFE) are 
nonlinear equalizers [58]. 
 
In different circumstances,  blind  equalization  where  no  
training period is required but is more complicated. This 
means that receiver decisions are used to generate an error 
signal. It is efficient in tracking slow variations in the channel 
but, it is not efficient during initial acquisition [59]. With the 
use of received signal sequence and input sequence statistics 
approach rather than training methods, it retrieves the 
unknown sequence bits to the remote channel [60], [61]. 
 

The complication with blind adaptive techniques is their poor 
convergence property. Customarily, a gradient descent-based 
algorithm is used with the blind adaptation schemes. The most 
commonly used gradient descent based blind adaptation 
algorithm is the constant modulus algorithm (CMA). Another 
popular adaptive blind equalization is the Bussgang algorithm 
(the Godard algorithm) or constant modulus (CMA)  and 
fraction-spaced CMA algorithms [62]. 
 
The demand for high data-rates in wireless networks depends 
upon the resourceful capability of utilizing limited bandwidth 
available not sacrificing the high grade of mobility in diverse 
propagation environments.  The orthogonal frequency 
division multiplexing (OFDM) methods have been engaged to 
employ this system predicament and also serves as a 
succeeding generation of the filter and channel equalization 
technologies.  The  main  assistance  of  this  method  is 
minimizing the frequency nonselective or flat-fading, due to 
its narrow frequency signal will not be congested into a single 
part [70]. 

 
 

Figure 3: The architecture of the Neural Network 
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Table 4: Adaptive Algorithm for Multiple System of Equalization 
Algorithm Class Description Advantages Linearity Complexity Convergence 

Time 

Least mean 
squares 
 [63] 

Adaptive 

It replicates the filter by discovering 
coefficients that presents the least 
producing mean squares of the error 
signal. 

It used for high data rates. It updates the 
weights, once per symbol. It uses a 
linear equalizer and algorithm to 
establish a modulated baseband signal 
over dispersive channels. 

Linear Average Average 

Recursive 
least squares 
[63], [64] 

Adaptive 
equalize a linearly modulated 
baseband signal through a dispersive 
channel. 

For high data rate but in contrast to 
LMS. Linear Average Average 

Constant 
modulus 
algorithm 
[65]  

Adaptive Implements equalizer in constant 
conditions. For high data rates. Linear Low Average 

Conjugate 
Gradient 
Algorithms 
 [66] 

Optimization 

This algorithm is for the optimization 
of the previous adaptive algorithm for 
multiple systems. It uses iteration, 
which the step size is adjusted to each 
step and it is done by searching along 
the conjugate gradient. 

Algorithms used for faster convergence 
with the use of searching along the 
conjugate region. 

Non-Line
ar High Above 

average 

ZFE 
(Zero-Forcin
g Equalizer)  
[60] 

Optimization 

Uses peak distortion criterion. In the 
case where the received signal is 
unsteady, magnitude of its filter gain 
increases and results in the 
amplification of noise. 

Since it has a scenario of enhancing the 
noise it only uses for noiseless channels. Linear Low Average 

MMSE 
(Minimum 
Mean Square 
Error) 
[60] 

Optimization A measure of estimation quality by 
minimizing Mean Square Error. 

For high data rates can be used for both 
noisy and noiseless channels. Linear Low Average 

Fractionally 
Space 
[57]  

Optimization a modified version of symbol spaced 
equalizer. 

For complex high data rates. Input that 
is liable to the equalizer is 
oversampled then it scales down the 
sample interval less than the interval 
 

Linear Average Average 

Decision 
Feedback 
[67]  

Optimization 

It is like transversal filters that use 
previous decisions to remove ISI 
caused by previously detected 
symbols. 

It is a must use for channels with 
Spectral Nulls. 

Non-Line
ar 

Above 
average Average 

Successive 
Interference 
Cancellation  
[68] 

Correlation 

The previous outputs of detectors can 
be used to assist the operations of 
next which get into the 
decision-directed detection. 

It is used for Cascaded Detectors. 
Proper selection of the first bit can 
result in adequate cancellation of 
interference. 

Non - 
Linear 

Above 
average Average 

Maximum 
Likelihood 
Sequence 
Analyzer 
[69]  

Correlation 

Calculates the Euclidean distance 
between the received signal vector 
and the product of all possible 
transmitted signals. 

It is used for Cascaded Detectors. 
Detects the disparity of the signal to 
have satisfactory results. 

Non- 
Linear Average Slow 

irreparable using a simple receiver. Thus, the complexity of 
the receiver structure and the multiplex computation of 
equalization algorithms are needed to estimate the channel. In 
this kind of equation, the need for equalizer algorithms arises. 
Some various equalization techniques that are used for OFDM 
systems are least mean squares (LMS), recursive least-squares 
algorithms (RLS), and constant modulus algorithm (CMA) 
[60]. 
 
Neural networks as shown in Figure 3 are a profound 
interconnection of a basic computational factor known as a 
perceptron, that are fundamental models of neurons in the 
human brain. Its architecture and calculation are utterly 
parallel networks of distinct computational elements 
systematized in correlate to each other. The main use of neural 
networks in equalization is the immense architecture of their 
parallel distributed components that support the network’s 
computation complexity. The learning process in this kind of 

algorithm is apparent, in manner. It can produce accurate and 
reliable expected results or outputs [59]. 
 
Table 5 is divided into subsidiary groups that depend on their 
different corresponding types, starting from the initial type of 
unsupervised equalization algorithms up to recent 
experimentations on how to improve it in terms of complexity 
and convergence time. Description, advantages, linearity, 
complexity and convergence time is indicated in table 5. 
Complexity depends on the size of the signal alphabet, the 
memory of the ISI channel, the estimator window length, and 
the number of symbols transmitted over the channel. It is 
categorized to low, average, above average and high. 
Convergence time is the speed of the system to coincide with 
a relative signal with high integrity. It is categorized from 
slow, average, above average and fast. 
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Table 3 compares and surveys the different advances on 
Unsupervised or Blind Equalization Algorithms. These 
algorithms are responsible to have an effective approach in 
adaptively finding out the best possible weight vector of the 
equalizer, without prior knowledge to channel. Information 

and identity of the channel are required for decisive 
communication. This is not well-known and must be obtained 
commonly using some recursive adaptation algorithm. 
 

Algorithm Class Description Advantages Linearity Complexity Convergence 
Time 

Back Propagation 
[71] Adaptive 

Basic training that is used to attain advanced 
techniques of adaptive supervised training of 
multilayer neural networks 

For ease of hardware realization Non-Linear Low Slow 

Resilient 
Backpropagation 
[72] 

Adaptive 
Are known as “squashing” they squeeze an 
absolute input range into a definite output range 
that makes it faster than the other. 

Deal with the problem of variation 
in weights, bias and values when 
training descent with sigmoid 
functions. 

Non-Linear Average Average 

Fletcher-Reeves 
[73] Adaptive 

This is the ratio of the norm squared of the 
current gradient to the norm squared of the 
previous gradient. This way more fast than 
variable learning rate backpropagation 

Accelerated technique of variable 
learning rate backpropagation. 
These algorithms are suitable for 
networks having a large number of 
weights 

Non-Linear Above 
average 

Above 
average 

Quasi-Newton 
Algorithms  
[74] 

Adaptive 
optimization 

an alternative method of the conjugate gradient 
methods in order to achieve fast optimization 

faster than conjugate gradient 
methods but it is expensive and 
complex to compute 

Non-Linear High Above 
average 

Shannon algorithm  
[73] Optimization 

approximate Algorithm need to be stored, whose 
dimension is n x n, where n is the total number of 
weights and biases of the network 

more computation and storage are 
required in each iteration, although 
it normally converges in fewer 
iterations 

Non-Linear High Above 
average 

Conjugate Gradient 
Algorithms [75] Optimization 

the step size is adjusted during each step 
(iteration). They determine the step size by 
searching along the conjugate gradient direction 
which leads to degradation 

perform search along the conjugate 
direction, which results in faster 
convergence 

Non-Linear High Above 
average 

One Step Secant 
Algorithm [76] Optimization 

To fulfill the requirements of fewer 
computations and smaller storage a secant 
approximation is required 

has smaller storage and 
computation requirements per each 
iteration, but it requires a little more 
computation and storage 

Non-Linear Above 
average 

Above 
average 

Levenberg-Marquardt 
[73] Optimization 

similar to the quasi-Newton methods, the 
Levenberg-Marquardt algorithm was also 
planned to approach the pace of second-order 

the fastest method for training 
moderate-sized feedforward neural 
networks 

Non-Linear Average Above 
average 

Multilayer perceptron 
(MLP) [77] 
 

Adaptive superior performance and symbol error rate but 
suffer from a local minimum problem 

Attainment of nonlinear mapping 
from input to output signals Non-Linear Above 

average Average 

Multilayer perceptron 
-based Decision 
Feedback [77] 

Adaptive Used lattice filter with the application of 
Decision Feedback Algorithm 

overcome the local minimum 
problem Non-Linear Above 

average Average 

Complex Multilayer 
perceptron  
[77] 

Adaptive extended BP algorithm to the complex domain Equalization of complex QAM 
signals Non-Linear High Slow 

Functional-link 
Artificial Neural 
Network 
[78] 

Adaptive Introduces by the functional expansion of input 
pattern by trigonometric polynomials 

For hardware with non-linear 
Mapping rather than hidden layers Non-Linear High Fast 

Chebyshev Neural 
Network 
[79] 

Adaptive Computationally efficient than using 
trigonometric polynomials 

nonlinear dynamic system 
identification. Non-Linear High Fast 

Reduced Decision 
Feedback- 
functional-link 
Artificial Neural 
Network [80] 

Adaptive 
the output signals are directly fed to the input 
layer of the NN, instead of being taken as the 
input signals of the network. 

To lower Hardware cost without 
sacrificing system performance Non-Linear Above 

average 
Above 
average 

Stochastic-gradient 
training algorithm 
[81]  

Adaptive 
weights and hidden-layer biases are randomly 
and the output weights are then analytically 
calculated. 

For improvement of RBF in blind 
equalization Non-Linear Above 

average 
Above 
average 

Minimal resource 
allocation 
network (MRAN) 
 [82] 

Adaptive 
No hidden neurons. A pruning strategy that is 
used to remove the hidden neurons that do not 
contribute significantly to the output. 

neurons adjust the existing network 
parameters according to the training 
data received 

Non-Linear Above 
average 

Above 
average 

complex-valued 
growing and pruning 
(CGAP) RBF NN [83] 

Adaptive 

the nearest neuron (based on the Euclidean 
distance to the latest input data) is tested for its 
significance, resulting in a more compact 
network. 

for communication channel 
equalization of four QAM Non-Linear High Above 

average 

Radial basis function 
(RBF) [82] Adaptive classifies the received signal according to the 

class of the center closest to the received vector 
as a replacement for the sigmoidal 
transfer function Non-Linear High Fast 

Recurrent Neural 
Network-based  
[84] 

Adaptive 
variable 

IIR filters with feedback, outperform FNNs such 
as MLP or RBF networks, ability to learn 
nonlinear mappings of arbitrary complexity 

for fast-fading channels, solution 
for non-linear blind equalization Non-Linear High Fast 

Dynamic Fuzzy Neural 
Networks Dynamic [85] 

Adaptive 
variable 

Combination of neural network learning 
capabilities and fuzzy rules 

avail the advantages of both fuzzy 
logic and neural networks Non-Linear High Fast 

Artificial Neural 
Network based joint 
temporal and spatial 
equalization [86] 

Comparative 
adaptation 

Designed to outperform the combination of the 
temporal and spatial cross-talk 

For multiple input multiple output 
visible light communication system Non-Linear High Fast 

Table 5: Neural Network Techniques For Channel Equalization 
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The essence of the advancement of technology and 
communications nowadays is to achieve the transfer of 
information immensely but rapidly. High data rates are in 
demand nowadays, in this generation of big data 
communication, an adaptive algorithm must also conform. 
 
Table 4 shows the comparison of the different adaptive 
algorithms, in the continuance of the increase of demand in 
bandwidth and data rate. It can be adaptive in relation to 
dispersion of amplitude and phase. It can be an optimization 
of the previous algorithm. Lastly, it can be a correlation class 
that achieves elimination through interrelationship. 
 
Due to the high demand for data rates, it results in the 
complexity and extended approach of parallel transmission 
level. Non-linear systems are the consequence, and neural 
networks can be adequate to decode transmitted symbols that 
are afflicted by fading channels. Classification can be done 
also by channel equalization. In the received symbol 
sequences spaces, the neural network can conveniently make 
decision sectors. Distinctively, neural networks have 
compelling efficiency of approximation and form decision 
sectors with forthwith shaped boundaries. These properties 
and descriptions support the neural network to concede and 
perform the task of a channel equalizer algorithm.  
 
Table 5 shows the neural network section. This survey 
pursues to actuate the efficiency of several neural network 
training algorithms by comparing their attribute, process, and 
performance.  
 
6. RESULTS AND DISCUSSIONS 
 
Table 1 listed the available equalization technologies that are 
currently being implemented or in production. These current 
equalization technologies are implementing simple 
algorithms such as minimum mean-square error and 
least-squares. As of this writing, sophisticated algorithms 
such as artificial intelligence, machine learning, and support 
vector machines are still under evaluation or subjected to 
further research. 
 
Table 2 shows that the latest equalization hardware has given 
the users to use whatever equalization algorithm that they see 
fit in their respective environments or applications, as the 
majority of the latest equalization hardware is now 
programmable. 
 
In Tables 3, 4, and 5, the following results tabulated are 
established from different references and are systemized into 
groups of classifications. At the class column, each technique 
is classified as adaptive, unsupervised, diversified, 
optimization and correlation. This describes their 
categorization as a technique of algorithm used for 
equalization. Description and advantages show the 
considerable and dominant differences of each in differing 
aspects.  Linearity shows where a function does the technique 

or algorithm are best used. Linear means that the equalizer is a 
linear function of its input and for non-linear, equalizer 
function is irrelevant to its source signal. Computational 
complexity is also considered and the analysis of it depends 
on the size of the signal variable used, the memory of the ISI 
channel, the estimator window length, and the number of 
symbols transmitted over the channel that is reviewed in the 
references of this paper. Last is the convergence time, and the 
survey references of this paper consider it as the length of 
training sequences that have been varied over a reasonable 
range to examine the results of each equalization. 
 
7. CONCLUSION 
 
Various technologies, methods, algorithms and the existing 
hardware for solving the problem of channel equalization is 
discussed, compared and outlined in distinction to its history 
and continuously arriving advancement. Filter technology is 
the ground of equalization techniques and currently being 
implemented. This uses primary algorithms such as minimum 
mean-square error and least-squares. Those techniques and 
technological realizations lead to hardware. In continuance of 
the increase of demand in bandwidth and data rate, different 
advanced algorithms develop. 
 
The comparative survey determines that the equalization 
system’s important attributes are on its computational 
complexity, class, length of the training sequence, and 
convergence speed of communication. A comparison of the 
recent studies shows that without an increment in the length of 
the training sequence results in a speed downturn. Hence, a 
transparent or less length of training symbols will result in a 
data rate increase. Computational complexity is also a 
constraint over the time of the communication. Those 
importunities can be reduced by computational estimation of 
synaptic weights that is possible to with artificial intelligence 
methods such as neural networks. 
 
In reference to this study, the most effective technology, 
hardware available is the turbo equalizer, by the reason of its 
flexibility to advanced algorithms. For equalization 
algorithms, artificial neural networks based joint temporal and 
spatial equalization algorithm outperforms the other in terms 
of complexity. Whereas on, existing hardware, Intel Stratix 10 
Device, GX, SX, TX Variants is recommendable because of 
its vast channels, faster convergence time and advanced 
protocol. 
 
Future works may develop, and new hardware may 
materialize, maximizing the potential bandwidth that our 
medium can provide. Improvement on equalization must 
focus on the advances of algorithms and minimize the length 
of the training sequence by keeping the same performance of 
the system.  
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