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ABSTRACT 
Much effort has been expended for devising 

solutions to analyse edges as a basis for image 
understanding. This paper presents image processing and 
analysis tools to ensure a robust operation of such edge-
based algorithms. Specifically, a systematic paradigm to 
branching analysis and a curve segmentation technique 
based on chain codes are proposed. Several curve 
segmentation approaches are available in the literature to 
break edges into primitives for edge analysis. The particular 
solution devised is simple and very computationally 
efficient. The efficacy of the set of tools (branching 
analysis and curve segmentation) in the applications 
presented show that they can be effectively incorporated in 
low-level and intermediate level edge processing. 
 
Keywords: Curve Segmentation, Edge Analysis, Chain 
Code, Branching Analysis, Polynomial Fitting. 

1 INTRODUCTION 
Several image processing applications use edges as 

basis for image understanding due to their low 
dimensionality. These edges are normally obtained by 
applying edge detectors such as Canny, Sobel and 
Laplacian operators. These operators work at a low-level 
image processing hierarchy, following which image 
analysis is carried out by extracting various features from 
these lines, culminating into image understanding. 
However, before the image analysis stage, it should be 
ascertained that the edges obtained are properly 
represented; this is referred to as edge conditioning 
henceforth. In the present context, the subsequent image 
analysis phase is analogous to characterising these edges by 
calculating geometrical attributes, which are then employed 
for image understanding. 
 

One method of representing single-pixel width edges 
is proposed by Freeman [1], which is commonly known as 
chain codes. The aim of Freeman in formulating chain 
codes was to provide a means by which an edge discretised 
over a grid could be represented and transmitted 
effectively. He showed that his solution to edge 
representation gave a compact form to represent edges 
while having desirable properties such as easy computation 
of coordinates for geometrical operations, length of edge 
and bounded area. Similar work for 2D and 3D shapes 
representation has been carried out by Bribiesca [2, 3]. The 

analysis of edges for high-level understanding is usually 
done by breaking the edge representation into primitives. 
Ichoku et al. [4] describes the curve segmentation problem 
into two broad classifications: breakpoint detection and 
edge approximation. Algorithms in the breakpoint detection 
category [5] operate by first determining points separating 
the different segments and then (optionally) fitting 
lines/arcs to them, while the edge approximation category 
[4-8] finds the segments first by fitting these primitives and 
then (optionally) assign breakpoints at the end points of the 
lines/arcs. Ichoku et al. [4] discusses the pros and cons of 
these two approaches. 
 

The selection of breakpoints is usually formulated in 
terms of curvature and arc lengths/orientations. The need to 
compute curvature along the curve and the fact that 
curvature cannot be exactly replicated in the digital image 
grid, being a mathematical concept applied to continuous 
curve, have been considered as shortcomings. In analysing 
the efficacy of these algorithms, the need to compute 
attributes and the requirement for iterations to converge to 
the breakpoints are further factors to be considered. 

 
Having to calculate attributes at each point along the 

curve leads to computationally intensive solutions, which is 
further increased should the algorithm involve iterations. 
Another important factor considered in assessing the 
methods has been the need for setting thresholds, which in 
turn introduces subjectivity in the solution. This usually 
involves selecting a threshold level which discounts noise 
while preserving fine details in the image. In this view, 
threshold selection is considered a disadvantage and 
solutions with no threshold selection [9] or having little 
sensitivity to the selected threshold have been attempted. 
 

The corresponding work in this paper is inspired from 
the discretisation nature of an 8-neighbourhood grid that is 
commonly used in image formation and display to propose 
a solution that can be used for edge characterisation. 
Linked with this discretised representation is the chain 
code, which is thus used as the basis for the algorithm. 
Approaches based on chain code for curve segmentation 
have been reported e.g. [6, 9]. The method of Arrebola et 
al. [9] is based on an image pyramid to analyse the curve at 
various scales, thus leading to high computational costs, 
although the authors report less computation costs 
compared to similar multi-scale methods. 

The solution proposed by Baruch and Loew [6] is 
recursive and involves the computation of angles and arc 
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lengths based on which segments are identified. Typical of 
these chain code-based techniques is the information 
provided by the end result regarding the directional 
attributes of the segments found as such directional 
information are inherent in chain code values. Furthermore, 
invariance to rotation can be achieved by using differential 
chain codes to re-formulate the chain code sequence. 
 

Most work in curve segmentation assumes that edges 
do not contain branches. However, the possibility exists 
that single pixel width edges contain branches, e.g. due to 
skeletonisation. So this paper first proposes a systematic 
approach to branching analysis for finding the different 
main edge segments making up the edge. Then the edge 
segmentation approach is presented. The chain code 
solution is based on gross chain code representations 
derived from Freeman’s chain code which run along 
different main directions (up/down or diagonal). 

 
The advantages of this solution are: (1) it does not 

require any threshold selection, (2) it operates directly on 
the chain code sequence, which is a common representation 
of edges, (3) it does not require the computation of any 
attributes along the line, (4) it operates on integer numbers 
only, thus costly computation with floating point numbers 
are avoided and (5) it does not involve any iteration. 
Similar to the outcome of the other chain code approaches, 
the end result gives information about the directional 
attributes of the segments, which can be used to effectively 
fit polynomials to the segments. 
 

One example of an application where the segmentation 
of an edge contour into its constituent components is the 
fitting of a curve along the edge points. When the points on 
the edge are known to lie on an ellipse or a circle, robust 
methods can be used to fit the appropriate polynomial to the 
edge points, however, in a real-world application where such 
assumptions cannot always be made, it would be helpful to 
break down the edges into its constituent components to 
which injective polynomials can then be applied, either using 
x or y as the independent variable. The proposed gross chain 
code representations allow this polynomial fitting as shown 
by the examples of Section 5.  

2 Branching Analysis: A Heuristic Approach 
This section formulates the different heuristic rules that 

have been implemented to set up the proposed branching 
analysis methodology. The basis and implications of these 
rules are then described. These rules are given in Table 1. 

 
Rule (I) enunciates the basic method by which an edge is 
traced, namely by moving from edge pixel to edge pixel, 
while analysing the 3x3 neighbourhoods obtained. Rule (II) 
prevents any ambiguity in moving ahead by zeroing the edge 
pixel already traced. Rule (III) sets the condition for 
assigning an edge pixel as a branch point. This is done as a 
result of the analysis of the 3x3 kernel, as per Rule (I), to 
decide which of the eight border pixels in the 3x3 
neighbourhood need(s) to be temporarily set to zero to 
remove ambiguity in tracing the edge. More information is 
given on this matter later in this section. 

Table 1: Number of Configurations grouped by sum of 
border pixels 

 
Rule (IV) allows to determine how an edge is 

traced in a predictable manner wherever different 
alternatives exist. Rule (V) has been formulated to cater for 
few configurations that cause ambiguity in tracing the edge 
as shown further. Rule (VI) is a common assumption made 
in edge processing applications and allows to choose which 
of the 256 possible combinations of the eight border pixels 
(the central pixel is necessarily a ‘1’) would be encountered 
in tracing an edge. These 256 pixel configurations were 
analysed to systematically identify those which are possible 
in a single pixel width edge. The configurations were 
grouped according to the sum of the 8 border pixel 
locations. Table 2 summarises the number of configurations 
obtained in each group (second column). 
 

Sum Total Number  
of Configurations 

Subset of Possible  
Configurations 

1 8 8 
2 28 28 
3 56 52 
4 70 28 
5 56 2 
6 28 0 
7 8 0 
8 1 0 

Table 2: Number of Configurations grouped by sum of 
border pixels 

Rules Description 

I 

A 3x3 kernel is placed over a given edge 

pixel and the analysis of this 3x3 

neighbourhood determines how to move 

ahead. 8-connectivity is used. 

  

II 

In moving to the next pixel location following 

rule (I) to yield a new 3x3 kernel, the central 

position occupied by the previous 3x3 kernel is 

set to zero. 

  

III 

Following the analysis of the 3x3 kernel as per 

rule (I), the presence of more than one path 

signifies a branching point. 

  

IV 

In tracing an edge, priority is given to 

movements in the following order: horizontal, 

vertical and then diagonal. 

  

V 

Rule (IV) is not abided for configurations that 

would cause ambiguity in edge tracing at the 

next step. 

  
VI Edges are assumed to be of single pixel width. 
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The findings from this analysis have been used in 
the next section to implement the algorithm for recovering 
the branches along the edge in a robust manner. The need to 
discount edge pixels in a given 3x3 neighbourhood is 
illustrated by the three examples in Figure 1 where the 
shaded pixels represent edge points. Figure 1(A) illustrates 
an example where there are no branching while examples (B) 
and (C) involve branching. For example (A), taking pixel ‘a’ 
as the start point, the whole edge can be traversed by 
successively placing a 3x3 kernel (as per Rule (I)) over a 
central location and moving that centre to the location where 
there is an edge pixel. In moving the 3x3 kernel from ‘a’ to 
‘b’, pixel ‘a’ is set to zero as per Rule (II). With this scheme, 
the coordinates of the points moved to can be stored or a 
chain code value can be allocated for each step. 
 

 
Figure 1: Two examples of edges (A) without branching 

(B), (C) with branching 
 
From example (B) in Figure 1, movement from ‘a’ 

to ‘b’ can be done in an unequivocal way as the 3x3 
neighbourhood placed over ‘a’ has only one direction to 
move in; towards ‘b’. However, when the 3x3 kernel is 
placed over pixel ‘b’, two possible directions are obtained: 
‘c’ and ‘g’. So pixel ‘b’ should be identified as a branch 
point as per Rule (III). However, applying Rule (III) directly 
on pixel ‘a’ of example (C) wrongly assigns it as a branch 
point. In the same example, point ‘g’ should not be assigned 
as a branch point as it is similar to point ‘b’ but point ‘h’ 
should be taken as a branch point. 

 

For this reason, Rule (I) has an analysis component 
added to it for processing of the 3x3 neighbourhood prior to 
deciding whether a branch exists or not. The 3x3 
neighbourhood of pixel ‘a’ in example (C) consists of two 
possible paths to move away from ‘a’ (points ‘b’ and ‘c’). 
Rule (IV) stipulates that priority is given to a horizontal 
movement in preference to the diagonal movement, so that 
an incursion is made to ‘b’ first. Doing the opposite would 
unduly assign a branch point at point ‘c’. 
 

Based on Rule (IV), Rule (V) is set to cater for 
exceptions in pixel configurations when moving according to 
the set priority actually causes ambiguity in the branching 
analysis. Among the 118 possible configurations obtained 
(see Table 2), two such exceptions were found. They are 
shown in Figure 2. For these two configurations, moving in 
the horizontal directions first (to pixels ‘c’ and ‘d’) would 
create a situation where both branches would then come back 
to the same point ‘b’. This can be avoided by first moving to 
point ‘b’ by temporarily setting ‘c’ and ‘d’ to zero, and then 
from ‘b’, these two respective paths can be traced 
unambiguously. 
 

 
Figure 2: Configurations with higher priority given to 

vertical movement (edge pixels shaded) 
 

With these two pixel configurations, it can argued why 
three branches, namely along ‘c’, ‘b’ and ‘d’ are not assigned 
when the kernel is centred at ‘a’ itself. The reason for not 
doing this is that it can only be ascertained that these three 
points are branches by moving away from the central 
location ‘a’ and surveying the next 3x3 neighbourhood. For 
example, by moving to ‘b’ first, it might be found that only 
two branches along {b,c} and {b,d} are present, so this 
scheme was adopted to yield an optimum number of 
branches. 

 
Rule (VI) is a common assumption in edge analysis 

problems and be readily enforced in the computation of 
edges, e.g. in using Canny detection, in tracing the boundary 
of an object or in skeletonising a region. Application of Rule 
(VI) allowed to discard several pixel configurations, which 
have double pixel width edges. Specifically, the following 
three categories of pixel configurations were discarded. 
 

(A) Configurations having double pixel width lines, 
which contravenes Rule VI. Two examples of such 
configurations are shown in Figure 3. 
 

(B) Configurations in which it is impossible to move to 
the central pixel without causing a double pixel 
width line. Two instances of such configurations are 
shown in Figure 4. In these two configurations, the 
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unshaded pixel locations are necessarily those via 
which the central pixel location was accessed, 
which as per Rule II is set to zero. Making any one 
of these pixel locations as an edge location causes a 
double pixel width. 

 

 
Figure 3: Examples of configurations having double pixel 

width 
 

 
Figure 4: Examples of configurations which cause double 

pixel widths by creating path to central pixel 
 

(C) Configurations in which it is impossible to access 
the central location due to the prioritisation of 
movement as per Rule (IV). Two examples are 
shown in Figure 5. For example, in case (a), the 
central location can be reached via pixels ‘a’ or ‘e’ 
without causing a double pixel width. But due to the 
higher priority of vertical displacement compared to 
diagonal displacement, pixel ‘h’ (and ‘d’ for 
location ‘e’) will be accessed first, thereby changing 
the 3x3 pixel configuration itself. So it is concluded 
that such 3x3 pixel configurations will not be 
encountered. 

 

 
Figure 5: Examples of configurations where central pixel 

cannot be reached due to step prioritisation 
 

The next section analyses the edge conditioning 
requirements to yield effective edge representation and 
branching. The requirement to analyse the 3x3 
neighbourhood as given in Rule (I) is thus considered. 

3 EDGE CONDITIONING 

3.1 Pixel Configurations to be Permanently Removed 
Figure 6 shows the different pixel configurations 

identified for which the central pixels can be set to zero 
permanently before processing the edges for branching 
analysis. These configurations essentially remove ‘sharp’ 
corners in edges. They can be programmed as a look-up table 
(LUT) and applied over the whole image. Figure 7 shows a 
binary input image and the corresponding output when such 
a look-up table is applied. Note that the encircled portion of 
the image contains a subset of the configuration of kernel 
1(a) of Figure 6 but the central pixel is not removed as this 
will lead to breaking of the line at the branching point. This 
is catered for in Section 3.2. 
 

 
Figure 6: Central pixels are set to zero 

3.2 Pixel Configurations to be Temporarily Discounted 
After setting the points matching the configurations 

from Section 3.1 to zero, the edge can be traced to recover its 
different branches. The encircled part of Figure 7 was an 
instance of branching. Figure 8 shows a subset of the pixel 
configurations analysed in Section 2 for which pixel 
locations need to be temporarily ignored for moving 
unambiguously along the edge and recovering the branches 
as per Rule (III). 

 
The first three rows of masks in Figure 8 correspond 

to situations where no branch exist on the central pixel, so 
setting the shaded pixels to zero temporarily enables moving 
to a point in a unique way according to the priority set by 
Rule (IV). However, the pixel moved to in the next stage is 
most likely a branch point as it would otherwise have been 
removed by the prior processing stage to remove ‘sharp’ 
corners by the global LUT approach described in the 
previous section. 
 

The next two rows of masks are branching situations 
as can be seen from the immediate masks themselves. Setting 
the shaded pixels to zero temporarily allows to move to the 
non-central pixel in a unique way as per Rule (IV), and 
thereafter a branch point is identified and the two separate 
branches are traced. Some observations are relevant at this 
point regarding the 8 masks in the last two rows of Figure 8 
{(4)a-d and (5)a-d} and the four masks in the last row of 
Figure 6 {(2)a-d} as they belong to the same family. First, 
there are only four masks in Figure 6 since the other four 
masks completing the configuration family of kernels would 
simply break off the configuration into two segments if they 
are all applied. Second, the masks may look similar, but their 
appearance in Figure 8 means that their neighbourhoods 
were not similar prior to moving to the present state, since as 
per Rule (II), the central pixel is set to zero. 
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Figure 7: Example with configurations from Figure 6 

 
 

 
Figure 8: Subset of Pixel Configurations showing 

pixels to be temporarily zeroed (in red) 
 

For the 118 possible configurations 
identified (see Table 2), logical expressions were 
derived for setting the temporary state of each of 
the 8 border pixels during branching. This is 
actually the kernel analysis stipulated in Rule (I) 
and would enable the subsequent application of 
Rule (III) to identify branching points. Logical 
variables were assigned to each of the 8 pixel 
locations and given a true state for configurations 
where they need to be set to zero (see Figure 9). 

 
For example, if ‘a’ is given a true state, 

then ‘A’ should be set to 0 and if ‘f’ is given a true 

state, ‘F’ should be set to 0. The pixel 
configurations deemed impossible were set as 
‘don’t cares’ in the truth table for each output 
variable. 
 

 
Figure 9: Logical Mask computed from 3x3 
mask. A to H are edge pixels and a-h are the 

output variables.  
 
The logical expressions obtained are: 
 

 

DFHBDHh
GHFGACEFg

HDFFHDf
DEEFCEFAe

DFHBDHd
CDBCc

HDBHBDb
AHABa














 

4 BRANCHING ANALYSIS AND EDGE 
CHARACTERISATION 
The objective in analysing branching in these 

lines is to develop a method for uniquely and 
predictably tracing the edge and returning the chain 
codes along the different branches traced. Although 
not presented in this paper, the recovery of the 
different branches along an edge can be followed 
by further analysis to identify which branches are 
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relevant for analysis for a given application, e.g. the 
longest branch. 
 

Furthermore, the directional attributes given 
by the gross chain code representations presented 
later in this section can be used to effectively select 
branches along certain directions. The algorithm 
developed is based on two functions, one that 
records the chain code values obtained along an 
edge up to a branch point, and returns the chain 
code obtained till that point as well as the branch 
points. 

 
The second function tracks the paths followed 

and the corresponding chain code sets, passing the 
first function successively the branch point it 
returned previously. This is done until all the 
branches are covered and the output is a history of 
the different path numbers followed. Paths are 
numbered as shown in Figure 10, with 1 given to 
the starting segment. 
 

 
Figure 10: Branching Analysis Example 

 

Upon reaching a branch point, the 
resulting branches are given labels 2 and 3, 
thereafter path 2 is followed and upon arriving at a 
branch, the branch points are labelled as 4 and 5 
and path 3 is processed next, returning to paths 4 
and 5 subsequently. In this way, the paths traced by 
the algorithm are: (1 3), (1 2 5 8), (1 2 5 9), (1 2 4 
6), (1 2 4 7 10) and (1 2 4 7 11).  
 

Figure 11 shows an example of applying 
this branching analysis. As seen, there are five 
paths covered, and hence the output has five chain 
code sets. In this particular case, the branching 
algorithm has been applied directly on this edge 
without any pre-processing to remove ‘sharp’ 
corners. To illustrate the application of the logical 
expressions obtained and the rules set formulated 
earlier, the neighbourhoods of all the edge points 
and the resulting logical output for the section of 
the edge encircled in Figure 11 are shown in Figure 
12. 

The arrows show the progression of the 
edge tracing process, which as per Rule (I) involves 
placing a 3x3 kernel over the edge pixel in question 
and analysing its neighbourhood. These 3x3 kernels 
are numbered from (i) to (ix) in Figure 12. Analysis 
of the 3x3 kernels using the previously derived 
logical expressions yields masks, numbered from 
(1) to (9). The 3x3 kernels along the edge (kernels 
(i) to (ix)) have the previous edge pixel set at zero 
as per Rule (II). 

 
 
 

 
Figure 11: Branching Example 
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Analysis of the output masks and 
accordingly setting the corresponding pixels’ states 
temporarily allow the application of Rule (III) to 
determine the presence of branching. In this way, 
analysis of kernel (ii) gives an output  mask (2) 
where all the eight boundary locations are zero so 
that the original kernel is used itself to test for 
branching. The presence of more than one pixel in 
the neighbourhood of the central pixel signifies a 

branching point, which is shown by the two arrows 
originating from kernel (ii). All the other kernels 
have a similar zero output mask except output mask 
(6) corresponding to kernel (vi), where the location 
corresponding to the high state needs to be set to 
zero to advance downwards first according to Rule 
(V) in preference to moving to moving diagonally. 
 

 

 
Figure 12: Application of logical expressions during branching 

 

4.1 Characterising Lines Using Chain codes 
This section describes the tools developed to 

compute directional attributes for edges. The 
approach to developing these tools has been to 
cluster them according to their main orientation. 
Two schemes are proposed to pre-process the 
Freeman’s chain code (Figure 13) set from which 
segments of the chain code corresponding to a 
particular gross orientation are segregated. 
 

 
Figure 13: Freeman's Chain code 
 
One of the scheme attempts to find those 

segments with gross orientations in the North-East, 
North-West, South-East and South-West directions, 
while the other scheme finds segments with North, 
South, East and West orientations. These two tools 
can be used for decomposing an edge into segments 
for further processing. 

4.1.1 Gross Clustering for Direction of 
Movement Determination 
Due to discretisation of the image 

formation process into pixels, changes in direction 
are brought about by combinations of horizontal 
and vertical displacements coupled with diagonal 
ones. For example, an edge with a gentle positive 
slope contains more of {0} chain codes, one with 
moderate positive slope contains {0}, {1} and {2} 
chain codes in significant proportions while one 
with a steep slope contains more of {2} values. This 
fact is exploited in this section and the next to 
derive a grosser representation of the chain code to 
aid in segregating an edge into smaller segments 
with different gross directions. 
 

Figure 14 shows the scheme used to derive 
the gross representation of the chain code for 
finding orientations along the diagonals. A 
displacement along the {0} direction can signify 
movement along the {1} or {7} direction, as these 
are normally combined to bring about a given 
movement due to discretisation. Similarly, a 
movement along {2} can mean either movement 
along {1} or {3} directions, a {4} can be used to 
bring about displacement along the {3} and {5} 
directions and finally a {6} may mean incursion 
into the {5} or {7} directions. The aim here is to 
find the segments of the line that contain smooth 
transitions. For example, a {0} may mean 
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displacement along the {1} or {7} directions, but a 
{0} preceded or followed by a {1} point to a 
displacement along the {1} direction. The same rule 
applies for the other orientation dualities mentioned 
before. 
 

 
Figure 14: Gross codes for finding diagonal 

movement 

 
The algorithm proposed to implement such an 

identification of the segments of a chain code set 
with similar diagonal movement is as follows: 

1. The odd chain code values are found. 
2. The intermediate even values are given 

values equal to the odd number nearest 
to them as shown by the arrows in 
Figure 14.  

3. The indices at the points of transition are 
found and returned. Referring to these in 
the original chain code helps to revert 
back to the initial direction changes. 

 
Figure 15 shows examples of chain code 

sequences processed using the proposed method. 
The broken lines show the demarcation between the 
segments that represent different diagonal 
displacements. For the first case, all the four 
possible diagonal movements are present while the 
second case represents a more realistic example of 
the type of edge obtained. 

4.1.2 Gross Clustering for Finding Vertical 
and Horizontal Lines 

A similar approach as described in section 
4.1.1 for finding diagonal segments can be used for 
finding horizontal and vertical segments in a chain 
code set. The proposed algorithm is as follows: 

1. The even chain code values are found. 
2. The intermediate values are found by the 

closest even chain code values as shown 
in Figure 16. 

3. Recording the indices of transition again 
allows reverting back to the original 

chain code set and retrieving the different 
segments. 

 
Figure 15: Gross chain code representation for 

diagonal displacement 

 

 
Figure 16: Gross codes for finding vertical and 

horizontal movements 
Figure 17 shows results obtained by 

applying this algorithm. The broken lines again 
show the transition between segments, but here the 
demarcation is that between segments with different 
horizontal or vertical components. The first 
example contains all the four types of vertical and 
horizontal displacements while an arbitrary line 
segment taken in the second case shows that the 
algorithm rightly separates the initial horizontal 
displacement from the subsequent vertical 
movement and thereafter the right and final 
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downward displacements are correctly singled out 
as segments. Using the indices returned from the 
function, it is possible to extract these segments 
from the original chain code set. 
 

 
Figure 17: Chain code representation for 

horizontal and vertical displacement 

5 APPLICATION EXAMPLES 
This section first gives an example of the 

application of the edge characterisation technique 
described above with a mathematical problem. Two 
examples of edge processing are then given for a 
contour obtained from a fluid propagation problem 
and a line obtained by applying the Canny operator 
to a face image. 

5.1 Curve Fitting 
Consider the curves y = x2 and y = ±x as 

depicted in Figure 18 . These two graphs are 
speculative edges found in an image. While it is 
customary to use x as the independent variable to 
approximate a function, clearly using such an 
approach for the square root edge over the whole 
curve leads to a non-injective case and hence fitting 
a general quadratic or cubic function will not be 
successful. The application of the gross chain code 
representations for vertical/horizontal directions is 
demonstrated next using unity intervals 
representative of the resolution obtained in images 
at pixel level (although negative coordinates are 
used). Fitting a polynomial curve to these points 
gives sub-pixel accuracy. Figure 19 shows spatial 
discretisations of these two curves, which would be 
typically obtained in an image array. 
 

 
Figure 18: Quadratic and Square root functions 

 
Figure 19: Pixel level representation 

Using the same convention that a chain 
code value of 0 is in the direction of increasing x 
(and 4 in the direction of decreasing x) and that a 
chain code value of 2 is in the direction of 
decreasing y (and 6 in the direction of increasing y), 
the chain code sequence obtained for these 
coordinates is: 

 
[2    2     2     0     2     2     2     2     0     2     2     0     
0     6     6     0     6     6     6     6     0     6     6    6] 
 

However, applying the edge conditioning 
described before removes the right angles from the 
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edge resulting in the following chain code 
sequence: 
[2     2     2     1     2     2     1     2     1     7     6     7     
6     6     7     6     6     6] 
 

Applying the vertical/horizontal gross 
chain code representations gives the following: 
[2     2     2     2     2     2     2     2     2     6     6     6     
6     6     6     6     6     6] 
 

Clearly, the gross chain codes show that 
the edge is predominantly vertical, one branch 
going up (2) and one branch going down (6), 
hence y can be effectively used as the independent 
variable for curve fitting for each of the two 
segments. A similar analysis for the square root 
data is carried out next. The chain code sequence 
for these coordinates is: 
[4    4     4     6     4     4     4     4     6     4     4     6     
6     0     0     6     0     0     0     0     6     0     0    0] 
 

With edge conditioning to remove the 
right angles, the chain code sequence obtained is: 
[4     4     4     5     4     4     5     4     5     7     0     7     
0     0     7     0     0     0]. 
 

The corresponding gross chain code 
representation for vertical/horizontal components 
is: 
[4    4     4     4     4     4     4     4     2     0     0     0     
0     0     0     0     0     0] 
 

This time, the gross representation shows 
movement only in the horizontal direction, with a 
branch going to the right (0) and one going to the 
left (4). Hence for the square root curve, it would be 
concluded that the components of the edge are 
predominantly horizontal, and hence x is to be as 
the independent variable for curve fitting on these 
horizontal segments. 

5.2 Contour analysis in Fluid Flow 
This section describes the application of the 

branching analysis and gross chain code 
representations as a component in the processing of 
fluid contour so as to track the propagation of the 
fluid by generating flow vectors at the boundary of 
the contours. This exercise needed an analysis of 
the fluid contours at consecutive frames. Figure 
20(a) shows the fluid contours over two frames, 
Figure 20(b) and (c) show the separate contours 
obtained. For a robust analysis of these contours, a 
branching analysis proved to be necessary, as some 
pixel configurations were obtained which could 
cause erroneous interpretations. The result from the 
branching analysis was typically used to choose the 
longest branch.  

 
The next step of using the gross chain codes 

was applied to separate the second fluid contour so 
that points could be paired from the first contour. 
By segregating the second fluid contour into 
horizontal and vertical segments (see Figure 21), 

sub-pixel accuracy could be obtained in pairing 
points between the two boundaries, whereas using 
pixel locations themselves did not give an effective 
pairing. The segmentation of the contour into parts 
enable fitting of a low order polynomial to the 
segments, which lend to either analytical analysis or 
the generation of sub-pixel data. 
 

 
Figure 20: Fluid Fronts over two consecutive 

frames 

 

 
Figure 21: Conventional Chain code (top) and 

gross chain code (bottom) representation of fluid 
contour 
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It is clear that the results obtained from the 
gross chain code representation yield a better 
understanding of the general trend of the contour, 
and provide a more robust means to design 
algorithms for edge characterisation. Figure 22 
shows the different segments obtained by 
horizontal/vertical gross chain code representation. 
This version of the gross chain code gives a clear 
indication of which variable to use as the 
independent variable for an effective polynomial 
fitting (a vertical segment would be effectively 
characterised by fitting a function x = f(y) whereas 
a horizontal segment would be processed as a 
function y = f(x)). An explicit example of 
polynomial fitting is presented next. 
 

 
Figure 22: Segments found and fitted with cubic 

polynomial after horizontal/vertical 
segmentation 

5.3 Polynomial Fitting of Shape Segments 
The last example considered uses a simple 

sketch of a car (Figure 23) to show how the 
proposed gross chain code can be used to first break 
up a shape into its constituent parts to fit a 
polynomial to them. Since this is an ideal diagram 
drawn in a graphics package, branching analysis is 
not required. However, processing to ensure 
effective chain coding may be required in this case, 
especially at the corners. 
 

 
Figure 23: Simple diagram with piecewise 

lines/curves (image inverted) 

The Freeman’s chain code for this car 
outline is shown in Figure 24 (top). The 
segmentation of this figure into parts is performed 
by the horizontal/vertical gross chain code as 
opposed to the diagonal version because the aim is 
to fit a polynomial to these parts, and as discussed 
before, the derivation of the horizontal/vertical 
parts bears directly on the choice of the independent 
variables. Figure 24 (bottom) thus shows the gross 
horizontal/vertical chain codes. The clear 
demarcation of the segments shows that 8 vertical 
(2 and 6) and 8 horizontal (0 and 4) segments are 
obtained. 
 

 
Figure 24: Normal (Top) and Gross (Left) Chain code 

representation for simple car diagram 
 

Once these segments are derived, 
polynomials can be fitted to them based on the 
gross chain code value of a given set of data points. 
For example, the group having a gross chain code 
value of 6 (or 2) is fitted with a polynomial where y 
is the independent variable, while x will be used as 
the independent variable for the group with a gross 
chain code value of 0 (or 4). The result of this 
segmentation and polynomial fitting exercise is 
shown in Figure 25. 
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Figure 25: Polynomials obtained from horizontal and vertical segments 

5.4 Edge Analysis in Face Processing 
The example presented in this section relates 

to edges obtained by processing a face image by the 
canny operator. Figure 26 shows an edge image 
obtained. Branches are typically obtained when 
canny operators are applied for edge detection. 
 

 
Figure 26: Edges obtained from Canny Operator 

(image inverted) [10] 

 
Figure 27 shows one of the edges selected 

on the left side of the person’s face with two 
regions of interests (ROIs) enclosed in squares to 
show regions where branching was obtained. Figure 
28 and Figure 29 show magnified versions of these 
ROIs. Figure 28(b) shows the result of applying the 
edge conditioning algorithms described earlier for 
ensuring an effective chain coding. Branching 
analysis is applied on this edge image and four 
branches are obtained, as illustrated in Figure 30(a)-
(d). 

 

 
Figure 27: Selected Line for Processing 

 
The Freeman’s chain code, the diagonal 

and horizontal/vertical gross chain codes were 
computed and the results show the ability of the 
proposed gross chain code to give a better 
indication of the direction of an edge. The gross 
representations would enable to interpret branch (d) 
as a predominantly downward going edge whereas 
those for branch (a) would clearly show that there 
are two main directions of the edge, one going 
down and one going to the right. This could 
effectively be used to separate the shoulder and 
neck regions of the face image. 

 
Additionally, the percentage of horizontal 

and vertical regions as well as the lengths of these 
segments can be used as criteria for edge selection 
from the several edges obtained from Canny 
operator. The segments of the edge obtained as a 
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result of finding the gross vertical/horizontal chain 
code representation are shown in Figure 31. 
 

 
Figure 28: Close-up view of possible branching 

(a) before (b) after pre-processing 

 
 

 
Figure 29: Close-up view of branching 

 

 
Figure 30: Branches obtained 

 
Figure 31: Segments obtained for longest branch 

with vertical/horizontal gross chain codes 

6 DISCUSSION AND CONCLUSION 
The image processing and analysis tools 

proposed in this paper aim at pre-processing edges 
to remove pixel configurations which both cause 
sub-optimal representation and more importantly 
lead to wrongly concluding that a branching point 
exist in the edge. Such image processing tools were 
initially developed in the framework of face 
processing applications, for image understanding 
specifically related to finding the vertical cheek 
lines based on their orientations and 
concavity/convexity. The edges obtained during 
face processing using Canny operators contained 
branches and the success of the algorithm relied 
heavily on detecting these branching points and 
correctly accounting for them. The whole 
framework of edge conditioning, branching analysis 
and gross orientation representation stem from this 
research work. 
 

In addition, during the synthesis of a method 
to represent the motion of a fluid patch using flow 
vectors, this framework proved helpful. The flow 
vectors indicate by their magnitude and orientation 
how the fluid contour moved between two 
consecutive image frames to allow a precise 
reconstruction of these flow vectors between the 
fluid boundaries over consecutive frames, curve 
fitting was deemed necessary to achieve sub-pixel 
accuracy. The movement of the fluid boundary 
occurs in complex fashion, such that a single 
polynomial could not be fitted to the whole fluid 
contour. The framework enabled to decompose the 
contour into vertical and horizontal segments, to 
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which appropriate polynomials could be fitted, and 
thereafter used for finding the flow vectors. 
 

The two gross chain code representations 
proposed can be effectively used in conjunction to 
ensure a robust operation. While the 
horizontal/vertical version was found to be suitable 
for segmenting a curve into separate horizontal and 
vertical parts, to which polynomials can be fitted, 
the diagonal version would allow to guard against 
certain configurations of pixels which the 
horizontal/vertical version would not be able to 
process. For example, a purely diagonal line with 
chain code [1 1 1 1 1] would not be properly 
processed by the horizontal/vertical version as there 
are no even chain code values. 

 
However, used in combination, the results 

from the two versions can be used to guard against 
such occurrences and in the event 
horizontal/vertical version fails and the diagonal 
version returns an output, it can be implied that 
either of x or y can be used as the independent 
variable. The output obtained from the edge 
segmentation can be further processed to merge 
adjacent segments, e.g. by checking if they belong 
to an ellipse [11] or whether they can be merged 
into clusters [12]. 
 

One of the main contribution of this research 
work presented relates to curve segmentation. 
Through its simplicity and operation of chain code 
sequence itself, without any iteration, high 
execution speeds can be achieved in edge 
processing applications, e.g. for applications in 
product line inspection. The application of the 
proposed gross chain code method to polynomial 
fitting was the theme of the examples presented. 

 
The break points obtained from the algorithm 

can be effectively used in conjunction with 
conventional line/arc fitting techniques in the 
search for such primitives. The segments obtained 
from the proposed curve segmentation approach 
would represent an effective starting point for such 
paradigms. Used in conjunction with the branching 
analysis method presented, robust edge processing 
and characterisation functionalities can be designed. 
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