
 M. Gooroochurn et al., International Journal of Emerging Trends in Engineering Research, 4(7), July 2016, 50 – 63

50

Image Processing of Planar Digital Curves Using a Chain
Code-based Technique for Edge Characterisation

M. Gooroochurna, D. Kerrb, K. Bouazza-Maroufb

M.Gooroochurn@uom.ac.mu, d.kerr@lboro.ac.uk, k.bouazza-marouf@lboro.ac.uk
 a Mechanical and Production Engineering Department

University of Mauritius, Reduit, Mauritius
b Wolfson School of Mechanical and Manufacturing Engineering

Loughborough University, Loughborough, UK

ABSTRACT
Much effort has been expended for devising

solutions to analyse edges as a basis for image
understanding. This paper presents image processing and
analysis tools to ensure a robust operation of such edge-
based algorithms. Specifically, a systematic paradigm to
branching analysis and a curve segmentation technique
based on chain codes are proposed. Several curve
segmentation approaches are available in the literature to
break edges into primitives for edge analysis. The particular
solution devised is simple and very computationally
efficient. The efficacy of the set of tools (branching
analysis and curve segmentation) in the applications
presented show that they can be effectively incorporated in
low-level and intermediate level edge processing.

Keywords: Curve Segmentation, Edge Analysis, Chain
Code, Branching Analysis, Polynomial Fitting.

1 INTRODUCTION
Several image processing applications use edges as

basis for image understanding due to their low
dimensionality. These edges are normally obtained by
applying edge detectors such as Canny, Sobel and
Laplacian operators. These operators work at a low-level
image processing hierarchy, following which image
analysis is carried out by extracting various features from
these lines, culminating into image understanding.
However, before the image analysis stage, it should be
ascertained that the edges obtained are properly
represented; this is referred to as edge conditioning
henceforth. In the present context, the subsequent image
analysis phase is analogous to characterising these edges by
calculating geometrical attributes, which are then employed
for image understanding.

One method of representing single-pixel width edges
is proposed by Freeman [1], which is commonly known as
chain codes. The aim of Freeman in formulating chain
codes was to provide a means by which an edge discretised
over a grid could be represented and transmitted
effectively. He showed that his solution to edge
representation gave a compact form to represent edges
while having desirable properties such as easy computation
of coordinates for geometrical operations, length of edge
and bounded area. Similar work for 2D and 3D shapes
representation has been carried out by Bribiesca [2, 3]. The

analysis of edges for high-level understanding is usually
done by breaking the edge representation into primitives.
Ichoku et al. [4] describes the curve segmentation problem
into two broad classifications: breakpoint detection and
edge approximation. Algorithms in the breakpoint detection
category [5] operate by first determining points separating
the different segments and then (optionally) fitting
lines/arcs to them, while the edge approximation category
[4-8] finds the segments first by fitting these primitives and
then (optionally) assign breakpoints at the end points of the
lines/arcs. Ichoku et al. [4] discusses the pros and cons of
these two approaches.

The selection of breakpoints is usually formulated in
terms of curvature and arc lengths/orientations. The need to
compute curvature along the curve and the fact that
curvature cannot be exactly replicated in the digital image
grid, being a mathematical concept applied to continuous
curve, have been considered as shortcomings. In analysing
the efficacy of these algorithms, the need to compute
attributes and the requirement for iterations to converge to
the breakpoints are further factors to be considered.

Having to calculate attributes at each point along the

curve leads to computationally intensive solutions, which is
further increased should the algorithm involve iterations.
Another important factor considered in assessing the
methods has been the need for setting thresholds, which in
turn introduces subjectivity in the solution. This usually
involves selecting a threshold level which discounts noise
while preserving fine details in the image. In this view,
threshold selection is considered a disadvantage and
solutions with no threshold selection [9] or having little
sensitivity to the selected threshold have been attempted.

The corresponding work in this paper is inspired from
the discretisation nature of an 8-neighbourhood grid that is
commonly used in image formation and display to propose
a solution that can be used for edge characterisation.
Linked with this discretised representation is the chain
code, which is thus used as the basis for the algorithm.
Approaches based on chain code for curve segmentation
have been reported e.g. [6, 9]. The method of Arrebola et
al. [9] is based on an image pyramid to analyse the curve at
various scales, thus leading to high computational costs,
although the authors report less computation costs
compared to similar multi-scale methods.

The solution proposed by Baruch and Loew [6] is
recursive and involves the computation of angles and arc

 ISSN 2347 - 3983
Volume 4, No.7 July 2016

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter01472016.pdf

 M. Gooroochurn et al., International Journal of Emerging Trends in Engineering Research, 4(7), July 2016, 50 – 63

51

lengths based on which segments are identified. Typical of
these chain code-based techniques is the information
provided by the end result regarding the directional
attributes of the segments found as such directional
information are inherent in chain code values. Furthermore,
invariance to rotation can be achieved by using differential
chain codes to re-formulate the chain code sequence.

Most work in curve segmentation assumes that edges
do not contain branches. However, the possibility exists
that single pixel width edges contain branches, e.g. due to
skeletonisation. So this paper first proposes a systematic
approach to branching analysis for finding the different
main edge segments making up the edge. Then the edge
segmentation approach is presented. The chain code
solution is based on gross chain code representations
derived from Freeman’s chain code which run along
different main directions (up/down or diagonal).

The advantages of this solution are: (1) it does not

require any threshold selection, (2) it operates directly on
the chain code sequence, which is a common representation
of edges, (3) it does not require the computation of any
attributes along the line, (4) it operates on integer numbers
only, thus costly computation with floating point numbers
are avoided and (5) it does not involve any iteration.
Similar to the outcome of the other chain code approaches,
the end result gives information about the directional
attributes of the segments, which can be used to effectively
fit polynomials to the segments.

One example of an application where the segmentation
of an edge contour into its constituent components is the
fitting of a curve along the edge points. When the points on
the edge are known to lie on an ellipse or a circle, robust
methods can be used to fit the appropriate polynomial to the
edge points, however, in a real-world application where such
assumptions cannot always be made, it would be helpful to
break down the edges into its constituent components to
which injective polynomials can then be applied, either using
x or y as the independent variable. The proposed gross chain
code representations allow this polynomial fitting as shown
by the examples of Section 5.

2 Branching Analysis: A Heuristic Approach
This section formulates the different heuristic rules that

have been implemented to set up the proposed branching
analysis methodology. The basis and implications of these
rules are then described. These rules are given in Table 1.

Rule (I) enunciates the basic method by which an edge is
traced, namely by moving from edge pixel to edge pixel,
while analysing the 3x3 neighbourhoods obtained. Rule (II)
prevents any ambiguity in moving ahead by zeroing the edge
pixel already traced. Rule (III) sets the condition for
assigning an edge pixel as a branch point. This is done as a
result of the analysis of the 3x3 kernel, as per Rule (I), to
decide which of the eight border pixels in the 3x3
neighbourhood need(s) to be temporarily set to zero to
remove ambiguity in tracing the edge. More information is
given on this matter later in this section.

Table 1: Number of Configurations grouped by sum of
border pixels

Rule (IV) allows to determine how an edge is

traced in a predictable manner wherever different
alternatives exist. Rule (V) has been formulated to cater for
few configurations that cause ambiguity in tracing the edge
as shown further. Rule (VI) is a common assumption made
in edge processing applications and allows to choose which
of the 256 possible combinations of the eight border pixels
(the central pixel is necessarily a ‘1’) would be encountered
in tracing an edge. These 256 pixel configurations were
analysed to systematically identify those which are possible
in a single pixel width edge. The configurations were
grouped according to the sum of the 8 border pixel
locations. Table 2 summarises the number of configurations
obtained in each group (second column).

Sum Total Number
of Configurations

Subset of Possible
Configurations

1 8 8
2 28 28
3 56 52
4 70 28
5 56 2
6 28 0
7 8 0
8 1 0

Table 2: Number of Configurations grouped by sum of
border pixels

Rules Description

I

A 3x3 kernel is placed over a given edge

pixel and the analysis of this 3x3

neighbourhood determines how to move

ahead. 8-connectivity is used.

II

In moving to the next pixel location following

rule (I) to yield a new 3x3 kernel, the central

position occupied by the previous 3x3 kernel is

set to zero.

III

Following the analysis of the 3x3 kernel as per

rule (I), the presence of more than one path

signifies a branching point.

IV

In tracing an edge, priority is given to

movements in the following order: horizontal,

vertical and then diagonal.

V

Rule (IV) is not abided for configurations that

would cause ambiguity in edge tracing at the

next step.

VI Edges are assumed to be of single pixel width.

 M. Gooroochurn et al., International Journal of Emerging Trends in Engineering Research, 4(7), July 2016, 50 – 63

52

The findings from this analysis have been used in
the next section to implement the algorithm for recovering
the branches along the edge in a robust manner. The need to
discount edge pixels in a given 3x3 neighbourhood is
illustrated by the three examples in Figure 1 where the
shaded pixels represent edge points. Figure 1(A) illustrates
an example where there are no branching while examples (B)
and (C) involve branching. For example (A), taking pixel ‘a’
as the start point, the whole edge can be traversed by
successively placing a 3x3 kernel (as per Rule (I)) over a
central location and moving that centre to the location where
there is an edge pixel. In moving the 3x3 kernel from ‘a’ to
‘b’, pixel ‘a’ is set to zero as per Rule (II). With this scheme,
the coordinates of the points moved to can be stored or a
chain code value can be allocated for each step.

Figure 1: Two examples of edges (A) without branching

(B), (C) with branching

From example (B) in Figure 1, movement from ‘a’

to ‘b’ can be done in an unequivocal way as the 3x3
neighbourhood placed over ‘a’ has only one direction to
move in; towards ‘b’. However, when the 3x3 kernel is
placed over pixel ‘b’, two possible directions are obtained:
‘c’ and ‘g’. So pixel ‘b’ should be identified as a branch
point as per Rule (III). However, applying Rule (III) directly
on pixel ‘a’ of example (C) wrongly assigns it as a branch
point. In the same example, point ‘g’ should not be assigned
as a branch point as it is similar to point ‘b’ but point ‘h’
should be taken as a branch point.

For this reason, Rule (I) has an analysis component
added to it for processing of the 3x3 neighbourhood prior to
deciding whether a branch exists or not. The 3x3
neighbourhood of pixel ‘a’ in example (C) consists of two
possible paths to move away from ‘a’ (points ‘b’ and ‘c’).
Rule (IV) stipulates that priority is given to a horizontal
movement in preference to the diagonal movement, so that
an incursion is made to ‘b’ first. Doing the opposite would
unduly assign a branch point at point ‘c’.

Based on Rule (IV), Rule (V) is set to cater for
exceptions in pixel configurations when moving according to
the set priority actually causes ambiguity in the branching
analysis. Among the 118 possible configurations obtained
(see Table 2), two such exceptions were found. They are
shown in Figure 2. For these two configurations, moving in
the horizontal directions first (to pixels ‘c’ and ‘d’) would
create a situation where both branches would then come back
to the same point ‘b’. This can be avoided by first moving to
point ‘b’ by temporarily setting ‘c’ and ‘d’ to zero, and then
from ‘b’, these two respective paths can be traced
unambiguously.

Figure 2: Configurations with higher priority given to

vertical movement (edge pixels shaded)

With these two pixel configurations, it can argued why
three branches, namely along ‘c’, ‘b’ and ‘d’ are not assigned
when the kernel is centred at ‘a’ itself. The reason for not
doing this is that it can only be ascertained that these three
points are branches by moving away from the central
location ‘a’ and surveying the next 3x3 neighbourhood. For
example, by moving to ‘b’ first, it might be found that only
two branches along {b,c} and {b,d} are present, so this
scheme was adopted to yield an optimum number of
branches.

Rule (VI) is a common assumption in edge analysis

problems and be readily enforced in the computation of
edges, e.g. in using Canny detection, in tracing the boundary
of an object or in skeletonising a region. Application of Rule
(VI) allowed to discard several pixel configurations, which
have double pixel width edges. Specifically, the following
three categories of pixel configurations were discarded.

(A) Configurations having double pixel width lines,
which contravenes Rule VI. Two examples of such
configurations are shown in Figure 3.

(B) Configurations in which it is impossible to move to
the central pixel without causing a double pixel
width line. Two instances of such configurations are
shown in Figure 4. In these two configurations, the

 M. Gooroochurn et al., International Journal of Emerging Trends in Engineering Research, 4(7), July 2016, 50 – 63

53

unshaded pixel locations are necessarily those via
which the central pixel location was accessed,
which as per Rule II is set to zero. Making any one
of these pixel locations as an edge location causes a
double pixel width.

Figure 3: Examples of configurations having double pixel

width

Figure 4: Examples of configurations which cause double

pixel widths by creating path to central pixel

(C) Configurations in which it is impossible to access
the central location due to the prioritisation of
movement as per Rule (IV). Two examples are
shown in Figure 5. For example, in case (a), the
central location can be reached via pixels ‘a’ or ‘e’
without causing a double pixel width. But due to the
higher priority of vertical displacement compared to
diagonal displacement, pixel ‘h’ (and ‘d’ for
location ‘e’) will be accessed first, thereby changing
the 3x3 pixel configuration itself. So it is concluded
that such 3x3 pixel configurations will not be
encountered.

Figure 5: Examples of configurations where central pixel

cannot be reached due to step prioritisation

The next section analyses the edge conditioning
requirements to yield effective edge representation and
branching. The requirement to analyse the 3x3
neighbourhood as given in Rule (I) is thus considered.

3 EDGE CONDITIONING

3.1 Pixel Configurations to be Permanently Removed
Figure 6 shows the different pixel configurations

identified for which the central pixels can be set to zero
permanently before processing the edges for branching
analysis. These configurations essentially remove ‘sharp’
corners in edges. They can be programmed as a look-up table
(LUT) and applied over the whole image. Figure 7 shows a
binary input image and the corresponding output when such
a look-up table is applied. Note that the encircled portion of
the image contains a subset of the configuration of kernel
1(a) of Figure 6 but the central pixel is not removed as this
will lead to breaking of the line at the branching point. This
is catered for in Section 3.2.

Figure 6: Central pixels are set to zero

3.2 Pixel Configurations to be Temporarily Discounted
After setting the points matching the configurations

from Section 3.1 to zero, the edge can be traced to recover its
different branches. The encircled part of Figure 7 was an
instance of branching. Figure 8 shows a subset of the pixel
configurations analysed in Section 2 for which pixel
locations need to be temporarily ignored for moving
unambiguously along the edge and recovering the branches
as per Rule (III).

The first three rows of masks in Figure 8 correspond

to situations where no branch exist on the central pixel, so
setting the shaded pixels to zero temporarily enables moving
to a point in a unique way according to the priority set by
Rule (IV). However, the pixel moved to in the next stage is
most likely a branch point as it would otherwise have been
removed by the prior processing stage to remove ‘sharp’
corners by the global LUT approach described in the
previous section.

The next two rows of masks are branching situations
as can be seen from the immediate masks themselves. Setting
the shaded pixels to zero temporarily allows to move to the
non-central pixel in a unique way as per Rule (IV), and
thereafter a branch point is identified and the two separate
branches are traced. Some observations are relevant at this
point regarding the 8 masks in the last two rows of Figure 8
{(4)a-d and (5)a-d} and the four masks in the last row of
Figure 6 {(2)a-d} as they belong to the same family. First,
there are only four masks in Figure 6 since the other four
masks completing the configuration family of kernels would
simply break off the configuration into two segments if they
are all applied. Second, the masks may look similar, but their
appearance in Figure 8 means that their neighbourhoods
were not similar prior to moving to the present state, since as
per Rule (II), the central pixel is set to zero.

 M. Gooroochurn et al., International Journal of Emerging Trends in Engineering Research, 4(7), July 2016, 50 – 63

54

Figure 7: Example with configurations from Figure 6

Figure 8: Subset of Pixel Configurations showing

pixels to be temporarily zeroed (in red)

For the 118 possible configurations
identified (see Table 2), logical expressions were
derived for setting the temporary state of each of
the 8 border pixels during branching. This is
actually the kernel analysis stipulated in Rule (I)
and would enable the subsequent application of
Rule (III) to identify branching points. Logical
variables were assigned to each of the 8 pixel
locations and given a true state for configurations
where they need to be set to zero (see Figure 9).

For example, if ‘a’ is given a true state,

then ‘A’ should be set to 0 and if ‘f’ is given a true

state, ‘F’ should be set to 0. The pixel
configurations deemed impossible were set as
‘don’t cares’ in the truth table for each output
variable.

Figure 9: Logical Mask computed from 3x3
mask. A to H are edge pixels and a-h are the

output variables.

The logical expressions obtained are:

DFHBDHh
GHFGACEFg

HDFFHDf
DEEFCEFAe

DFHBDHd
CDBCc

HDBHBDb
AHABa














4 BRANCHING ANALYSIS AND EDGE
CHARACTERISATION
The objective in analysing branching in these

lines is to develop a method for uniquely and
predictably tracing the edge and returning the chain
codes along the different branches traced. Although
not presented in this paper, the recovery of the
different branches along an edge can be followed
by further analysis to identify which branches are

 M. Gooroochurn et al., International Journal of Emerging Trends in Engineering Research, 4(7), July 2016, 50 – 63

55

relevant for analysis for a given application, e.g. the
longest branch.

Furthermore, the directional attributes given
by the gross chain code representations presented
later in this section can be used to effectively select
branches along certain directions. The algorithm
developed is based on two functions, one that
records the chain code values obtained along an
edge up to a branch point, and returns the chain
code obtained till that point as well as the branch
points.

The second function tracks the paths followed

and the corresponding chain code sets, passing the
first function successively the branch point it
returned previously. This is done until all the
branches are covered and the output is a history of
the different path numbers followed. Paths are
numbered as shown in Figure 10, with 1 given to
the starting segment.

Figure 10: Branching Analysis Example

Upon reaching a branch point, the
resulting branches are given labels 2 and 3,
thereafter path 2 is followed and upon arriving at a
branch, the branch points are labelled as 4 and 5
and path 3 is processed next, returning to paths 4
and 5 subsequently. In this way, the paths traced by
the algorithm are: (1 3), (1 2 5 8), (1 2 5 9), (1 2 4
6), (1 2 4 7 10) and (1 2 4 7 11).

Figure 11 shows an example of applying
this branching analysis. As seen, there are five
paths covered, and hence the output has five chain
code sets. In this particular case, the branching
algorithm has been applied directly on this edge
without any pre-processing to remove ‘sharp’
corners. To illustrate the application of the logical
expressions obtained and the rules set formulated
earlier, the neighbourhoods of all the edge points
and the resulting logical output for the section of
the edge encircled in Figure 11 are shown in Figure
12.

The arrows show the progression of the
edge tracing process, which as per Rule (I) involves
placing a 3x3 kernel over the edge pixel in question
and analysing its neighbourhood. These 3x3 kernels
are numbered from (i) to (ix) in Figure 12. Analysis
of the 3x3 kernels using the previously derived
logical expressions yields masks, numbered from
(1) to (9). The 3x3 kernels along the edge (kernels
(i) to (ix)) have the previous edge pixel set at zero
as per Rule (II).

Figure 11: Branching Example

 M. Gooroochurn et al., International Journal of Emerging Trends in Engineering Research, 4(7), July 2016, 50 – 63

56

Analysis of the output masks and
accordingly setting the corresponding pixels’ states
temporarily allow the application of Rule (III) to
determine the presence of branching. In this way,
analysis of kernel (ii) gives an output mask (2)
where all the eight boundary locations are zero so
that the original kernel is used itself to test for
branching. The presence of more than one pixel in
the neighbourhood of the central pixel signifies a

branching point, which is shown by the two arrows
originating from kernel (ii). All the other kernels
have a similar zero output mask except output mask
(6) corresponding to kernel (vi), where the location
corresponding to the high state needs to be set to
zero to advance downwards first according to Rule
(V) in preference to moving to moving diagonally.

Figure 12: Application of logical expressions during branching

4.1 Characterising Lines Using Chain codes
This section describes the tools developed to

compute directional attributes for edges. The
approach to developing these tools has been to
cluster them according to their main orientation.
Two schemes are proposed to pre-process the
Freeman’s chain code (Figure 13) set from which
segments of the chain code corresponding to a
particular gross orientation are segregated.

Figure 13: Freeman's Chain code

One of the scheme attempts to find those

segments with gross orientations in the North-East,
North-West, South-East and South-West directions,
while the other scheme finds segments with North,
South, East and West orientations. These two tools
can be used for decomposing an edge into segments
for further processing.

4.1.1 Gross Clustering for Direction of
Movement Determination
Due to discretisation of the image

formation process into pixels, changes in direction
are brought about by combinations of horizontal
and vertical displacements coupled with diagonal
ones. For example, an edge with a gentle positive
slope contains more of {0} chain codes, one with
moderate positive slope contains {0}, {1} and {2}
chain codes in significant proportions while one
with a steep slope contains more of {2} values. This
fact is exploited in this section and the next to
derive a grosser representation of the chain code to
aid in segregating an edge into smaller segments
with different gross directions.

Figure 14 shows the scheme used to derive
the gross representation of the chain code for
finding orientations along the diagonals. A
displacement along the {0} direction can signify
movement along the {1} or {7} direction, as these
are normally combined to bring about a given
movement due to discretisation. Similarly, a
movement along {2} can mean either movement
along {1} or {3} directions, a {4} can be used to
bring about displacement along the {3} and {5}
directions and finally a {6} may mean incursion
into the {5} or {7} directions. The aim here is to
find the segments of the line that contain smooth
transitions. For example, a {0} may mean

 M. Gooroochurn et al., International Journal of Emerging Trends in Engineering Research, 4(7), July 2016, 50 – 63

57

displacement along the {1} or {7} directions, but a
{0} preceded or followed by a {1} point to a
displacement along the {1} direction. The same rule
applies for the other orientation dualities mentioned
before.

Figure 14: Gross codes for finding diagonal

movement

The algorithm proposed to implement such an

identification of the segments of a chain code set
with similar diagonal movement is as follows:

1. The odd chain code values are found.
2. The intermediate even values are given

values equal to the odd number nearest
to them as shown by the arrows in
Figure 14.

3. The indices at the points of transition are
found and returned. Referring to these in
the original chain code helps to revert
back to the initial direction changes.

Figure 15 shows examples of chain code

sequences processed using the proposed method.
The broken lines show the demarcation between the
segments that represent different diagonal
displacements. For the first case, all the four
possible diagonal movements are present while the
second case represents a more realistic example of
the type of edge obtained.

4.1.2 Gross Clustering for Finding Vertical
and Horizontal Lines

A similar approach as described in section
4.1.1 for finding diagonal segments can be used for
finding horizontal and vertical segments in a chain
code set. The proposed algorithm is as follows:

1. The even chain code values are found.
2. The intermediate values are found by the

closest even chain code values as shown
in Figure 16.

3. Recording the indices of transition again
allows reverting back to the original

chain code set and retrieving the different
segments.

Figure 15: Gross chain code representation for

diagonal displacement

Figure 16: Gross codes for finding vertical and

horizontal movements
Figure 17 shows results obtained by

applying this algorithm. The broken lines again
show the transition between segments, but here the
demarcation is that between segments with different
horizontal or vertical components. The first
example contains all the four types of vertical and
horizontal displacements while an arbitrary line
segment taken in the second case shows that the
algorithm rightly separates the initial horizontal
displacement from the subsequent vertical
movement and thereafter the right and final

 M. Gooroochurn et al., International Journal of Emerging Trends in Engineering Research, 4(7), July 2016, 50 – 63

58

downward displacements are correctly singled out
as segments. Using the indices returned from the
function, it is possible to extract these segments
from the original chain code set.

Figure 17: Chain code representation for

horizontal and vertical displacement

5 APPLICATION EXAMPLES
This section first gives an example of the

application of the edge characterisation technique
described above with a mathematical problem. Two
examples of edge processing are then given for a
contour obtained from a fluid propagation problem
and a line obtained by applying the Canny operator
to a face image.

5.1 Curve Fitting
Consider the curves y = x2 and y = ±x as

depicted in Figure 18 . These two graphs are
speculative edges found in an image. While it is
customary to use x as the independent variable to
approximate a function, clearly using such an
approach for the square root edge over the whole
curve leads to a non-injective case and hence fitting
a general quadratic or cubic function will not be
successful. The application of the gross chain code
representations for vertical/horizontal directions is
demonstrated next using unity intervals
representative of the resolution obtained in images
at pixel level (although negative coordinates are
used). Fitting a polynomial curve to these points
gives sub-pixel accuracy. Figure 19 shows spatial
discretisations of these two curves, which would be
typically obtained in an image array.

Figure 18: Quadratic and Square root functions

Figure 19: Pixel level representation

Using the same convention that a chain
code value of 0 is in the direction of increasing x
(and 4 in the direction of decreasing x) and that a
chain code value of 2 is in the direction of
decreasing y (and 6 in the direction of increasing y),
the chain code sequence obtained for these
coordinates is:

[2 2 2 0 2 2 2 2 0 2 2 0
0 6 6 0 6 6 6 6 0 6 6 6]

However, applying the edge conditioning
described before removes the right angles from the

 M. Gooroochurn et al., International Journal of Emerging Trends in Engineering Research, 4(7), July 2016, 50 – 63

59

edge resulting in the following chain code
sequence:
[2 2 2 1 2 2 1 2 1 7 6 7
6 6 7 6 6 6]

Applying the vertical/horizontal gross
chain code representations gives the following:
[2 2 2 2 2 2 2 2 2 6 6 6
6 6 6 6 6 6]

Clearly, the gross chain codes show that
the edge is predominantly vertical, one branch
going up (2) and one branch going down (6),
hence y can be effectively used as the independent
variable for curve fitting for each of the two
segments. A similar analysis for the square root
data is carried out next. The chain code sequence
for these coordinates is:
[4 4 4 6 4 4 4 4 6 4 4 6
6 0 0 6 0 0 0 0 6 0 0 0]

With edge conditioning to remove the
right angles, the chain code sequence obtained is:
[4 4 4 5 4 4 5 4 5 7 0 7
0 0 7 0 0 0].

The corresponding gross chain code
representation for vertical/horizontal components
is:
[4 4 4 4 4 4 4 4 2 0 0 0
0 0 0 0 0 0]

This time, the gross representation shows
movement only in the horizontal direction, with a
branch going to the right (0) and one going to the
left (4). Hence for the square root curve, it would be
concluded that the components of the edge are
predominantly horizontal, and hence x is to be as
the independent variable for curve fitting on these
horizontal segments.

5.2 Contour analysis in Fluid Flow
This section describes the application of the

branching analysis and gross chain code
representations as a component in the processing of
fluid contour so as to track the propagation of the
fluid by generating flow vectors at the boundary of
the contours. This exercise needed an analysis of
the fluid contours at consecutive frames. Figure
20(a) shows the fluid contours over two frames,
Figure 20(b) and (c) show the separate contours
obtained. For a robust analysis of these contours, a
branching analysis proved to be necessary, as some
pixel configurations were obtained which could
cause erroneous interpretations. The result from the
branching analysis was typically used to choose the
longest branch.

The next step of using the gross chain codes

was applied to separate the second fluid contour so
that points could be paired from the first contour.
By segregating the second fluid contour into
horizontal and vertical segments (see Figure 21),

sub-pixel accuracy could be obtained in pairing
points between the two boundaries, whereas using
pixel locations themselves did not give an effective
pairing. The segmentation of the contour into parts
enable fitting of a low order polynomial to the
segments, which lend to either analytical analysis or
the generation of sub-pixel data.

Figure 20: Fluid Fronts over two consecutive

frames

Figure 21: Conventional Chain code (top) and

gross chain code (bottom) representation of fluid
contour

 M. Gooroochurn et al., International Journal of Emerging Trends in Engineering Research, 4(7), July 2016, 50 – 63

60

It is clear that the results obtained from the
gross chain code representation yield a better
understanding of the general trend of the contour,
and provide a more robust means to design
algorithms for edge characterisation. Figure 22
shows the different segments obtained by
horizontal/vertical gross chain code representation.
This version of the gross chain code gives a clear
indication of which variable to use as the
independent variable for an effective polynomial
fitting (a vertical segment would be effectively
characterised by fitting a function x = f(y) whereas
a horizontal segment would be processed as a
function y = f(x)). An explicit example of
polynomial fitting is presented next.

Figure 22: Segments found and fitted with cubic

polynomial after horizontal/vertical
segmentation

5.3 Polynomial Fitting of Shape Segments
The last example considered uses a simple

sketch of a car (Figure 23) to show how the
proposed gross chain code can be used to first break
up a shape into its constituent parts to fit a
polynomial to them. Since this is an ideal diagram
drawn in a graphics package, branching analysis is
not required. However, processing to ensure
effective chain coding may be required in this case,
especially at the corners.

Figure 23: Simple diagram with piecewise

lines/curves (image inverted)

The Freeman’s chain code for this car
outline is shown in Figure 24 (top). The
segmentation of this figure into parts is performed
by the horizontal/vertical gross chain code as
opposed to the diagonal version because the aim is
to fit a polynomial to these parts, and as discussed
before, the derivation of the horizontal/vertical
parts bears directly on the choice of the independent
variables. Figure 24 (bottom) thus shows the gross
horizontal/vertical chain codes. The clear
demarcation of the segments shows that 8 vertical
(2 and 6) and 8 horizontal (0 and 4) segments are
obtained.

Figure 24: Normal (Top) and Gross (Left) Chain code

representation for simple car diagram

Once these segments are derived,
polynomials can be fitted to them based on the
gross chain code value of a given set of data points.
For example, the group having a gross chain code
value of 6 (or 2) is fitted with a polynomial where y
is the independent variable, while x will be used as
the independent variable for the group with a gross
chain code value of 0 (or 4). The result of this
segmentation and polynomial fitting exercise is
shown in Figure 25.

 M. Gooroochurn et al., International Journal of Emerging Trends in Engineering Research, 4(7), July 2016, 50 – 63

61

Figure 25: Polynomials obtained from horizontal and vertical segments

5.4 Edge Analysis in Face Processing
The example presented in this section relates

to edges obtained by processing a face image by the
canny operator. Figure 26 shows an edge image
obtained. Branches are typically obtained when
canny operators are applied for edge detection.

Figure 26: Edges obtained from Canny Operator

(image inverted) [10]

Figure 27 shows one of the edges selected

on the left side of the person’s face with two
regions of interests (ROIs) enclosed in squares to
show regions where branching was obtained. Figure
28 and Figure 29 show magnified versions of these
ROIs. Figure 28(b) shows the result of applying the
edge conditioning algorithms described earlier for
ensuring an effective chain coding. Branching
analysis is applied on this edge image and four
branches are obtained, as illustrated in Figure 30(a)-
(d).

Figure 27: Selected Line for Processing

The Freeman’s chain code, the diagonal

and horizontal/vertical gross chain codes were
computed and the results show the ability of the
proposed gross chain code to give a better
indication of the direction of an edge. The gross
representations would enable to interpret branch (d)
as a predominantly downward going edge whereas
those for branch (a) would clearly show that there
are two main directions of the edge, one going
down and one going to the right. This could
effectively be used to separate the shoulder and
neck regions of the face image.

Additionally, the percentage of horizontal

and vertical regions as well as the lengths of these
segments can be used as criteria for edge selection
from the several edges obtained from Canny
operator. The segments of the edge obtained as a

 M. Gooroochurn et al., International Journal of Emerging Trends in Engineering Research, 4(7), July 2016, 50 – 63

62

result of finding the gross vertical/horizontal chain
code representation are shown in Figure 31.

Figure 28: Close-up view of possible branching

(a) before (b) after pre-processing

Figure 29: Close-up view of branching

Figure 30: Branches obtained

Figure 31: Segments obtained for longest branch

with vertical/horizontal gross chain codes

6 DISCUSSION AND CONCLUSION
The image processing and analysis tools

proposed in this paper aim at pre-processing edges
to remove pixel configurations which both cause
sub-optimal representation and more importantly
lead to wrongly concluding that a branching point
exist in the edge. Such image processing tools were
initially developed in the framework of face
processing applications, for image understanding
specifically related to finding the vertical cheek
lines based on their orientations and
concavity/convexity. The edges obtained during
face processing using Canny operators contained
branches and the success of the algorithm relied
heavily on detecting these branching points and
correctly accounting for them. The whole
framework of edge conditioning, branching analysis
and gross orientation representation stem from this
research work.

In addition, during the synthesis of a method
to represent the motion of a fluid patch using flow
vectors, this framework proved helpful. The flow
vectors indicate by their magnitude and orientation
how the fluid contour moved between two
consecutive image frames to allow a precise
reconstruction of these flow vectors between the
fluid boundaries over consecutive frames, curve
fitting was deemed necessary to achieve sub-pixel
accuracy. The movement of the fluid boundary
occurs in complex fashion, such that a single
polynomial could not be fitted to the whole fluid
contour. The framework enabled to decompose the
contour into vertical and horizontal segments, to

 M. Gooroochurn et al., International Journal of Emerging Trends in Engineering Research, 4(7), July 2016, 50 – 63

63

which appropriate polynomials could be fitted, and
thereafter used for finding the flow vectors.

The two gross chain code representations
proposed can be effectively used in conjunction to
ensure a robust operation. While the
horizontal/vertical version was found to be suitable
for segmenting a curve into separate horizontal and
vertical parts, to which polynomials can be fitted,
the diagonal version would allow to guard against
certain configurations of pixels which the
horizontal/vertical version would not be able to
process. For example, a purely diagonal line with
chain code [1 1 1 1 1] would not be properly
processed by the horizontal/vertical version as there
are no even chain code values.

However, used in combination, the results

from the two versions can be used to guard against
such occurrences and in the event
horizontal/vertical version fails and the diagonal
version returns an output, it can be implied that
either of x or y can be used as the independent
variable. The output obtained from the edge
segmentation can be further processed to merge
adjacent segments, e.g. by checking if they belong
to an ellipse [11] or whether they can be merged
into clusters [12].

One of the main contribution of this research
work presented relates to curve segmentation.
Through its simplicity and operation of chain code
sequence itself, without any iteration, high
execution speeds can be achieved in edge
processing applications, e.g. for applications in
product line inspection. The application of the
proposed gross chain code method to polynomial
fitting was the theme of the examples presented.

The break points obtained from the algorithm

can be effectively used in conjunction with
conventional line/arc fitting techniques in the
search for such primitives. The segments obtained
from the proposed curve segmentation approach
would represent an effective starting point for such
paradigms. Used in conjunction with the branching
analysis method presented, robust edge processing
and characterisation functionalities can be designed.

References

1. Freeman, H., On the encoding of arbitrary
geometric configurations, IRE Trans. Electron.
Comput 10 (1961) 260–268.
2. Bribiesca, E., A geometric structure for two-
dimensional shapes and three-dimensional surfaces,
Pattern Recognit 25 (1992) 483-496.
3. Bribiesca, E., A chain code for representing 3D
curves, Pattern Recognit 33 (2000) 755-765.
4. Ichoku, C., Deffontaines, B. and Chorowicz, J.,
Segmentation of digital plane curves: a dynamic
focusing approach" Pattern Recog. Lett. 17 (1996)
741-750.

5. West, G. and Rosin, P., Techniques for
segmenting image curves into meaningful
descriptions, Pattern Recognit 24 (1991) 643-652.
6. Baruch, O. and Loew, M. H., Segmentation of
two-dimensional boundaries using the chain code,
Pattern Recognit 21 (1988) 581-589.
7. Phillips, T. Y. and Rosenfeld, A., A method of
curve partitioning using arc-chord distance, Pattern
Recog. Lett. 5 (1987) 285-288.
8. Pham, T. D. and Yan, H., An effective algorithm
for the segmentation of digital plane curves—the
isoparametric formulation, Pattern Recog. Lett. 19
(1998) 171-176.
9. Arrebola, F. and Sandoval, F., Corner detection
and curve segmentation by multiresolution chain-
code linking, Pattern Recognit 38 (2005) 1596-
1614.
10. Martinez, A. M. and Benavente, R., The AR
face database, CVC Technical report 1998.
11. Hahn, K. et al., A new algorithm for ellipse
detection by curve segments, Pattern Recognition
Letters 29 (2008) 1836-1841.
12. Tai, C. L., Hu, S. M. and Huang, Q. X.,
Approximate merging of B-spline curves via knot
adjustment and constrained optimization, Comput. -
Aided Des. 35 (2003) 893-899.

