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 

ABSTRACT 

 

This article is focused on determination of fixed-end 

reactions, displacements, internal forces and internal 

moments for the spatial curved bi-fixed beam with varying 

curvature and varying cross-sectional area. The objective is to 

analyze spatially curved beam without involving analytical 

differentiation and integration of the governing equations. A 

finite displacement transfer method to analyze spatially 

curved beam is used to obtain numerically approximate 

analysis results and to eliminate analytical differentiation and 

integration, completely. The results of the analysis procedure 

are compared with the results of other methods found in the 

literature. For the specific case of the circular helical beam, 

the fixed end reactions' values have absolute maximum and 

minimum percentage differences of 1.23% and 0.06%, 

respectively. For the specific case of the elliptic-helical beam, 

the fixed end reactions' values have absolute maximum and 

minimum percentage differences of 1.13% and 0.0%, 

respectively. The finite difference method, along with the 

recursive scheme, gives reasonably accurate results without 

involving complex calculations.   

 

Key words : Finite difference, Fixed end reaction, Internal 

force, Internal moment. 

 

1. INTRODUCTION 

 

Curved beams are used in various civil engineering structures 

such as stair, balcony, etc. Most of the civil engineering 

structural elements are statically indeterminate. Basically 

there are two methods of the structural analysis namely 

classical methods and matrix methods. A detailed 

classification of the analysis methods is presented by 

Sushanta Ghuku and Kashi Nath Saha [1]. Matrix methods are 

very popular due to easiness in computer application. 

Analysis of the spatial curved beam is complex due to 

combined actions of axial force, shear forces, bending 

moments, twisting moment and different geometry of the 

curved beam axis. Fixed end reactions are the prime 

 
 

requirement for the analysis of the curved beam using matrix 

methods. The Bernoulli–Euler and Timoshenko theories can 

be employed for the analysis of the curved beam [1], [2]. The 

equilibrium equations, compatibility equations and 

constitutive relationships or energy principles can be used to 

represent mechanical behavior of the spatial curved beam 

[3]-[5]. In any case, analytical solution requires integration of 

the governing equations to determine displacements and fixed 

end reactions. Hence, analytical solutions can be obtained for 

some restricted shapes of the curved beam axis, such as 

circular and parabolic shapes [6]-[8]. In most of the cases, 

numerical methods must be employed for the solution of the 

governing equations of the curved beam [9]-[12]. Researchers 

use different approaches such as Transfer Matrix Method 

[9]-[11], [13], [14], Finite Difference Method [15], [16], 

Finite Element Method [17]-[21] for the analysis of either 

planer or spatial curved beam to obtain displacements, 

reactions and internal forces. Finite element method is one of 

the approximate methods of the analysis. Accuracy of the 

result depends on the number of finite elements, but size of the 

problem also increases. 

It is easy to determine displacements and reactions of the 

circular and parabolic curved beam using analytical exact 

method because analytical exact integration of the governing 

equations of such types of curved beam are possible. Elliptical 

curved beam is a classic example for which exact 

displacements and reactions can be not determined using 

analytical exact method [4], [22]. It is essential to employ 

numerical method when the curved beam axis is arbitrary or 

with different geometrical equations. Analysis of the planer or 

spatial curved beam includes calculation of differentiation and 

integration. 

Objective of the present paper is to determine fixed end 

reactions, displacements, internal forces and moments for the 

spatial curved bi-fixed beam with varying curvature and 

varying cross-sectional area along the curved beam axis. 

This paper presents an automated calculation procedure to 

analyze spatial curved bi-fixed beam. The finite displacement 

transfer method used to analyze spatial curved beam 

eliminates analytical differentiation and integration 

completely. Also, there is no need to develop 
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problem-specific differential equations for the spatial curved 

beam. The main disadvantage of the proposed calculation 

method is to supply coordinates of the nodes of the curved 

beam axis. Shear deformations are included in the present 

study, but local buckling phenomenon is not in the scope of 

the present study. 

Following assumptions are made in the finite displacement 

transfer method to analyze spatial curved fixed beam. (i) The 

material is elastic and homogeneous. (ii) The cross-section of 

the curved beam has two axes of symmetry so that twisting 

moment and bending moment occurs independent of one 

another. (iii) Every cross-section remains undistorted during 

deformation. (iv) The cross-sectional dimensions of the 

curved beam are small in comparison to the length of the 

curved beam. (v) Average values of the cross-sectional 

properties of discretized element are considered.  

 

2. LITERATURE REVIEW 

 

E. Tufekci and O. Y. Dogruer [6] presented analytical 

expressions to determine displacements of the planer arches 

with varying curvature and cross-section. The analytical exact 

solution is possible only when the arch axis represented by 

same geometrical equation throughout its length and 

analytical exact integration of the differential equation 

possible. 

Gimena et al. [7] derived stiffness matrix and equivalent load 

vector of a 3D curved beam with variable cross-section using 

Transfer Matrix Method. The numerical solution procedure 

presented using fourth order Runge-Kutta method. Gimena et 

al. [8] presented a system of twelve ordinary differential 

equations to analyze curved beam considering different shape 

geometry of the curved centroidal line, shearing deformation, 

varying cross-sectional area, non-symmetric section and 

generalized loads. Internal forces and displacements of the 

circular arch, circular balcony and circular helical beam were 

obtained based on exact analytical method. Gimena et al. [9], 

[10] presented twelve ordinary differential equations for 

non-naturally curved beam. Exact analytical and forth order 

Runge-Kutta numerical procedure proposed to obtain 

stiffness matrix and transfer matrix. Stiffness matrix and 

equivalent load vector were obtained using transfer matrix. 

Gimena et al. [11] presented first order, second order and 

forth order Runge-Kutta numerical method for the analysis of 

arbitrary curved beam. 

Analysis methods proposed in the literature [7]-[10] needed 

equations of the tangent, normal, binormal, bending curvature 

and flexion curvature of the curved beam. Hence, it may be 

very difficult to analyze the spatial curved beam with different 

geometry in different segments of the curved beam axis. 

Wankui and Hui [12] expressed the governing equations in 

terms of displacement functions and used finite difference 

scheme to obtain numerical solution for the planer curved 

beam. 

Arici and Granata [13] obtained displacements and internal 

forces of space curved bar with generalized Winkler soil using 

Transfer Matrix Method. They had presented excellent 

recurrence scheme to relate initial node and final node of the 

curved beam. This recurrence scheme used to determine the 

unknowns based on the boundary conditions, but it requires 

rearrangement of the total matrix. 

Sarria et al. [14] presented a unique system of equations 

associated to the curved beam with elastic supports by joining 

the twelve equations of the stiffness matrix expression with 

the twelve equations of support conditions. A linear system of 

ordinary differential equations solved using Finite Transfer 

Method. 

Al-Azzawi and  Shaker [15] extended Timoshenko’s deep 

beam theory to derive governing differential equations of 

curved deep beams resting on elastic foundations with both 

compressional and frictional resistances considering linear 

elastic behavior. Finite Difference Equations were introduced 

in the governing differential equations to obtain deflections 

and bending moment. 

Jirásek et al. [16] presented formulation of first-order 

differential equations of a geometrically nonlinear beam 

element using Bernoulli beam element that can accommodate 

arbitrarily large rotations of cross sections. These equations 

were discretized by finite differences and shooting method 

used to convert the boundary value problem into an initial 

value problem. 

Previous researchers have used various numerical methods to 

obtain solution of the governing differential equations. 

Although some researchers have presented rigorous 

mathematical formulas for the analysis of curved beams such 

as circular, parabolic, and elliptical, this is very difficult for 

computer applications of generalized spatially curved beams.  

 

3.  BASIC FORMULATIONS 

 

3.1 Geometry of Spatial Curved Beam Axis 

 

Figure 1 shows geometry of the spatial curved beam axis with 

reference to the Cartesian coordinate system xyz, which is 

also global axis of the spatial curved beam. Local axis 

(Member axis) is represented by tnb i.e. tangent, normal and 

binormal directions. The spatial curved beam axis may be 

arbitrary or with single or multiple geometrical equations 

along the length of the curve. 

 
Figure 1: Geometry of the spatial curved beam axis. 
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Cartesian coordinate of any point on spatial curved beam axis 

is represented by (x(θ), y(θ), z(θ)). Here, θ may be any 

independent parameter. 

The       and          are the position vectors 

corresponding to θ and (θ + dθ) respectively. The interval dθ 

may be positive or negative. 

Position vector can be expressed as follows: 

                                                                     

Where, I, J and K are the unit vectors in the global directions 

x, y and z respectively. 

Direction of the movement can be represented as, 
  

  
 

  

  
  

  

  
  

  

  
                                                            

If total length and elemental arc length of the curved beam 

axis are denoted by s and ds respectively, then 

   √                                                                   

Where, dx, dy and dz are the projected length of the elemental 

arc in the global x, y and z directions respectively. 

Speed of the movement can be represented as, 

  

  
 √(
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Unit tangent, 

                                                                               

T1, T2 and T3 are resolved parts of unit tangent T in global x, y 

and z directions respectively and can be expressed as, 

   
  

  

  

  
⁄                                                                                

   
  

  

  

  
⁄                                                                                

   
  

  

  

  
⁄                                                                                

Unit Normal, 

                                                                            

N1, N2 and N3 are resolved parts of unit normal N in global 

x, y and z directions respectively and can be expressed as, 
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Unit binormal, 

                                                                                        

                                                                           

B1, B2 and B3 are resolved parts of unit binormal B in global x, 

y and z directions respectively and can be expressed as, 

                                                                                
                                                                                
                                                                                

Above equations of tangent, normal and binormal can be used 

to obtain analytical exact results. Following equations of 

tangent and normal instead of equations (6), (7), (8), (10), (11) 

and (12) shall be used to determine approximate results using 

numerical method. 
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 ⁄
        

The tangent, normal and binormal directions are continuously 

moving along axis of curved beam. The rotation of the local 

axis with reference to global axis can be represented by the 

rotation of axis matrix, 

[ ]  [

      

      

      

]                                                               

  

3.2 Finite Difference Scheme 

 

To implement finite difference numerical method, the spatial 

curved beam axis is discretized into n number of segments as 

shown in figure 2. 



Ashwinkumar G. Hansora et al.,  International Journal of Emerging Trends in Engineering Research, 12(4), April 2024, 39 – 48 

42 

 

 

 
Figure 2: Discretization of the Spatial Curved Beam Axis 

 

In this article, Central Difference formula adopted to obtain 

approximate solution. 

Consider any node i with coordinate (x(θ), y(θ), z(θ)) on the 

curved beam axis and interval dθ. 

                                                                                            

                                                                                            

                                                                                            

   
           

 
                                                                   

   
           

 
                                                                   

   
           

 
                                                                    

4. METHODS AND FORMULATIONS 

Matrix formulation of fixed end reactions, displacements, 

internal forces and moments for the spatial curved beam with 

both ends fixed is presented in this section. Finite 

Displacement Transfer method is used for the formulations.  

Figure 3 shows discretized spatial curved bi-fixed beam axis, 

external forces, external moments, fixed ends reactions.  

Following are the properties of the curved beam: E is the 

Young’s modulus of elasticity; G is the shear modulus; A is 

the cross-sectional area;  It is the torsion constant; In and Ib are 

the moment of inertia; ξn and ξb are the shear coefficients. 

 

 
Figure 3: Spatial Curved Bi-Fixed Beam 

 

If curved beam subjected to varying load, then load intensity 

at the node i is considered to obtain energy equivalent nodal 

load at the node i. In case of varying cross-sectional properties 

such as area, moment of inertia, torsion constant, shear 

coefficients of the element, the average cross-sectional 

properties are considered. 

Matrices of external forces and moments at node j (j = 0, 1, 2, 

3, …, n) in the member directions (local axis) are denoted by 

[   ] and [   ], respectively. 

[   ]  [         ]                                                          
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   ,     and     are the external loads at node j in tangent, 

normal and binormal directions, respectively. 
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tangent, normal and binormal directions, respectively. 

If external loads are in global directions, the external loads 

should be transformed into member directions using the 

following relationship: 

[
   

   
]  [

   

   
] [

   
   

]                                                         

    and     are the matrices of the external loads at node j in 

global directions (structure axis). 

[   ]  [         ]                                                          

[   ]  [         ]                                                  

   ,     and     are the external forces at node j in x, y and z 

directions, respectively. 

   ,     and     are the external moments at node j about x, 

y and z directions, respectively. 

Matrices of fixed ends reactions at node j (j = 0, n) in the 

member directions (local axis) are denoted by [    ]  and 

[    ], respectively. 

[    ]  [            ]
 
                                                         

[    ]  [            ]                                                  

    ,      and      are the fixed end reactions at node j in tangent, 

normal and binormal directions, respectively. 

    ,      and      are the fixed end reactions at node j in 

tangent, normal and binormal directions, respectively. 

Matrices of internal forces and moments at node j (j = 0, 1, 2, 

3, …, n) in the member directions (local axis) are denoted by 

[   ] and [   ], respectively. 

[   ]  [         ]                                                          

[   ]  [         ]                                                     

    is the axial force at node j in tangent direction.  

    and     are the shear forces at node j in normal and 

binormal directions, respectively. 

    is the twisting moment (torsional moment) at node j in 

tangent direction. 

    and     are the bending moments at node j in normal and 

binormal directions, respectively. 

The spatial curved bi-fixed beam is statically indeterminate of 

sixth degree. Therefore, principle of superposition and 

compatibility conditions are used to analyze the spatial curved 

bi-fixed beam. In the formulations, two imaginary nodes are 

considered, one just before the initial node 0 and another just 

after the last node n. 

 

4.1 Displacements of Statically Determinate Curved Beam 

Subjected to External Loads 

 

First, consider the statically determinate spatial curved beam 

subjected to external loads. Node 0 is freely supported and 

node n is fixed. 

Internal forces and moments at node j are obtained using 

recursive formula [13] as given below: 

[
   

   
]  [

   

   
]  [

   

   
] [

  
         ] [

      
  

       
 ] [

       

       
]        

   is the rotation matrix of node j and can be obtained as 

explained in Section II.       
  is the transpose of rotation 

matrix of node j−1.   is the unit matrix of size 3 × 3.   is the 

null matrix of size 3 × 3. Coordinate transformation matrix 

         is given below: 

[        ]  [

  (         ) (         )

(         )   (         )

 (         ) (         )  

]          

Now, consider j
th

 element on the curved beam axis. Node j and 

node j+1 are the two nodes of the j
th

 element. Finite 

displacements at node j, relative to those at node j+1, due to 

external forces and moments at node j can be obtained using 

following equation [23]. 

[
    

    
]  [

   
   

] [
   

   
]                                                   

Finite linear displacements at node j in member directions 

(local axis), 

[    ]  [            ]                                              

    ,      and      are the finite linear displacements at 

node j in tangent, normal and binormal directions, 

respectively. 

Finite angular displacements at node j about member 

directions (local axis), 

[    ]  [            ]                                           

    ,      and      are the finite angular displacements 

at node j about tangent, normal and binormal directions, 

respectively. 

   and    are matrices of the elastic and geometrical 

properties, 

[  ]  [

   ⁄   
     ⁄  

      ⁄
]                                       

[  ]  [

    ⁄   

     ⁄  

      ⁄
]                                        

Finite displacements in member directions can be transformed 

into global directions using following equation.  

[
    

    
]  [

  
  

   
 ] [

    

    
]                                                    

  
  is the transpose of rotation matrix of node j  

Finite linear displacements at node j in global directions 

(structure directions), 

[    ]  [            ]                                              

    ,      and      are the finite linear displacements at 

node j in x, y and z directions, respectively. 

Finite angular displacements at node j about global directions 

(structure directions), 

[    ]  [            ]                                           

    ,      and      are the finite angular displacements at 

node j about x, y and z directions, respectively. 

Kinematic equivalent finite displacements at node i may be 

obtained from finite displacements at j by finite displacement 

transfer relationship [23], 

[
     

     
]  [

    

  
] [

    

    
]                                                      
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      is the matrix of transformed finite linear displacements 

at node i in global directions, 

[     ]  [               ]                                           

     ,       and       are the transformed finite linear 

displacements at node i in x, y and z directions, respectively. 

      is the matrix of transformed finite angular 

displacements at node i about global directions, 

[     ]  [               ]                                        

     ,       and       are the transformed finite angular 

displacements at node i about x, y and z directions, 

respectively. 

[   ]  [

 (     )  (     )

 (     )  (     )

(     )  (     )  

]               

It is observed that, [   ]   [   ] 

Cumulative displacements in global directions at node i can 

be obtained using following equation [24]. 

[
   

   
]  ∑ [

     

     
]

     

   

                         𝑛                 

    is the matrix of total linear displacements at node i in 

global directions, 

[   ]  [         ]                                                            

   ,     and     are the total linear displacements at node i in 

x, y and z directions, respectively. 

    is the matrix of total angular displacements at node i about 

x, y and z directions, respectively. 

[   ]  [         ]                                                         

   ,     and     are the total angular displacements at node i 

about x, y and z directions, respectively. 

Using Eq. (54), total displacements at free end (node 0) can be 

obtained by keeping i=0. 

Total displacements at node i in local directions (member 

directions) can be obtained using rotation matrix as given 

below: 

[
   

   
]  [

   
   

] [
   

   
]                                                            

    is the matrix of total linear displacements at node i in 

local directions, 

[   ]  [         ]
                                                           

   ,     and     are the total linear displacements at node i in 

tangent, normal and binormal directions, respectively. 

    is the matrix of total angular displacements at node i 

about local directions. 

[   ]  [         ]                                                        

   ,     and     are the total angular displacements at node i 

about tangent, normal and binormal directions, respectively. 

[   ]  stand for the total displacements at node 0 in local 

directions (member directions) due to the external loads. 

Hence, 

[   ]  [
   

   
]
 

                                                                      

 

 

4.2 Displacements of Statically Determinate Spatial 

Curved Beam Due to Reactions 

 

Again, consider statically determinate spatial curved beam 

with node n fixed and node 0 freely supported. The curved 

beam is loaded with reactions at node 0. The reactions at node 

0 are redundant; therefore unit load method is used to 

formulate equation of displacements due to these redundant. 

Matrices of the unit load applied at node 0 corresponding to 

the redundant are as follows: 

[
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      ]

 
 
 
 
 
 

, 

[
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, 

[
 
 
 
 
 
 
      

      

      
      
      
      ]

 
 
 
 
 
 

 

Internal forces and moments at node j can be obtained by 

modifying Eq. (40) as given below: 

[
   

   
]  [

    

    

]                    𝑗                                             

[
   

   
]  [

   

   
] [

  
         ] [

      
  

       
 ] [

       

       
] 

 𝑗          𝑛                 

Displacements at node 0 due to unit loads can be obtained 

using Eq. (57). The resulting matrix of displacements due to 

unit loads is given below: 

[   ]   [[
   

   
]
      

[
   

   
]
      

[
   

   
]
      

[
   

   
]
     

[
   

   
]
     

[
   

   
]
     

]

                      

Reactions at note 0 and node n may be written as, 

[  ]  [
    

    

]     𝑛    [  ]  [
    

    

]                                  

Total displacements at node 0 due to reactions at node 0 are, 

[   ]  
 [   ]  [  ]                                                           

 

4.3 Reactions and Displacements of Spatial Curved 

Bi-Fixed Beam 

 

Reactions of curved bi-fixed beam can be obtained using 

compatibility conditions and equilibrium conditions. Node 0 

is fixed in the curved bi-fixed beam; therefore, displacements 

at node 0 are null. 

[   ]  [   ]  
 [ ]                                                     

 [   ]  [   ]  [  ]  [ ]                                         
 [  ]   [   ]  

  [   ]                                              
Now, apply following equations to obtain internal forces and 

moments. 
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[
   

   
]  [

    

    

]  [
   

   
]             𝑗                                  

[
   

   
]  [

   

   
]  [

   

   
] [

  
         ] [

      
  

       
 ] [

       

       
]    

 𝑗          𝑛              

At node n, negative of the internal forces and moments are the 

reactions at node n. 

[  ]  [
    

    

]   [
   

   
]                                                      

Total displacements at node i in member directions can be 

obtained using Eq. (57); rewritten, 

[
   

   
]  [

   
   

] [
   

   
]                                                            

5. RESULTS AND DISCUSSIONS 

Two examples, circular helical stair beam with varying 

cross-sectional area [14] and elliptic–helical beam [9] are 

considered for the verification of the formulation of finite 

displacement transfer method for the analysis of spatial 

curved bi-fixed beam. A C++ computer program is developed 

to obtain calculation results based on the formulation 

presented in this article. 

 

5.1 Circular Helical Stair Beam with Varying 

Cross-Sectional Area 

 

A circular helical bi-fixed beam of the stair is shown in figure 

4. Circular helical beam has a radius of 1.0 m, a height of 3.0 

m and a total angle rotated of π rad.  

The beam cross-section is varying through the curved beam 

axis; initial c/s diameter d0 = 0.10 m and final c/s diameter dn 

= 0.20 m.  

Shearing coefficients are ξn = 1.33 and ξb = 1.33.  

The material of the helical beam is the same through the 

curved beam axis, with elastic modulus E = 206.01 kN/mm
2
 

and shear modulus G = 79.23 kN/mm
2
.  

A uniformly distributed load 8.0 kN/m
2
, including its own 

weight, applied on the 1.0 m stair width throughout the curved 

beam length. This uniformly distributed load creates two 

types of actions throughout the curved beam axis, as given 

below: 

Force (kN/m) 

    ,     ,      

Moment (kNm/m) 

         ,         ,      

 

 
Figure 4: Circular Helical Bi-fixed Beam 

Source: Sarria et al. (2018). 

 

Parametric equations of the helix axis are as follows, 

      ,       ,       ⁄  

At node 0, θ = 0. At node n, θ = π. Interval dθ = π/1000. 

Fixed end reactions obtained by applying calculation 

procedure presented in this article, are compared with the 

results obtained by Sarria et al. [14]. The circular helical beam 

axis is discretized into 1000 elements (interval dθ = π/1000). 

 

Table 1: Comparision of Fixed End Reactions of Circular 

Helical Bi-Fixed Beam. 

Fixed End 

Reactions 

Present 

Study 

Sarria et al. 

[14] 

Percentage 

Difference 

 ̂𝑡  −13.847 −13.871 0.17 

 ̂𝑛  0.656 0.648 −1.23 

 ̂𝑏  6.792 6.817 0.37 

  𝑡  −2.693 −2.682 −0.41 

  𝑛  −4.516 −4.532 0.35 

  𝑏  1.504 1.516 0.79 

 ̂𝑡𝑛 −17.841 −17.830 −0.06 

 ̂𝑛𝑛 0.656 0.648 −1.23 

 ̂𝑏𝑛 10.975 10.962 −0.12 

  𝑡𝑛 −3.216 −3.224 0.25 

  𝑛𝑛 12.700 12.681 −0.15 

  𝑏𝑛 7.575 7.568 −0.09 
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Percentage difference in the fixed end reactions as given in 

table 1 is calculated with reference to the fixed end reactions 

presented by Sarria et al. [14]. To calculate percentage 

difference, appropriate change of sign (+/−) is taken in to 

account because axis, initial node and final node are different 

in present study and in the article of Sarria et al. [14].  

Comparison of the results (table 1) shows that the fixed end 

reactions match with the fixed end reactions available in the 

literature [14]. For this specific problem, results obtained 

using 1000 elements (interval dθ = π/1000) having the 

absolute maximum and minimum percentage difference 

1.23% and 0.06%, respectively. 

 

5.2 Elliptic-Helical Beam 

 

An elliptic-helical bi-fixed beam with uniform cross-section 

and material is shown in figure 5. The beam is loaded with 

uniformly distributed load of −0.1 kip/ft. Following data of 

the elliptic-helical beam [9] are used to obtain the fixed end 

reactions: 

Semi-major axis, a = 4 ft 

Semi-minor axis, b = 3 ft  

Constant, c = 1.6 ft 

Cross-sectional diameter=1 ft 

Elastic modulus, E = 100000 kip/ft
2
 

Shear modulus, G = 40000 kip/ft
2
 

Shearing deformation is neglected 

Parametric equations of the elliptic-helical beam axis are as 

follows: 

        

        

       

At node 0, θ = 2π. At node n, θ = 0. 

Interval dθ = −π/180 

 

 
Figure 5: Elliptic-Helical Bi-fixed Beam 

Source: Gimena et al. (2008). 

Fixed end reactions obtained by applying calculation 

procedure presented in this article, are compared with the 

results obtained by Gimena et al. [9]. The elliptic-helical 

beam axis is discretized into 360 elements (interval dθ = 

−π/180). 

 

Table 2: Comparision of Fixed End Reactions of 

Elliptic-Helical Bi-Fixed Beam. 

Fixed End 

Reactions 

Present 

Study 

Gimena et 

al. [9] 

Percentage 

Difference 

 ̂𝑡  −0.5723 −0.5718 −0.09 

 ̂𝑛  −0.5612 −0.5612 0.00 

 ̂𝑏  −1.0668 −1.0721 0.49 

  𝑡  −1.7789 −1.7991 1.12 

  𝑛  2.4104 2.4253 0.61 

  𝑏  0.9622 0.9595 −0.28 

 ̂𝑡𝑛 −0.5698 −0.5718 0.35 

 ̂𝑛𝑛 0.5612 0.5612 0.00 

 ̂𝑏𝑛 −1.0746 −1.0721 −0.23 

  𝑡𝑛 −1.8194 −1.7991 −1.13 

  𝑛𝑛 −2.4399 −2.4253 −0.60 

  𝑏𝑛 0.9570 0.9595 0.26 

 

Percentage difference in the fixed end reactions as given in 

table 2 is calculated with reference to the fixed end reactions 

presented by Gimena et al. [9]. To calculate percentage 

difference, appropriate change of sign (+/−) is taken in to 

account because axis, initial node and final node are different 

in present study and in the article of Gimena et al. [9]. 
Comparison of the results (table 2) shows that the fixed end 

reactions match with the fixed end reactions available in the 

literature [9]. For this specific problem, results obtained using 

360 elements (interval dθ = −π/180) having the absolute 

maximum and minimum percentage difference 1.13% and 

0.0%, respectively. 

For the statically determinate elliptic-helical beam loaded 

with uniformly distributed load of −0.1 kip/ft, the graphs of 

the displacements, rotations, internal forces and internal 

moment are shown in figure 6, figure 7, figure 8 and figure 9, 

respectively. The node 0 and node n are freely supported and 

fixed, respectively. 

Comparison of the graphs shown in figure  6 to figure  9 with 

the graphs available in the article [9] shows that the results are 

found to match, hence the formulation developed in the 

present article is verified. 

For the elliptic-helical bi-fixed beam loaded with a uniformly 

distributed load of −0.1 kip/ft, the graphs of the 

displacements, rotations, internal forces, and internal moment 

are shown in figure  10, figure  11, figure  12 and figure  13, 

respectively. 
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Figure 6: Displacements of Statically Determinate 

Elliptic-Helical Beam 

 
Figure 7: Rotations of Statically Determinate Elliptic-Helical 

Beam 

 
Figure 8: Internal Forces of Statically Determinate 

Elliptic-Helical Beam 

 
Figure 9: Internal Moments of Statically Determinate 

Elliptic-Helical Beam 

 
Figure 10: Displacements of Bi-Fixed Elliptic-Helical Beam 

 

 
Figure 11: Rotations of Bi-Fixed Elliptic-Helical Beam 

 

 
Figure 12: Internal Forces of Bi-Fixed Elliptic-Helical Beam 

 

 
Figure 13: Internal Moments of Bi-Fixed Elliptic-Helical 

Beam 
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6. CONCLUSION 

Finite difference method along with recursive scheme is easy 

to implement and gives reasonably accurate results without 

involving complex calculations. The finite displacement 

transfer method for the analysis spatial curved bi-fixed beam; 

presented in this article requires no analytical differentiation 

and integration of the governing equations. Cartesian 

coordinates of the curved beam axis, load data, material 

properties and cross-sectional properties are sufficient to 

evaluate fixed end reactions, displacements, internal forces 

and internal moments. No need to develop problem-specific 

equations of tangent, normal, binormal, flexion curvature and 

torsion curvature.  
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