
Dhanraj et al., International Journal of Computing, Communications and Networking, 7(2) April - June 2018, 304-309

304

ABSTRACT

As an important application in cloud computing, cloud storage
offers user scalable, flexible, and high-quality data storage and
computation services. A growing number of data owners choose
to outsource data files to the cloud. Because cloud storage
servers are not fully trustworthy, data owners need dependable
means to check the possession for their files outsourced to
remote cloud servers. To address this crucial problem, some
remote data possession checking (RDPC) protocols have been
presented. But many existing schemes have vulnerabilities in
efficiency or data dynamics. In this project, we provide a new
efficient RDPC protocol based on homomorphism hash
function. The new scheme is provably secure against forgery
attack; replace attack, and replay attack based on a typical
security model. To support data dynamics, an operation record
table (ORT) is introduced to track operations on file blocks. We
further give a new optimized implementation for the ORT,
which makes the cost of accessing ORT nearly constant.
Moreover, we make the comprehensive performance analysis,
which shows that our scheme has advantages in computation
and communication costs. Prototype implementation and
experiments exhibit that the scheme is feasible for real
applications

Key words: KDPC, ORT, Reply attack, Cloud

1. INTRODUCTION

Cloud computing emerges as a novel computing paradigm
subsequent to grid computing. By managing a great number of
distributed computing resources in Internet, it possesses huge
virtualized computing ability and storage space [1]. Thus, cloud
computing is widely accepted and used in many real applications

[2]. As an important service for cloud computing, cloud service
provider supplies reliable, Manuscript received April 2, 2016;
revised June 24, 2016 and August 7, 2016;

accepted August 7, 2016. Date of publication August 17, 2016;
date of current version October 31, 2016. This work was
supported in part by the National Natural Science Foundation of
China under Grant 61272542, Grant 61672207 and Grant
61300213, in part by the Priority Academic Program
Development of Jiangsu Higher Education Institutions, Jiangsu
Provincial Natural Science Foundation of China under Grant
BK20161511 and in part by the Fundamental Research Funds for
the Central Universities under Grant 2016B10114, Jiangsu
Collaborative Innovation Center on Atmospheric Environment and
Equipment Technology. The associate editor coordinating the
review of this manuscript and approving it for publication was Prof.
Chip-Hong Chang. H. Yan, J. Li, and Y. Zhang are with the College
of Computer and Information, Hohai University, Nanjing 211100,
China (e-mail: pxy_hao@163.com;ljg1688@163.com;
zyc_718@163.com). J. Han is with the Jiangsu Provincial Key
Laboratory of E-Business, Nanjing University of Finance and
Economics, Nanjing 210003, China, and also with the State Key
Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093,
China (e-mail: jghan22@gmail.com). It provides the users with
a more flexible way called payas-you-go model to get
computation and storage resources on-demand. Under this
model, the users can rent necessary IT infrastructures according
to their requirement rather than buy them.

Thus, the up-front investment of the users will be reduced
greatly. In addition, it is convenient for them to adjust the
capacity of the rented resource while the scale of their
applications changes. Cloud service provider tries to provide a

MEMORY AND SPACE EFFICIENT DATA INTEGRITY CHECKING
SCHEME ON REAL TIME CLOUDS

Dhanraj1 Chandana S2, Puneeth A3, Punith Raj N4 , Rohith M B5

 1 Assistant professor EWIT, India, dhanraj@ewit.edu
 2EWIT, India, chandanagowda803@gmail.com

 3 EWIT, India, Puneeth.sp013@gmail.com
 4 EWIT, India, punithraj.n4122@gmail.com
 5 EWIT, India, rohitmb1995@gmail.com,

 ISSN 2319-2720
Volume 7, No.2, April – June 2018

International Journal of Computing, Communications and Networking
Available Online at http://www.warse.org/ijccn/static/pdf/file/ijccn56722018.pdf

https://doi.org/10.30534/ijccn/2018/56722018

Dhanraj et al., International Journal of Computing, Communications and Networking, 7(2) April - June 2018, 304-309

305

promising service for data storage, which saves the users costs of
investment and resource. Nonetheless, cloud storage also brings
various security issues for the outsourced data.
Although some security problems have been solved [3–10], the
important challenges of data tampering and data lost still exist
in cloud storage. On the one hand, the accident disk error or
hardware failure of the cloud storage server (CSS) may cause the
unexpected corruption of outsourced files. On the other hand,
the CSS is not fully trustworthy from the perspective of the data
owner, it may actively delete or modify files for tremendous
economic benefits. At the same time, CSS may hide the
misbehaviors and data loss accidents from data owner to
maintain a good reputation. Therefore, it is crucial for the data
owner to utilize an efficient way to check the integrity for
outsourced data. Remote data possession checking (RDPC) [11]
is an effective technique to ensure the integrity for data files
stored on CSS. RDPC supplies a method for data owner to
efficiently verify whether cloud service provider faithfully stores
the original files without retrieving it. In RDPC, the data owner
is able to challenge the CSS on the integrity for the target file.
The CSS can generate proofs to prove that it keeps the complete
and uncorrupted data. The fundamental requirement is that the
data owner can perform the verification of file integrity without
accessing the complete original file. Moreover, the protocol
must resist the malicious server which attempts to verify the data
integrity without accessing the complete and uncorrupted data
[12]. Another desired requirement is that dynamic data
operations should be supported by the protocol. In general, the
data owner may append, insert, delete or modify the file blocks
as needed. Besides, the computing complexity and
communication overhead of the protocol should be taken into
account for real applications.

2. RELATED WORKS

The first RDPC was proposed by Deswarte et al. [11] based on
RSA hash function. The drawback of this scheme is that it needs
to access the entire file blocks for each challenge. In 2007, the
provable data possession (PDP) model was presented by
Ateniese et al. [13], which used the probabilistic proof technique
for remote data integrity checking without accessing the whole
file. In addition, they supplied two concrete schemes (S-PDP,
E-PDP) based on RSA. Although these two protocols had good
performance, it’s a pity they didn’t support dynamic operations.
To overcome this shortcoming, in 2008, they presented a
dynamic PDP scheme by using symmetric encryption [14].
Nonetheless, this scheme still did not support block insert
operation. At the same time, lots of research works [15]–[19]
devoted to construct fully dynamic PDP protocols.

For instance, Sebé et al. [15] provided a RDPC protocol for
critical information infrastructures based on the problem to
factor large integers, which is easily adapted to support data
dynamics.

3. METHODLOGY

PROBLEM STATEMENT

Cloud storage servers are not fully trustworthy; hence data
owners need dependable means to check the possession for their
files stored on the remote cloud servers. To address this problem,
some remote data possession checking (RDPC) protocols have
been presented. But many existing schemes have vulnerabilities
in efficiency or data dynamics
Module 1: Implementation of user profile operations
Module 2: Implementation of Hashing technique for performing
data possession
Module 3: Implementation of Data models operations
Module 4: Implementation of Data access operations
Module 5: Implementation of Proof for hashing properties
Module 6: Live cloud deployment

4. MOTIVATION

It is essential for data owners to verify the integrity for the data
stored on CSS before using it. For example, a big international
trading company stores all the imports and exports record files
on CSS. According to these files, the company can get the key
information such as the logistics quantity, the trade volume etc.
If any record file is discarded or tampered, the company will
suffer from a big loss which may cause bad influence on its
business and development. To avoid this kind of circumstances,
it is mandatory to check the integrity for outsourced data files.
Furthermore, since these files may refer to business secret, any
information exposure is unacceptable.

If the company competitor can execute the file integrity
checking, by frequently checking the files they may obtain some
useful information such as when the file changes, the growth
rate of the file etc, by which they can guess the development of
the company.

Thus, to avoid this situation, we consider the private
verification type in our scheme, that is, the data owner is the
unique verifier. In fact, the current research direction of RDPC
focuses on the public verification, in which anyone can perform
the task of file integrity checking with the system public key.
Although RDPC with public verification seems better than that
with private verification, but it is unsuitable to the scenario
mentioned above.

Dhanraj et al., International Journal of Computing, Communications and Networking, 7(2) April - June 2018, 304-309

306

5. PRELIMINARIES
In this section, we introduce the preliminary knowledge used
throughout this paper. A. Homomorphic Hash Function Inspired
by [19] and [21], our scheme adopts the homomorphic hash
function defined in [20] as the basis, which is described as

First, the algorithm HKeyGen(λp,λq,m,s) → K is utilized to
obtain the homomorphic key. It takes four security parameters as
inputs, in which λp and λq are two discrete log security
parameters, m is the sector count of the message and s is a
random seed. It outputs the homomorphic key K = (p,q, g),
where and q are two random big primes with the properties of
|p|=λp, |q|=λq and q|(p −1), g =[g1,g2,···,gm] is a 1 × m
row-vector composing of random values in Z∗ p with order q.
The detailed process of this algorithm is shown in Fig.1, in
which the function f(x) is the pseudo-random number generator
with seed s and outputs the next number in its pseudo-random
sequence, scaled to the range {0,···,x −1}
[19]. The computation of the hash value X of the message S
represented by H(S) → X is defined as following. S is divided
into m sectors S = (s1,s2,···,sm), the hash value is calculated as:
HK(S) = m i=1 gsi i mod p. Homomorphic key generation
algorithms. messages Si and Sj, whereSi = (s1i,s2i,···,smi), Sj =
(s1j,s2j,···,smj), we defineSi + Sj = (s1i + s1j,s2i + s2j,···,smi +
smj) mod q. The homomorphic property of H(·) can be verified
by: H(Si +Sj) = m t=1 gsti+stj t mod p = m t=1 gsti t mod p· m
t=1 gstj t mod p= H(Si)·H(Sj).
B. Operation Record Table Refer to [18] and [25], to support
dynamic operations on file blocks, we introduce a simple flexible
data structure named operation record table (ORT). The table is
reserved on the data owner side and used to record all the
dynamic behaviors on file blocks. ORT has a simple structure
with only three columns, that is Block Position (BP), Block
Index (BI) and Block Version (BV). The BP represents the
physical index for the current block in the file, normally its value
is incremented by 1. The BI represents the logical index for the
current block, which is no necessary equal to BP but relevant
with the time when the block appears in the file. The BV
indicates the current version for the block. If the data file is
initially created, the BV values for all blocks are 1. When one
concrete block is updated, its BV value is incremented by 1. It is
noted that using the ORT table will increase the storage
overhead of the data owner by O(n), where is the count of blocks.
However, this extra storage cost is very little. For example, a
1GB-file with 16KB block size only needs 512KB space to store
an ORT realized by linked list (<0.05% of the file size).
C. Outline of Our RDPC Protocol In this paper, we investigate
the cloud storage system including two participants: CSS and
data owner. The CSS has powerful storage ability and
computation resources, it accepts the data owner’s requests to

store the outsourced data files and supplies access service. The
data owner enjoys CSS’s service and puts large amount of files
to CSS without backup copies in local. As the CSS is not
assumed to be trustable and occasionally misbehave, for
example, modifying or deleting partial data files, the data owner
can check the integrity for the outsourced data efficiently. A
RDPC scheme includes the following seven algorithms:
KeyGen(1k,λp,λq,m,s)
→(K,sk). The data owner executes this algorithm to initialize
the system and generate keys.

6. SYSTEM ARCHITECTURE DIAGRAM

The below figure shows a general block diagram describing the
activities performed by this project. The entire architecture has
been implemented in nine modules which we will see in high
level design and low level design in later chapters.

Major divisions in this project are

Data Access Layer
Data access layer is the one which exposes all the possible
operations on the data base to the outside world. It will contain
the DAO classes, DAO interfaces, POJOs, and Utils as the
internal components. All the other modules of this project will
be communicating with the DAO layer for their data access
needs

Account Operations
Account operations module provides the following
functionalities to the end users of our project.
 Register a new seller/ buyer account

 Login to an existing account
 Logout from the session

Dhanraj et al., International Journal of Computing, Communications and Networking, 7(2) April - June 2018, 304-309

307

 Edit the existing Profile
 Change Password for security issues

 Forgot Password and receive the current password
 over an email

 Delete an existing Account
Account operations module will be re-using the DAO layer to
provide the above functionalities.

7. HOMOMORPHIC HASH FUNCTION
Homomorphic Hashing provides a neat solution to the problem
of verifying data from untrusted peers when using a fountain
coding system, but it's not without its own drawbacks. It's
complicated to implement and computationally expensive to
compute, and requires careful tuning of the parameters to
minimize the volume of the hash data without compromising
security. Used correctly in conjunction with fountain codes,
however, Homomorphic Hashing could be used to create an
impressively fast and efficient content distribution network.

Write Data Models
Here the end users will be provided with an interface where
he/she can write the data models for the data he/she is planning
to write on the cloud storage. Data models defines the structure
of the data. Typically the data models comes in the form of
key-value pairs. The idea of introducing the concept of data
model is to generalize the structure of the data to be stored on the
cloud. Different organizations can create different data models
based on the nature of the data they have to be written on to the
clouds. This enables the organizations from multiple domains to
use our project independent of the type of the data they have.

Read Data model
Here, the end users will be able to see the list of all the data
models created by him/her in the previous section. The end user
will also be able to perform the delete operation on the data
models he/she have created. The data models written in the
previous section will be persisted in the MySQL database and
can be accessed back in this module using the data model DAO
layer.

Write Data
This module enables the end user to perform the data write
operation to the cloud storage space. The data will be persisted
in the MySQL instance of the cloud application deployed in any
of the cloud service provider. The customer first will have to
select the data model indicating the type of the data to be written
on to the cloud. After selecting the data model, the user will be
provided with an interface where they provide the key value

pairs for the data models. The data written by the user will first
be encrypted using the AES (Advanced Encryption Standard)
cryptography and then the hash code of the encrypted data will
be found out using the homomorphic hash function. The hash
code of the encrypted data will be persisted locally, and the
actual encrypted data will be persisted in the MySQL instance on
the cloud storage space.

Access Data
Here the end users will be able to see the list of all the data they
had written on to the cloud storage space in the previous section.
The list of all the data will be retrieved from the MySQL
instance of the cloud storage space and then be displayed on the
HTML interface. The user can then perform the data decryption
of the data using the Advanced Encryption Standard (AES)
cryptography. The user will then be able to perform the data
update operation which will again make a call to the
homomorphic hash function. The user can then be able to
perform the data possession check.
The hash code of the encrypted data stored locally will be
compared with the hash code of the encrypted data from the
cloud storage. If those two of the hash codes differs, then the
possession check will be failing indicating that the data has been
illegally modified by the cloud service provider, else, the data
possession check will be passing indicating that the data is left
untouched on the cloud storage space.

The DAO layer is the service layer which provides database
CRUD (create, update, read, and delete) services to the other
layers.It will contain the POJO classes to map the database
tables into java object. It will also contain the Util classes to
manage the database connections. Homomorphic Hashing
provides a neat solution to the problem of verifying data from
untrusted peers when using a fountain coding system, but it's not
without its own drawbacks. It's complicated to implement and
computationally expensive to compute, and requires careful
tuning of the parameters to minimize the volume of the hash
data without compromising security. Used correctly in
conjunction with fountain codes, however, Homomorphic
Hashing could be used to create an impressively fast and
efficient content distribution network. Here the end users will be
provided with an interface where he/she can write the data
models for the data he/she is planning to write on the cloud
storage. Data models define the structure of the data. Typically
the data models come in the form of key-value pairs. The idea of
introducing the concept of data model is to generalize the
structure of the data to be stored on the cloud. Different
organizations can create different data models based on the
nature of the data they have to be written on to the clouds. This
enables the organizations from multiple domains to use our
project independent of the type of the data they have.

Dhanraj et al., International Journal of Computing, Communications and Networking, 7(2) April - June 2018, 304-309

308

Also, the end users will be able to see the list of all the data
models created by him/her in the previous section. The end user
will also be able to perform the delete operation on the data
models he/she have created. The data models written in the
previous section will be persisted in the MySQL database and
can be accessed back in this module using the data model DAO
layer.

Module 4: Implementation of Data Access
Operations Data Write Operation

This module enables the end user to perform the data write
operation to the cloud storage space. The customer first will
have to select the data model indicating the type of the data to be
written on to the cloud. After selecting the data model, the user
will be provided with an interface where they provide the key
value pairs for the data models. The data written by the user will
first be encrypted using the AES (Advanced Encryption
Standard) cryptography and then the hash code of the encrypted
data will be found out using the homomorphic hash function.
The hash code of the encrypted data will be persisted locally, and
the actual encrypted data will be persisted in the MySQL
instance on the cloud storage space.

7.1 DATA READ OPERATION

Here the end users will be able to see the list of all the data they
had written on to the cloud storage space in the previous section.
The list of all the data will be retrieved from the MySQL
instance of the cloud storage space and then be displayed on the
HTML interface. The user can then perform the data decryption
of the data using the Advanced Encryption Standard (AES)
cryptography. The user will then be able to perform the data
update operation which will again make a call to the
homomorphic hash function. The user can then be able to
perform the data possession check. The hash code of the
encrypted data stored locally will be compared with the hash
code of the encrypted data from the cloud storage. If those two of
the hash codes differs, then the possession check will be failing
indicating that the data has been illegally modified by the cloud
service provider, else, the data possession check will be passing
indicating that the data is left untouched on the cloud storage
space.

 CONCLUSION

As the saying goes “Necessity is the mother of all inventions”, a
need for software which would control process and devices was
recognized. Accordingly a highly interactive user friendly
module based embedded technology with microcontrollers was
developed to solve the problem. The module which is developed
will make the job of process easier. The user module has resulted
in reducing work of human also makes more comfortable.The
module is, therefore functioning as a very good tool.
Incorporating the future enhancement as specified earlier would
make the software a perfect tool, which would help the user.

9. ACKNOWLEDGEMENT
We wish to offer our sincere gratitude to our principal Dr. K
Channakeshavalu, Principal, EWIT, Bangalore, for his moral
support towards completing my project work. We would like to
thank Dr. Arun Biradar, Head of Department, Computer
Science & Engineering, EWIT, Bangalore, for his valuable
suggestions and expert advice. We deeply express my sincere
gratitude to my guide Prof. Dhanraj , Assistant professor
Department of CSE, EWIT, Bangalore, for his able guidance
throughout the project work and guiding me to organize the
report in a systematic manner. We thank our Parents, and all
the Faculty members of Department of Computer Science &
Engineering for their constant support and encouragement.

10. REFERENCES

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I.
Brandic, “Cloud computing and emerging IT platforms: Vision,
hype, and reality for delivering computing as the 5th utility,”
Future Generat. Comput. Syst., vol. 25, no. 6, pp. 599–616, 2009.

Dhanraj et al., International Journal of Computing, Communications and Networking, 7(2) April - June 2018, 304-309

309

[2] H. Qian, J. Li, Y. Zhang, and J. Han, “Privacy-preserving
personal health record using multi-authority attribute-based
encryption with revocation,” Int. J. Inf. Secur., vol. 14, no. 6,
pp. 487–497, 2015.
https://doi.org/10.1007/s10207-014-0270-9
[3] J. Li, W. Yao, Y. Zhang, H. Qian, and J. Han, “Flexible and
fine-grained attribute-based data storage in cloud computing,” IEEE
Trans. Services Comput., to be published, doi:
10.1109/TSC.2016.2520932.
https://doi.org/10.1109/TSC.2016.2520932
[4] J. Li, X. Lin, Y. Zhang, and J. Han, “KSF-OABE: Outsourced
attribute-based encryption with keyword search function for cloud
storage,” IEEE Trans. Services Comput., to be published, doi:
10.1109/TSC.2016.2542813.
https://doi.org/10.1109/TSC.2016.2542813
[5] J. Li, Y. Shi, and Y. Zhang, “Searchable ciphertext-policy
attribute-based encryption with revocation in cloud storage,”
Int. J. Commun. Syst., to be published, doi: 10.1002/dac.2942.
https://doi.org/10.1002/dac.2942
[6] J. Han, W. Susilo, Y. Mu, and J. Yan, “Privacy-preserving
decentralized key-policy attribute-based encryption,” IEEE Trans.
Parallel Distrib. Syst., vol. 23, no. 11, pp. 2150–2162, Nov. 2012.
https://doi.org/10.1109/TPDS.2012.50
[7] Z. Fu, X. Sun, Q. Liu, L. Zhou, and J. Shu, “Achieving efficient
cloud search services: Multi-keyword ranked search over encrypted
cloud data supporting parallel computing,”
IEICE Trans. Commun., vol. E98-B, no. 1, pp. 190–200, 2015.
https://doi.org/10.1587/transcom.E98.B.190
[8] Z. Fu, K. Ren, J. Shu, X. Sun, and F. Huang, “Enabling
personalized search over encrypted outsourced data with efficiency
improvement,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 9,
pp. 2546–2559, Sep. 2016, doi: 10.1109/TPDS.2015.2506573.
https://doi.org/10.1109/TPDS.2015.2506573
[9] Z. Xia, X. Wang, X. Sun, and Q. Wang, “A secure and
dynamic multikeyword ranked search scheme over encrypted cloud
data,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 2,
pp. 340–352, Feb. 2016.
https://doi.org/10.1109/TPDS.2015.2401003
[10] Y.-J. Ren, J. Shen, J. Wang, J. Han, and S.-Y. Lee, “Mutual
verifiable provable data auditing in public cloud storage,” J. Internet
Technol., vol. 16, no. 2, pp. 317–323, 2015.
[11] Y. Deswarte, J.-J. Quisquater, and A. Saïdane, “Remote
integrity checking,” in Proc. 6th Work. Conf. Integr. Int.
Control Inf. Syst. (IICIS), 2003, pp. 1–11.
[12] Z. Hao, S. Zhong, and N. Yu, “A privacy-preserving remote
data integrity checking protocol with data dynamics and public
verifiability,” IEEE Trans. Knowl. Data Eng., vol. 23, no. 9, pp.
1432–1437, Sep. 2011.
https://doi.org/10.1109/TKDE.2011.62

[13] G. Ateniese et al., “Provable data possession at untrusted
stores,” in Proc. 14th ACM Conf. Comput. Commun. Secur.
(CCS), 2007, pp. 598–609.
https://doi.org/10.1145/1315245.1315318

