

 Syeda Sheeba Tabassum et al., International Journal of Computing, Communications and Networking, 7(2) April - June 2018, 221-225

221

Evaluation of Web Security Mechanisms Using

Vulnerabilities and Attack Injection

Syeda Sheeba Tabassum1, Pratheeka M2 , Megha P3, Dr. Arun Biradar4
1Student, EWIT India. syedasheeba.2018@gmail.com

2 Student, EWIT, India. prathikamogaveera@gmail.com
3 Student, EWIT India. meghaputtaswamy@gmail.com

4 Professor & Head Department of CSE, EWIT, India.hodcsea@gmail.com

.

ABSTRACT

The methodology is based on the idea that injecting realistic
vulnerabilities in a web application and attacking them
automatically can be used to support the assessment of
existing security mechanisms and tools in custom setup
scenarios. To provide true to life results, the proposed
vulnerability and attack injection methodology relies on the
study of a large number of vulnerabilities in real web
applications. In addition to the generic methodology, the
paper describes the implementation of the Vulnerability &
Attack Injector Tool (VAIT) that allows the automation of
the entire process. We used this tool to run a set of
experiments that demonstrate the feasibility and the
effectiveness of the proposed methodology. The experiments
include the evaluation of coverage and false positives of an
intrusion detection system for SQL Injection attacks and the
assessment of the effectiveness of two top commercial web
application vulnerability scanners. Results show that the
injection of vulnerabilities and attacks is indeed an effective
way to evaluate security mechanisms and to point out not
only their weaknesses but also ways for their improvement.

Keywords: Security, fault injection, internet applications,
review and evaluation.

1.INTRODUCTION

Almost everything is stored, available or traded on the web.
Web applications can be personal websites, blogs, news, social
networks, web mails, bank agencies, forums, e-commerce
applications, etc. The omnipresence of web applications in our
way of life and in our economy is so important that it makes
them a natural target for malicious minds that want to exploit
this new streak. The security motivation of web application
developers and administrators should reflect the magnitude and
relevance of the assets they are supposed to protect. Although
there is an increasing concern about security (often being subject
to regulations from governments and corporations), there are
significant factors that make securing web applications a
difficult task to achieve:
1. The web application market is growing fast, resulting in a
huge proliferation of web applications, based on different
languages, frameworks, and protocols, largely fueled by the

(apparent) simplicity one can develop and maintain
such applications.
2. Web applications are highly exposed to attacks from
anywhere in the world, which can be conducted by using
widely available and simple tools like a web browser.
3. It is common to find web application developers,
administrators and power users Without the required
knowledge or experience in the area of security.
4.Web applications provide the means to access valuable
enterprise assets. Many times they are the main interface to the
information stored in backend databases, other times they are
the path to the inside of the enterprise network and computers.
To fight this scenario we need means to evaluate the security of
web applications and of attack counter measure tools. To handle
web application security, new tools need to be developed, and
procedures and regulations must be improved, redesigned or
invented. Moreover, everyone involved in the development
process should be trained properly. All web applications should
be thoroughly evaluated, verified and validated before going
into production. However, these best practices are unfeasible to
apply to the hundreds of millions of existing legacy web
applications, so they should be constantly audited and protected
by security tools during their lifetime. This is particularly
relevant due to the extreme dynamicity of the security scenario,
with new vulnerabilities and ways of exploitation being
discovered every day. This paper proposes a methodology and a
tool to inject vulnerabilities and attacks in web applications. The
proposed methodology is based on the idea that we can assess
different attributes of existing web application security
mechanisms by injecting realistic vulnerabilities in a web
application and attacking them automatically. This follows a
procedure inspired on the fault injection technique that has been
used for decades in the dependability area. In our case, the set of
“vulnerability” þ “attack” represents the space of the “faults”
injected in a web application, and the “intrusion” is the result of
the successful “attack” of a “vulnerability” causing the
application to enter in an “error. In practice, a security
“vulnerability” is a weakness (an internal “fault”) that may be
exploited to cause harm, but its presence does not cause harm by
itself. Conceptually, the attack injection consists of the
introduction of realistic vulnerabilities that are afterwards
automatically exploited (attacked). Vulnerabilities are
considered realistic because they are derived from the extensive
field study on real web application vulnerabilities presented and
are injected according to a set of representative restrictions and
rules. The

 ISSN 2319-2720
Volume 7, No.2, April – June 2018

International Journal of Computing, Communications and Networking
Available Online at http://www.warse.org/ijccn/static/pdf/file/ijccn40722018.pdf

https://doi.org/10.30534/ijccn/2018/40722018

 Syeda Sheeba Tabassum et al., International Journal of Computing, Communications and Networking, 7(2) April - June 2018, 221-225

222

attack injection methodology is based on the dynamic analysis
of information obtained from the runtime monitoring of the web
application behavior and of the interaction with external
resources, such as the backend database. This information,
complemented with the static analysis of the source code of the
application, allows the effective injection of vulnerabilities that
are similar to those found in the real world. In practice, the use
of both static and dynamic analysis is a key feature of the
methodology that allows increasing the overall performance and
effectiveness, as it provides the means to inject more
vulnerabilities that can be successfully attacked and discarded
those that cannot. Although this methodology can be applied to
various types of vulnerabilities, we focus on two of the most
widely exploited and serious web application vulnerabilities that
are SQL Injection (SQLi) and Cross Site Scripting (XSS).
Attacks to these vulnerabilities basically take advantage of
improper coded applications due to unchecked input fields at
user interface. This allows the attacker to change the SQL
commands that are sent to the database (SQLi) or through the
input of HTML and scripting languages (XSS). The proposed
methodology provides a practical environment that can be used
to test countermeasure mechanisms (such as intrusion detection
systems (IDSs), web application vulnerability scanners, web
application firewalls, static code analyzers, etc.), train and
evaluate security teams, help estimate security measures (like
the number of vulnerabilities present in the code), among others.
This assessment of security tools can be done online by
executing the attack injector while the security tool is also
running; or offline by injecting a representative set of
vulnerabilities that can be used as a testbed for evaluating a
security tool. The methodology proposed was implemented in a
concrete Vulnerability & Attack Injector Tool (VAIT) for web
applications. The tool was tested on top of widely used
applications in two scenarios. The first to evaluate the
effectiveness of the VAIT in generating a large number of
realistic vulnerabilities for the offline assessment of security
tools, in particular web application vulnerability scanners. The
second to show how it can exploit injected vulnerabilities to
launch attacks, allowing the online evaluation of the
effectiveness of the counter measure mechanisms installed in the
target system, in particular an intrusion detection system. These
experiments illustrate how the proposed methodology can be
used in practice, not only to uncover existing weaknesses of the
tools analyzed, but also to help improve them. The structure of
the paper is as follows. The next section presents related
research. Section 3 describes the proposed attack injection
methodology.

2.RELATED WORK

In this paper we addressed the problem of providing
transaction security in decentralized SG energy trading
without reliance on trusted third party[1].
We have developed a secure PUF based authentication and
certificate proofs for the protocol have been formulated
under the SK security and UC framework[2].
Fault injection techniques have traditionally been used to inject
physical (i.e., hardware) faults [18], [19]. In fact, initial

fault injection techniques used hardware-based approaches
such as pin-level injection or heavy-ion radiation. The
increasing complexity of systems has lead to the replacement
of hardware-based techniques by software implemented fault
injection (SWIFI), in which hardware faults are emulated by
software. xception [20] and NFTAPE [21] are examples of
SWIFI tools.

PROPOSED SYSTEM

The methodology proposed was implemented in a concrete
Vulnerability & Attack Injector Tool (VAIT) for web
applications. The tool was tested on top of widely used
applications in two scenarios. The first to evaluate the
effectiveness of the VAIT in generating a large number of
realistic vulnerabilities for the offline assessment of security
tools, in particular web application vulnerability scanners. The
second to show how it can exploit injected vulnerabilities to
launch attacks, allowing the online evaluation of the
effectiveness of the counter measure mechanisms installed in
the target system, in particular an intrusion detection system.

3 SYSTEM ARCHITECTURE

Figure1: system architecture

The vulnerabilities are injected in the web application

following a realistic pattern derived . The information about
what was injected is fed to the injection mechanism in order to
improve the attack success rate. As shown in Fig. 1, the attack
injection uses two external probes: one for the HTTP
communication and other for the database communication.
These probes monitor the HTTP and SQL data exchanged, and
send a copy to be analyzed by the attack injection mechanism.
This is a key aspect of the methodology to obtain the user
interaction and the results produced by such interaction for
analysis, so they can be used to prepare the attack. Therefore,
the attack injection mechanism is aware of important inner
workings of the application while it is running. For example,
this provides insights on what piece of information supplied to

 Syeda Sheeba Tabassum et al., International Journal of Computing, Communications and Networking, 7(2) April - June 2018, 221-225

223

a HTML FORM is really used to build the correlated SQL
query and in which part of the query it is going to be
inserted. The entire process is performed automatically,
without human intervention. For example, let‟s consider the
evaluation of an IDS: during the attack stage, when the IDS
inspects the SQL query sent to the database, the VAIT also
monitors the output of the IDS to identify if the attack has
been detected by the IDS or not. We just have to collect the
final results of the attack injection, which also contains, in
this case, the IDS detection output.

4. ALGORITHM :

Table1: Algorithm

Pseudo-code of the InfoSpiders algorithm
{initialize each agent‟s genotype,energy and
starting page} PAGES-maximum no of pages to
visit While number of visited pages<PAGES
do While for each agent a do
{Pick and visit an out-link from the current agent‟s page}
{update the energy estimating benefit()-cost()}
{update the genotype as a function of the current benefit}
if agent‟s energy>THRESHOLD then
{apply the generic operators to
produce offspring} else
{Kill the agent}
else if
end while

end while

5. MODULES:

5.1 Overview of the Methodology

Our Vulnerability & Attack Injection methodology for SQLi
and XSS can be applied to a variety of setups and
technologies, but the following description uses as reference
a typical web application, with a web front-end andThe
entire process is performed automatically, without human
intervention. For example, let‟s consider the evaluation of an
IDS: during the attack stage, when the IDS inspects the SQL
query sent to the database, the VAIT also monitors the
output of the IDS to identify if the attack has been detected
by the IDS or not. We just have to collect the final results of
the attack injection, which also contains, in this case, the IDS
detection output. The automated attack of a web application
is a multistage procedure that includes: preparation stage,
vulnerability injection stage, attackload generation stage, and
attack stage. These stages are described in the next sections

5.2 Preparation Stage

In the preparation stage, the web application is interacted

(crawled) executing all the functionalities that need to be tested
(Fig. 2). Meanwhile, both HTTP and SQL communications are
captured by the two probes and processed

for later use. The interaction with the web application is
always done from the client‟s point of view (the web
browser). The outcome of this stage is the correlation of the
input values, the HTTP variables that carry them and their
respective source code files, and its use in the structure of the
database queries sent to the back-end database (for SQLi) or
displayed back to the web browser (for XSS). Later on, in
the attack stage, the malicious activity applied.

5.3 Vulnerability Injection Stage

It is in this vulnerability injection stage that vulnerabilities are
injected into the web application. For this purpose, it needs
information about which input variables carry relevant
information that can be used to execute attacks to the web
application. This stage starts by analyzing the source code of the
web application files searching for locations where
vulnerabilities can be injected (Fig. 2). The injection of
vulnerabilities is done by removing the protection of the target
variables, like the call to a sanitizing function. This process
follows the realistic patterns resulting from the field study
presented in [16]. Once it finds a possible location, it performs a
specific code mutation in order to inject one vulnerability in that
particular location. The change in the code follows the rules
derived from [16], which are described and implemented as a
set of Vulnerability Operators presented in [17]. The
Vulnerability Operators are built upon a pair of attributes: the
Location Pattern and the Vulnerability Code Change.

5.4 AttackLoad Generation Stage

After having the set of copies of the web application source
code files with vulnerabilities injected we need to generate
the collection of malicious interactions (attackloads) that will
be used to attack each vulnerability. This is done in the
attackload generation stage. The attackload is the malicious
activity data needed to attack a given vulnerability. patterns
stage, by tweaking derived from the preparation the input
values of the vulnerable variables.

CONCLUSION

This paper proposed a novel methodology to automatically
inject realistic attacks in web applications. This methodology
consists of analyzing the web application and generating a
set of potential vulnerabilities. Each vulnerability is then
injected and various attacks are mounted over each one. The
success of each attack is automatically assessed and reported.
The realism of the vulnerabilities injected derives from the
use of the results of a large field study on real security
vulnerabilities in widely used web applications. This is, in
fact, a key aspect of the methodology, because it intends to
attack true to life vulnerabilities. To broaden the boundaries
of the methodology, we can use up to date field data on a
wider range of vulnerabilities and also on a wider range and
variety of web applications. To demonstrate the feasibility of
the methodology.

 Syeda Sheeba Tabassum et al., International Journal of Computing, Communications and Networking, 7(2) April - June 2018, 221-225

224

REFERENCES

[1]UrbiChatterjee,Vidya Govindan,Rajat Sadhukhan
“Buuiliding LUF Based Authentication”IEEE Trans May-
2018.
[2] Nurzhan Zhumabekuly Aizhan,Davor Suetinovic

Security and privacy in decentralized energy”IEEE Trans
Oct-2016.

[3] V. Krsul, “Software Vulnerability Analysis,” PhD thesis,
Purdue Univ., West Lafayette, IN 1998.

[4] J. Fonseca and M. Vieira, “Mapping Software Faults

with Web Security Vulnerabilities,” Proc. IEEE/IFIP Int‟l.
Conf. Dependable Systems and Networks, June 2008.
https://doi.org/10.1109/DSN.2008.4630094

[5] J. Fonseca, M. Vieira, and H. Madeira, “Training

Security Assurance Teams using Vulnerability Injection,”
Proc. IEEE
Pacific Rim Dependable Computing Conf., Dec. 2008.
https://doi.org/10.1109/PRDC.2008.43

[6] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie, and D.

Powell, “Fault Injection and Dependability Evaluation of
Fault-Tolerant Systems,” IEEE Trans. Computers, vol. 42,
no.8, pp. 913-923, Aug. 1993.
https://doi.org/10.1109/12.238482

[7] R. Iyer, “Experimental Evaluation,” Proc. IEEE Symp.

Fault Tolerant Computing, pp. 115-132, Special Issue FTCS-
25 Silver Jubilee, 1995.
[8] J. Carreira, H. Madeira, and J.G. Silva, “Xception:

Software Fault Injection and
Monitoring in Processor Functional Units,” IEEE Trans.
Software Eng., vol. 24, no. 2, Feb. 1998.

[9] D.T. Stott, B. Floering, D. Burke, Z. Kalbarczpk, and

R.K.
Iyer, “NFTAPE: A Framework for Assessing Dependability
in Distributed Systems with Lightweight Fault Injectors,”
Proc.Computer Performance and Dependability Symp., 2000
https://doi.org/10.1109/IPDS.2000.839467.

[10] J. Christmansson and R. Chillarege, “Generation of an

Error Set that Emulates Software Faults,” Proc. IEEE Fault
Tolerant Computing Symp., 1996.
https://doi.org/10.1109/FTCS.1996.534615
[11] H Madeira, M. Vieira, and D. Costa, “On the Emulation
of Software Faults by Software Fault Injection,” Proc.
IEEE/IFIP Int„l Conf. Dependable System and Networks,
2000.
https://doi.org/10.1109/ICDSN.2000.857571

[12] J. Dur~aes and H. Madeira, “Emulation of Software
Faults: A Field Data Study and a Practical Approach,” IEEE

Trans. Software Eng., vol. 32, no. 11, pp. 849-867, Nov.
2006.
https://doi.org/10.1109/TSE.2006.113

[13] N. Neves, J. Antunes, M. Correia, P. Ver ıssimo, and R.
Neves, “Using Attack Injection to Discover New
Vulnerabilities,” Proc. IEEE/IFIP Int‟l Conf. Dependable
Systems and Networks, 2006.

[14] J. Fonseca, M. Vieira, and H. Madeira, “Testing and

Comparing Web Vulnerability Scanning Tools for SQLi and
XSS Attacks,” Proc.IEEE Pacific Rim Int‟l Symp.
Dependable Computing, Dec.2007.

[15] Ananta Security “Web Vulnerability Scanners

Comparison,” anantasec.blogspot.com/2009/01/web-
vulnerability-scannersc
omparison.html, accessed 1 May 2013, 2009.

[16] M. Buchler, J. Oudinet, and A. Pretschner, “Semi-
Automatic Security Testing of Web Applications from a
Secure Model,” Proc. Int‟l Conf. Software Security and
Reliability, 2012.

[17]cgisecurity.net,www.cgisecurity.com/articles/csrf
-faq.sht ml# what is, Dec. 2008.

[18] Sam NG. CISA, CISSP.
www.owasp.org/images/d/Advanced_To
pics_on_SQL_Injection_Protection.ppt,
2006.

[19] S. McConnell, “Gauging Software Readiness with Defect
Tracking,” IEEE Software, vol. 14, no. 3, May/June 1997.
https://doi.org/10.1109/52.589257

[20] J. Carreira, H. Madeira, and J.G. Silva, “Xception:
Software Fault Injection and Monitoring in Processor
Functional Units,” IEEE Trans. Software Eng., vol. 24, no. 2,
Feb. 1998.

[21] D.T. Stott, B. Floering, D. Burke, Z. Kalbarczpk, and
R.K. Iyer, “NFTAPE: A Framework for Assessing
Dependability in Distributed Systems with Lightweight Fault
Injectors,” Proc. Computer Performance and Dependability
Symp., 2000.
https://doi.org/10.1109/IPDS.2000.839467

Syeda Sheeba Tabassum: pursuing B.E in CSE, EWIT
(VTU), Bengaluru. Her areas of interest are Computer
Security, Databases, Computer Networks, Software
Engineering, Python Programming etc.

Pratheeka M: pursuing B.E in CSE, EWIT (VTU),
Bengaluru. Her areas of interest are Databases, Computer
Networks, Computer Graphics, Software Engineering,
Internet of Things etc.

SQLBlock.com,

 Syeda Sheeba Tabassum et al., International Journal of Computing, Communications and Networking, 7(2) April - June 2018, 221-225

225

Megha P: pursuing B.E in CSE, EWIT (VTU), Bengaluru.
Her areas of interest are Web Security, Databases, Computer
Networks, Internet of Things , Programming the Web,
Software Engineering, Java language,Computer Graphics,
etc.

Dr. Arun Biradar: Professor & Head, Department of
Computer Science & Engineering, East West Institute of
Technology (VTU), Bengaluru. Qualification: B.E, M.Tech,
Ph.D, Board of Examiner (Member), VTU, Belagavi. His
areas of research are Wireless Ad-hoc Networks, Computer
Networks, Software Engineering, Genetic Algorithms,
Machine Learning, IoT and Cloud Computing.

