
Raj Mohan Singh et al, International Journal of Computing, Communications and Networking, 2(1), January – March 2013, 16 – 20

16
@ 2012, IJCCN All Rights Reserved

AN ANALYSIS OF SCHEDULING STRATEGIES BASED ON

CRITICALITY OF JOBS
Raj Mohan Singh* and Harsh K Verma*

*Dr. B R Ambedkar National Institute of Technology Jalandhar

Abstract:
In this paper we will analyze the performance of job
scheduler based on many parameters considering the
criticality of job. Many job scheduling algorithms have been
devised which affect the performance of the system in their
own way. Improvement in job scheduling strategies will play
a pivotal role in increasing the overall performance of the
system. In this work we discuss some basic job scheduling
strategies and also propose a new scheduling strategy which
is based on the criticality i.e. how much important the job is
for the user and priority of jobs with an effort towards
improving the response time of the jobs. The idea is to
motivate the users to submit more jobs and to minimize the
chances of the users leaving the session. Interactive jobs
usually require much less resources and are much more
critical to the users than the batch jobs that execute over
nights and weekends. The jobs are executed by first applying
criticality to round robin scheduling and then applying
priority to round robin scheduling. These scheduling
strategies are then compared and their performance is
evaluated on the basis of the three parameters viz. average
waiting time, average turnaround time, and average response
time. It is found that by applying criticality and priority on
round robin scheduling there is significant improvement in
the values of the three parameters especially the response
time.

1. INTRODUCTION

Scheduling is the method by which threads, processes or data
flows are given access to system resources. The need for a
scheduling algorithm arises from the requirement for most
modern systems to perform multitasking (execute more than
one process at a time) and multiplexing (transmit multiple
flows simultaneously). When a computer is
multiprogrammed, it frequently has multiple processes
competing for the CPU at the same time. This situation
occurs whenever two or more processes are simultaneously
in the ready state. If only one CPU is available, a choice has
to be made which process to run next. The part of the
operating system that makes the choice is called the
scheduler and the algorithm it uses is called the scheduling
algorithm. Because CPU time is a scarce resource on these
machines, a good scheduler can make a big difference in
perceived performance and user satisfaction. Consequently, a
great deal of work has gone into devising clever and efficient
scheduling algorithms [1]. Many criteria have been suggested
for comparing CPU scheduling algorithms. Which
characteristics are used for comparison can make a
substantial difference in which algorithm is judged to be best.
Most commonly used metrics are CPU utilization,
throughput, turnaround time, waiting time and response time
[2].

2. LITERATUE SURVEY

The problem of job scheduling is to determine how that
sharing should be done in order to maximize the system’s
utility. How deployed scheduling policies can be improved to
meet existing requirements needs to be discussed [3].
Fairness is an important issue for parallel job scheduling
policies, but has been ignored in most of the previous studies.
Commonly used summary statistics are applied to different
job measures to evaluate the fairness under a wide range of
non-preemptive parallel job scheduling policies. The impact
of fairness on other scheduling performance needs to be
studied [4].

User estimates of job runtimes have emerged as an important
component of the workload on parallel machines, and can
have a significant impact on how a scheduler treats different
jobs, and thus on overall performance. It is therefore highly
desirable to have a good model of the relationship between
parallel jobs and their associated estimates [5].

Scheduling parallel jobs has been a popular research topic for
many years. A couple of surveys have been written on this
topic in the context of parallel supercomputers. The purpose
is to update this material, and to extend it to include work
concerning clusters and the grid [6]. A hierarchical
multiprocessor scheduling (H-SMP), a novel hierarchical
CPU scheduling algorithm designed for a symmetric
multiprocessor (SMP) platform is also studied. The novelty
of this algorithm lies in its combination of space and time
multiplexing to achieve the desired bandwidth partition
among the nodes of the hierarchical scheduling tree. This
algorithm is also characterized by its ability to incorporate
existing proportional-share algorithms as auxiliary schedulers
to achieve efficient hierarchical CPU partitioning [7]. The
schedulability problem of periodic and sporadic real-time
task sets with constrained deadlines preemptively scheduled
on a multiprocessor platform composed by identical
processors. Two typical scheduling algorithms: Earliest
Deadline First (EDF) and Fixed Priority (FP) are discussed
[8].

The behaviour of the schedulers upon job arrival differs
greatly. Most of the schedulers maintain a queue where the
jobs wait for processors to become available and whenever
the state of the system changes, either due to an arrival of a
new job, or a termination of a running job, they scan the
queue and select jobs for execution. It is difficult to
determine which approach is the best, and in fact some
studies have indicated that the relative performance of
schedulers may actually depend on the workload. A
scheduler known as CREASY (CR stands for criticality) that
exploits knowledge on user behaviour in order to improve
user satisfaction is discussed [9].

 ISSN 2319-2720
Volume 2, No.1, January – March 2013

International Journal of Computing, Communications and Networking
Available Online at http://warse.org/pdfs/2013/ijccn04212013.pdf

Raj Mohan Singh et al, International Journal of Computing, Communications and Networking, 2(1), January – March 2013, 16 – 20

17
@ 2012, IJCCN All Rights Reserved

Balancing fairness, user performance, and system
performance is also a critical concern when developing and
installing parallel schedulers [10].The performance of
scheduling algorithms is analyzed with respect to fairness.
Existing works frequently consider fairness as a job related
issue but in their work they analyze fairness with respect to
different users of the system as this is a very important real-
life problem. Notably, the fairness is considered as an
important metric, which accompanies standard performance
related metrics such as slowdown or wait time. The aim is to
maintain fairness among different users of the system while
keeping good performance regarding classical criteria such as
slowdown or wait time [11].

3. OBJECTIVES

Users continually submit jobs to the system each having
unique resource and service-level requirements as well as
value to the user and the owner of the resource. The charge
of job scheduling therefore, is to decide when and how each
job should execute in order to maximize the system’s utility
to its owners. The field of job scheduling has been the subject
of active research for well over a decade producing a sizeable
body of literature.
In this paper we have proposed a scheduling strategy that can
be used to decrease the response time of the job that is more
critical to the user and is also senior as compared to the other
jobs. We have defined three parameters viz. turnaround time,
response time and waiting time on the basis of these
parameters we have evaluated our strategy.

4. METHODOLOGY

In order to study and evaluate the performance of various
scheduling strategies we have taken a data set of 10 jobs with
four parameters as discussed below. The parameters are
defined as follows:

1. Burst time, which is the time taken to execute a
particular job.

2. Seniority i.e. which job arrives first in the queue for
execution.

3. Criticality i.e. How much important the job is to the
user.

4. Priority i.e. the combination of seniority and
criticality.

In order to evaluate the performance of the job scheduling
algorithms we have taken three parameters viz. average
waiting time, average turnaround time and average response
time. The data set that we have used to evaluate the
scheduling strategies is shown below:

 Table1: Depicting the Data Set

JOBS BURST
TIME

SENIORITY/
ARRIVAL

TIME

CRITICALITY PRIORITY

J1 4 2 7 9

J2 22 5 1 6

J3 3 1 5 6

J4 2 3 8 11

J5 6 7 2 9

J6 1 4 9 13

J7 8 8 3 11

J8 5 6 4 10

J9 12 9 6 15

J10 2 10 10 20

We have implemented the scheduling strategies using .NET
Framework. .NET is an integral part of many applications
running on Windows and provides common functionality for
those applications to run. The .NET Framework consists of
the common language runtime and the .NET Framework
class library. The common language runtime is the
foundation of the .NET Framework. You can think of the
runtime as an agent that manages code at execution time,
providing core services such as memory management, thread
management, and remoting, while also enforcing strict type
safety and other forms of code accuracy that promote
security and robustness. The implementation has been done
in C# using visual studio. Simulation has been done for the
different job scheduling strategies like FCFS (First-Cum-
first-Serve), SJF (Shortest Job First), Criticality, Priority,
Criticality on Round Robin and lastly Priority on Round
Robin for three parameters viz. average waiting time, average
response time and average turnaround time. These
parameters are the benchmark for any scheduling strategy in
order to evaluate their performance.

5. RESULT AND DISCUSSION

Various scheduling strategies have been simulated using the
interface as shown below:

Figure 5.1: Simulation of jobs with FCFS

Raj Mohan Singh et al, International Journal of Computing, Communications and Networking, 2(1), January – March 2013, 16 – 20

18
@ 2012, IJCCN All Rights Reserved

The figure 5.1 shows the simulation of jobs with FCFS
strategy. The required scheduling strategy is selected along
with the mode of operation which is set to auto in which a set
of ten jobs are selected. The mode of operation of the
interface is selected as auto. Next we load the burst time,
arrival time, criticality and priority of jobs according to our
data set by clicking at the appropriate buttons. The
turnaround time for the individual jobs is calculated and is
shown in the list box named turnaround time. The values of
the three parameters viz. average waiting time, average
turnaround time and average response time are calculated and
the values are shown in the text boxes of the interface.

The figure 5.2 shows the simulation of jobs with SJF strategy
for ten jobs. We load the burst time, arrival time, criticality
and priority of jobs by clicking at the appropriate buttons.
The turnaround time for the individual jobs is calculated and
is shown in the list box named turnaround time. The values
of the three parameters viz. average waiting time, average
turnaround time and average response time are calculated.

Figure 5.2: Simulation of jobs with SJF

Figure 5.3: Simulation of jobs with Criticality

Figure 5.4: Simulation of jobs with Priority

Figure 5.5: Simulation of jobs by applying Criticality to RR

The figures 5.3 to 5.6 show the simulation of jobs with
Criticality, Priority, Criticality on Round Robin, and Priority
on Round Robin respectively. The required scheduling
strategy is selected along with the mode of operation which is
set to auto in which a set of ten jobs are selected. We load the
burst time, arrival time, criticality and priority of jobs
according to our data set. The turnaround time for the
individual jobs is calculated and shown in the list box named
turnaround time. The values of the three parameters viz.
average waiting time, average turnaround time and average
response time are calculated and shown.

Raj Mohan Singh et al, International Journal of Computing, Communications and Networking, 2(1), January – March 2013, 16 – 20

19
@ 2012, IJCCN All Rights Reserved

5.1 COMPARISON OF SCHEDULING STRATEGIES

We have discussed about the criticality of jobs and also
applied the concept of criticality and priority to some of the
scheduling schemes. We have calculated the values of the
three parameters viz. average turnaround time, waiting time

Figure 5.6: Simulation of jobs by applying Priority to RR

and response time for all the scheduling strategies discussed
in the previous chapter and the results are shown in the
following table as follows:

Table 5.1: Comparison of all Scheduling Strategies

SCHEDULING
STRATEGY

AVERAGE
WAITING

TIME

AVERAGE
TURNAROUND

TIME

AVERAGE
RESPONSE

TIME
FCFS 25.5 32.0 25.5

SJF 14.3 20.8 14.3

CRITICALITY 41.2 47.7 41.2

PRIORITY 33.8 40.3 33.8

RR +
CRITICALITY

31.5 38.0 16.8

RR +
PRIORITY

26.8 33.3 15.7

5.2 DISCUSSION

5.2.1 Comparison of Average Waiting Time

(i) When the jobs are executed according to First-
Come-First-Serve strategy the average waiting time
is less if we compare it to other strategies, but it
does not take into account the criticality of jobs.

(ii) When the jobs are executed according to SJF
strategy, we get the lowest average waiting time, but
SJF may lead to starvation and this strategy also
does not take into account the criticality of jobs.

(iii) When we execute the jobs according to Criticality
the average waiting time comes to be much higher,
but at the same time the jobs which are critical to
the user will have not have to wait more.

(iv) When we execute the jobs according to Priority the
average waiting time comes to be lower than in the
case of criticality.

0

10

20

30

40

50

60

Avg Waiting Time(in
milliseconds)

Avg Turnaround
Time(in milliseconds)

Avg Response
Time(in milliseconds)

Figure 5.7: Graph showing the comparison between the parameters

(v) We now execute the jobs by applying Round robin
on Criticality. We find that there is reduction in
average waiting time.

(vi) To improve the average waiting time further we
have considered the priority of jobs and applied
Round Robin on it, which results in much lesser
waiting time.

5.2.2 Comparison of Average Turnaround Time

(i) When the jobs are executed according to First-
Come-First-Serve strategy the average turnaround
time is less if we compare it to other strategies, but
it does not take into account the criticality of jobs.

(ii) When the jobs are executed according to SJF
strategy, we get the lowest turnaround time, but SJF
may lead to starvation of large jobs. This strategy
also does not rank the jobs according to their
criticality.

(iii) When we execute the jobs according to Criticality
the average turnaround time comes to be much
higher, but at the same time the jobs which are
critical to the user will execute early.

(iv) When we execute the jobs according to Priority the
average turnaround time comes to be lower than in
the case of criticality.

(v) We now execute the jobs by applying Round robin
on Criticality. We find that there is reduction in
average turnaround time.

 (vi) To improve the average waiting time further we
have considered the priority of jobs and applied

Raj Mohan Singh et al, International Journal of Computing, Communications and Networking, 2(1), January – March 2013, 16 – 20

20
@ 2012, IJCCN All Rights Reserved

Round Robin on it, which results in much lesser
turnaround time. The jobs that have the highest
seniority and criticality will get the highest priority
which will help in reducing the turnaround time for
the jobs that are more critical to the user and
moreover it does not lead to starvation.

5.2.3 Comparison of Average Response Time

(i) When the jobs are executed according to First-
Come-First-Serve strategy the average response
time is less if we compare it to other strategies, but
it is not optimal for jobs which are critical to the
user.

(ii) When the jobs are executed according to SJF
strategy, we get the lowest response time, but SJF
may lead to starvation. It does not take into
account the issue of criticality of jobs.

(iii) When we execute the jobs according to Criticality
the average response time comes to be higher, but
at the same time the jobs which are critical to the
user will have less response time.

(iv) When we execute the jobs according to Priority the
average response time comes to be lower than in
the case of criticality.

(v) We now execute the jobs by applying Round robin
on Criticality. We find that there is reduction in
average response time.

(vi) To improve the average response time further we
have considered the priority of jobs and applied
Round Robin on it, which results in much lesser
response time. The jobs that have the highest
seniority and criticality will get the highest priority
which will help in reducing the response time for
the jobs that are more critical to the user and
moreover it does not lead to starvation.

6. CONCLUSION AND FUTURE WORK

In this paper we have proposed a scheduling strategy that can
be used to decrease the response time of the job that is more
critical to the user and is senior as compared to other jobs as
well. Three parameters have been defined on the basis of
which we have evaluated the strategy. After analyzing the
three parameters on the basis of different strategies it is
observed that there is need to make modifications in the
scheduling strategy so that more and more users submit the
jobs and the chances of the user leaving the session are
minimized.

The performance of our scheduling strategy also needs to be
evaluated with respect to parallel systems and the effects
studied. The jobs which the users submit during the day are
known to be different from those submitted during the night.
Interactive jobs usually require much less resources and are
much more critical to the users than the batch jobs that
execute over nights and weekends. Such factors should also
be taken into consideration.

Finally the scheduling strategy will need to be revised to
consider the aggregate effect of all these factors on the users,
and its performance will need to be evaluated again by
extending the number of jobs to demonstrate that it can still
significantly improve user productivity. This task alone is
extremely challenging, but it is a necessary step towards
improving the performance of job scheduling algorithms.

 REFERENCES

[1] Anrew S Tanenbaum. Modern Operating Systems,
2nd ed. Prentice Hall Press, 2007, ch. 2, pp 181.

[2] Abraham Silberschatz, Peter Baer Galvin.
Operating System Concepts, 5th ed. John Wiley &
Sons, Inc, ch. 5, pp 127, 1999.

[3] Jonathan Weinberg. Job Scheduling on Parallel
Systems, in Proc. International Conference on Job
Scheduling Strategies for Parallel Processing
(IPPS), 2002.

[4] Sangsuree Vasupongayya, Su-Hui Chiang. On Job
Fairness in Non-Preemptive Job Scheduling, in
Proc. International Conference on Parallel and
Distributed Computing, Phoenix, AZ, USA, Nov
14-16, 2005.

[5] Dan Tsafrir, Yoav Etsion, Dror G Feitelson.
Modeling User Runtime Estimates, in Proc. 11th
International Conference on Job Scheduling
Strategies for Parallel Processing, Springer-Verlag
Berlin, Heidelberg, pp 1-35, 2005.

[6] Dror G. Feitelson, Larry Rudolph, Uwe
Schwiegelshohn. Parallel Job Scheduling-A
Status Report, in Proc. 10th International
Conference on Job Scheduling Strategies for
Parallel Processing, Springer-Verlag Berlin,
Heidelberg, pp 1-16, 2005.

[7] Abhishek Chandra, Prashant Shenoy. Hierarchical
Scheduling for Symmetric Multiprocessors, IEEE
Transactions on Parallel and Distributed Systems,
Vol 19,Issue 3, pp 418-431, 2008.

[8] Marko Bertogna, Michele Cirinei, Giuseppe Lipari.
Schedulability Analysis of Global Scheduling
Algorithms on Multiprocessor Platforms, IEEE
Transactions on Parallel and Distributed Systems,
pp 553-566, 2009.

[9] Edi Shmueli, Dror G. Feitelson. On Simulation and
Design of Parallel-Systems Schedulers: Are We
Doing the Right Thing? IEEE transaction on
Parallel and Distributed System, Vol. 20, No. 7, pp
983-996, July 2009.

[10] Vitus J Leung, Gerald Sabin, P Sadayappan.
Parallel Job Scheduling Policies to Improve
Fairness: A Case Study, in Proc.39th International
Conference on Parallel processing workshops, pp
346-353, 2010.

[11] Dalibor Klusacek, Hana Rudova. Performance and
Fairness for Users in Parallel Job Scheduling, in
Proc. 16th workshop on job scheduling strategies
for parallel processing, IPDPS, Shanghai, China 25
May, 2012.

