
Sanjaydeep Singh Lodhi et al., International Journal of Computing, Communications and Networking, 1(1), July-August, 19-26

19
@ 2012, IJCCN All Rights Reserved

Apriori Based Novel Frequent Itemset Mining Mechanism

Sanjaydeep Singh Lodhi1

Department of Computer Application (Software Systems), S.A.T.I , Vidisha, (M.P), India
 sanjayeng.mt@rediffmail.com

Sandhya Rawat

Department of C.S.E, Truba Engineering College,Bhopal, M.P, India
sandhya.turba@gmail.com

Premnarayan Arya

Asst. Prof. Dept. of CA (Software Systems), S.A.T.I, Vidisha, (M.P), India
premnarayan.arya@rediffmail.com

ABSTRACT

Frequent itemsets play an essential role in many data mining tasks
that try to find interesting patterns from databases, such as association
rules, correlations, sequences, episodes, classifiers, clusters and many
more of which the mining of association rules is one of the most
popular problems. In computer science and data mining, Apriori is a
classic algorithm for learning association rules. Apriori is designed to
operate on databases containing transactions. Other algorithms are
designed for finding association rules in data having no transactions,
or having no timestamps. Frequent itemset mining is not a real-time
system, so the precise speed of execution is not especially important.
What is important is the ability to process datasets that are otherwise
simply too large from which to extract meaningful patterns. In this
paper proposed an efficient frequent itemset mining using Priori
algorithm which naturally lends it to sorting because, without any loss
in efficiency, every step of it can be designed to either create or
preserve sort order. This allows us to improve every step of the
original algorithm. We believe that this work opens up many avenues
for yet more pronounced improvement. Given the locality and
independence of the data structures used, they can be partitioned quite
easily.

Keywords: Data Mining, Frequent Itemset Mining, Apriori
Algorithm.

1. INTRODUCTION

Frequent patterns are itemsets, subsequences, or substructures
that appear in a data set with frequency no less than a user-
specified threshold. For example, a set of items, such as milk
and bread that appear frequently together in a transaction data
set is a frequent itemset. A substructure can refer to different
structural forms, such as subgraphs, subtrees, or sublattices,
which may be combined with itemsets or subsequences. If a
substructure occurs frequently in a graph database, it is called

a (frequent) structural pattern. Finding frequent patterns plays
an essential role inmining associations, correlations, and many
other interesting relationships among data. Moreover, it helps
in data indexing, classification, clustering, and other data
mining tasks as well. Thus, frequent pattern mining has
become an important data mining task and a focused theme in
data mining research. Frequent pattern mining was first
proposed by Agrawal et al. for market basket analysis in the
form of association rule mining [1] and [3] and [7].

Frequent itemsets play an essential role in many data mining
tasks that try to find interesting patterns from databases, such
as association rules, correlations, sequences, episodes,
classifiers, clusters and many more of which the mining of
association rules is one of the most popular problems. In this
thesis, we take the classic algorithm for the problem, A Priori,
and improve it quite significantly by introducing what we call
a vertical sort. We then use the large dataset, web documents
to contrast our performance against several state-of-the-art
implementations and demonstrate not only equal efficiency
with lower memory usage at all support thresholds, but also
the ability to mine support thresholds as yet un-attempted in
literature. We also indicate how we believe this work can be
extended to achieve yet more impressive results. We have
demonstrated that our implementation produces the same
results with the same performance as the best of the state-of-
the art implementations. In this paper proposed an efficient
frequent itemset mining using Priori algorithm which naturally
lends it to sorting because, without any loss in efficiency,
every step of it can be designed to either create or preserve sort
order. This allows us to improve every step of the original
algorithm.

 ISSN 2319-2720

Volume 1, No.1, July – August 2012
International Journal of Computing, Communications and Networking

Available Online at http://warse.org/pdfs/ijccn04112012.pdf

Sanjaydeep Singh Lodhi et al., International Journal of Computing, Communications and Networking, 1(1), July-August, 19-26

20
@ 2012, IJCCN All Rights Reserved

2. BACKGROUND TECHNIQUES

2.1 Sequence Mining

Sequence mining is concerned with finding statistically
relevant patterns between data examples where the
values are delivered in a sequence. It is usually presumed
that the values are discrete, and thus Time series mining
is closely related, but usually considered a different
activity. Sequence mining is a special case of structured
data mining. There are two different kinds of sequence
mining: string mining and itemset mining. String mining
is widely used in biology, to examine gene and protein
sequences, and is primarily concerned with sequences
with a single member at each position. There exist a
variety of prominent algorithms to perform alignment of
a query sequence with those existing in databases. The
kind of alignment could either involve matching a query
with one subject e.g. BLAST or matching multiple query
sets with each other. Itemset mining is used more often
in marketing and CRM applications, and is concerned
with multiple-symbols at each position. Itemset mining is
also a popular approach to text mining. There are several
key problems within this field. These include building
efficient databases and indexes for sequence information,
extracting the frequently occurring patterns, comparing
sequences for similarity, and recovering missing
sequence members. Two common techniques that are
applied to sequence databases for frequent itemset
mining are the influential apriori algorithm and the more-
recent FP-Growth technique. However, there is nothing
in these techniques that restricts them to sequences [6]
and [7].

2.2 Maximal Frequent Itemset

The concept of MFI (Maximal Frequent Item sets) and the
Max-Miner algorithm for mining only MFI. Max-Miner looks
only the MFIs, because of that, the search space can be
reduced. Max-Miner uses a bottom up traversal of a database.
Max-Miner employs a purely breadth-first search of the set-
enumeration tree in order to limit the number of passes made
over the data.

The key to an efficient set-enumeration search is the pruning
strategies that are applied to remove entire branches from
consideration. Without pruning, a set-enumeration tree search
for frequent item sets will consider every item set over the set
of all items. Max-Miner uses pruning based on subset
infrequency, as does Apriori, but it also uses pruning based on
superset frequency. In Max-Miner each node represent in the
set enumeration tree let us call it a candidate group. A
candidate group g consists of two item sets. The first, called
the head and denoted h (g), represents the item set enumerated

by the node. The second item set, called the tail and denoted t
(g), is an ordered set and contains all items not in h (g) that can
potentially appear in any sub-node. The ordering of tail items
reflect how the sub-nodes are to be expanded. In the case of a
static lexical ordering without pruning, the tail of any
candidate group is trivially the set of all items and the greatest
item in the head according to the item ordering [3] and [5].

 Apriori algorithm

Apriori is the best-known algorithm to mine association rules.
It uses a breadth-first search strategy to counting the support of
itemsets and uses a candidate generation function which
exploits the downward closure property of support.

 Eclat algorithm

Eclat is a depth-first search algorithm using set intersection.

 FP-growth algorithm

FP-growth (frequent pattern growth uses an extended prefix-
tree (FP-tree) structure to store the database in a compressed
form. FP-growth adopts a divide-and-conquer approach to
decompose both the mining tasks and the databases. It uses a
pattern fragment growth method to avoid the costly process of
candidate generation and testing used by Apriori.

 GUHA procedure ASSOC

GUHA is a general method for exploratory data analysis that
has theoretical foundations in observational calculi.[18] The
ASSOC procedure is a GUHA method which mines for
generalized association rules using fast bitstrings operations.
The association rules mined by this method are more general
than those output by apriori, for example "items" can be
connected both with conjunction and disjunctions and the
relation between antecedent and consequent of the rule is not
restricted to setting minimum support and confidence as in
apriori: an arbitrary combination of supported interest
measures can be used.

 OPUS search

OPUS is an efficient algorithm for rule discovery that, in
contrast to most alternatives, does not require either monotone
or anti-monotone constraints such as minimum support.
Initially used to find rules for a fixed consequent it has
subsequently been extended to find rules with any item as a
consequent. OPUS search is the core technology in the popular
Magnum Opus association discovery system [4] and [9].

Sanjaydeep Singh Lodhi et al., International Journal of Computing, Communications and Networking, 1(1), July-August, 19-26

21
@ 2012, IJCCN All Rights Reserved

2.3 Uncertain Data Model

The uncertain data model applied in this paper is based on the
possible worlds semantic with existential uncertain items.

Definition 1: An uncertain item is an item x ∈ I whose
presence in a transaction t ∈ T is defined by an existential
probability P(x ∈ t) ∈ (0; 1). A certain item is an item where
P(x ∈ t) ∈ f0; 1g. I is the set of all possible items.

Definition 2: An uncertain transaction t is a transaction that
contains uncertain items. A transaction database T containing
uncertain transactions are called an uncertain transaction
database. An uncertain transaction t is represented in an
uncertain transaction database by the items x ∈ I associated
with an existential probability value P(x ∈ t) 2 (0; 1].

Example uncertain transaction databases are depicted. To
interpret an uncertain transaction database we apply the
possible world model. An uncertain transaction database
generates possible worlds, where each world is defined by a
fixed set of (certain) transactions. A possible world is
instantiated by generating each transaction ti ∈ T according to
the occurrence probabilities P(x ∈ ti). Consequently, each
probability 0 < P(x ∈ ti) < 1 derives two possible worlds per
transaction: One possible world in which x exists in ti, and one
possible world where x does not exist in ti. Thus, the number
of possible worlds of a database increases exponentially in
both the number of transactions and the number of uncertain
items contained in it [3] and [6].

2.4 Related Works on Frequent Itemset Mining:

The approach proposed by Chui et. al computes the expected
support of itemsets by summing all itemset probabilities in
their U-Apriori algorithm. Later, they additionally proposed a
probabilistic filter in order to prune candidates early.

The UF-growth algorithm is proposed. Like U-Apriori, UF-
growth computes frequent itemsets by means of the expected
support, but it uses the FP-tree approach in order to avoid
expensive candidate generation. In contrast to our probabilistic
approach, itemsets are considered frequent if the expected
support exceeds minSup. The main drawback of this estimator
is that information about the uncertainty of the expected
support is lost; ignore the number of possible worlds in which
an itemset is frequent. Proposes exact and sampling-based
algorithms to find likely frequent items in streaming
probabilistic data. However, they do not consider itemsets with
more than one item. The current state-of the art (and only)
approach for probabilistic frequent itemset mining (PFIM) in
uncertain databases was proposed. Their approach uses an
Apriori-like algorithm to mine all probabilistic frequent
itemsets and the poisson binomial recurrence to compute the
support probability distribution function (SPDF).

We provide a faster solution by proposing the first
probabilistic frequent pattern growth approach (ProFP-

Growth), thus avoiding expensive candidate generation and
allowing us to perform PFIM in large databases. Furthermore,
use a more intuitive generating function method to compute
the SPDF.

Existing approaches in the field of uncertain data management
and mining can be categorized into a number of research
directions. Most related to our work are the two categories
“probabilistic databases” and “probabilistic query processing”.
The uncertainty model used in the approach is very close to the
model used for probabilistic databases. A probabilistic
database denotes a database composed of relations with
uncertain tuples, where each tuple is associated with a
probability denoting the likelihood that it exists in the relation.
This model, called “tuple uncertainty”, adopts the possible
worlds semantics. A probabilistic database represents a set of
possible “certain” database instances (worlds), where a
database instance corresponds to a subset of uncertain tuples.
Each instance (world) is associated with the probability that
the world is “true”. The probabilities reflect the probability
distribution of all possible database instances.

In the general model description, the possible worlds are
constrained by rules that are defined on the tuples in order to
incorporate object (tuple) correlations.

The ULDB model proposed, which is used in Trio, supports
uncertain tuples with alternative instances which are called x-
tuples. Relations in ULDB are called x-relations containing a
set of x-tuples. Each x-tuple corresponds to a set of tuple
instances which are assumed to be mutually exclusive, i.e. no
more than one instance of an x-tuple can appear in a possible
world instance at the same time. Probabilistic top-k query
approaches are usually associated with uncertain databases
using the tuple uncertainty model. The approach proposed was
the first approach able to solve probabilistic queries efficiently
under tuple independency by means of dynamic programming
techniques [10] and [11].

Recently, a novel approach was proposed to solve a wide class
of queries in the same time complexity, but in a more elegant
and also more powerful way using generating functions.

The Probabilistic Frequent Itemset Mining (PFIM) problem is
to find itemsets in an uncertain transaction database that are
(highly) likely to be frequent. This problem has two
components; efficiently computing the support probability
distribution and frequentness probability, and efficiently
mining all probabilistic frequent itemsets.

The efficient data structures and techniques used in frequent
itemset mining such as TID-lists, FP-tree, which adopts a
prefix tree structure as used in FP-growth, and the hyper-
linked array based structure as used in H-mine can no longer
be used as such directly on the uncertain data. Therefore,
recent work on frequent itemset mining in uncertain data that
inherits the breadth-first and depth-first approaches from

Sanjaydeep Singh Lodhi et al., International Journal of Computing, Communications and Networking, 1(1), July-August, 19-26

22
@ 2012, IJCCN All Rights Reserved

traditional frequent itemset mining adapts the data structures to
the probabilistic model [8] and [12].

3. PROPOSED SCHEME ANALYSIS

The publication of A Priori, many subsequent ideas have been
proposed. However, the majority of these interest us very little
because they do not address the real trouble of frequent itemset
mining: scalability. There are lots of cute ideas that use various
novel data structures or some tricks to try to reduce the scope
of the problem, but if they merely improve the execution time
on a dataset that already fits in memory, their value is
questionable. Frequent itemset mining is not a real-time
system, so the precise speed of execution is not especially
important. What is important is the ability to process datasets
that are otherwise simply too large from which to extract
meaningful patterns. As such, we focus our discussion on
those proposals that are designed to address the issue of
scalability.

The proposed of our method is the classical A Priori algorithm.
Our contributions are in providing novel scalable approaches
for each building block. We start by counting the support of
every item in the dataset and sort them in decreasing order of
their frequencies. Next, we sort each transaction with respect
to the frequency order of their items. We call this a horizontal
sort. We also keep the generated candidate itemsets in
horizontal sort. Furthermore, we are careful to generate the
candidate itemsets in sorted order with respect to each other.

We call this a vertical sort. When itemsets are both
horizontally and vertically sorted, we call them fully sorted. As
we show, generating sorted candidate itemsets (for any size k),
both horizontally and vertically, is computationally free and
maintaining that sort order for all subsequent candidate and
frequent itemsets requires careful implementation, but no cost
in execution time. This conceptually simple sorting idea has
implications for every subsequent part of the algorithm.

3.1 Generating Candidates

Let us consider generating candidates of an arbitrarily chosen
size, k + 1. We will assume that the frequent k-itemsets are
sorted both horizontally and vertically. The (k − 1) × (k − 1)
technique generates candidate (k+1) itemsets by taking the
union of frequent k-itemsets. If the first k−1 elements are
identical for two distinct frequent k-itemsets, fi and fj , we call
them near-equal and denote their near-equality by fi = fj .
Then, classically, every frequent itemset fi is compared to
every fj and the candidate fi ∪ fj is generated whenever fi = fj.
However, our method needs only ever compare one frequent
itemset, fi, to the one immediately following it, fi+1.
A crucial observation is that near-equality is transitive because
the equality of individual items is transitive. So, if fi = fi+1, . . .
, fi+m-2 = fi+m-1 then we know that (∀j, k) < m, fi+j = fi+k.
Recall also that the frequent k-itemsets are fully sorted (that is,
both horizontally and vertically), so all those that are near-

equal appear contiguously. This sorting taken together with the
transitivity of near-equality is what our method exploits.

In this way, we successfully generate all the candidates with a
single pass over the list of frequent k-itemsets as opposed to
the classical nested-loop approach. Strictly speaking, it might

seem that our processing of candidates effectively
causes extra passes, but it can be shown using the A Priori
Principle that m is typically much less than the number of
frequent itemsets. First, it remains to be shown that our one
pass does not miss any potential candidates. Consider some
candidate c = {ia, . . . , ik}. If it is a valid candidate, then by the
A Priori Principle, fi = {i1, . . . , ik-2, ik-1} and fj = {i1, . . . , ik-2,
ik} are frequent. Then, because of the sort order that is required
as a precondition, the only frequent itemsets that would appear
between fi and fj are those that share the same (k − 2)-prefix as
they do. The method described above merges together all pairs
of frequent itemsets that appear contiguously with the same (k
− 2)-prefix. Since this includes both fi and fj , c = fi ∪ fj must
have been discovered.

3.2 Candidate Pruning

When A Priori was first proposed, its performance was
explained by its effective candidate generation. What makes
the candidate generation so effective is its aggressive
candidate pruning. We believe that this can be omitted entirely
while still producing nearly the same set of candidates. Stated
alternatively, after our particular method of candidate
generation, there is little value in running a candidate pruning
step.

In recent, the probability that a candidate is generated is shown
to be largely dependent on its best testset that is, the least
frequent of its subsets. Classical A Priori has a very effective
candidate generation technique because if any itemset c \ {ci}
for 0 ≤ i ≤ k is infrequent the candidate c = {c0, . . . , ck} is
pruned from the search space. By the A Priori Principle, the
best testset is guaranteed to be included among these.
However, if one routinely picks the best testset when first
generating the candidate, then the pruning phase is redundant.
In our method, on the other hand, we generate a candidate
from two particular subsets, fk = c \ {ck} and fk-1 = c \ {ck-1}. If
either of these happens to be the best testset, then there is little
added value in a candidate pruning phase that checks the other
k−2 size k subsets of c. Because of our least-frequent-first sort
order, f0 and f1 correspond exactly to the subsets missing the
most frequent items of all those in c. We observed that usually
either f0 or f1 is the best testset.

We are also not especially concerned about generating a few
extra candidates, because they will be indexed and compressed
and counted simultaneously with others, so if we do not retain
a considerable number of prunable candidates by not pruning,
then we do not do especially much extra work in counting
them, anyway.

Sanjaydeep Singh Lodhi et al., International Journal of Computing, Communications and Networking, 1(1), July-August, 19-26

23
@ 2012, IJCCN All Rights Reserved

3.3 Support Counting

It was recognized quite early that A Priori would suffer a
bottleneck in comparing the entire set of transactions to the
entire set of candidates for every iteration of the algorithm.
Consequently, most A Priori -based research has focused on
trying to address this bottleneck. Certainly, we need to address
this bottleneck as well. The standard approach is to build a
prefix trie on all the candidates and then, for each transaction,
check the trie for each of the k-itemsets present in the
transaction. But this suffers two traumatic consequences on
large datasets. First, if the set of candidates is large and not
heavily overlapping, the trie will not fit in memory and then
the algorithm
will thrash about exactly as do the other tree-based algorithms.
Second, generating every possible itemset of size k from a

transaction t = {t0, . . . , tw-1} produces possibilities. Even
after pruning infrequent items with a support threshold of
10%, w still ranges so high.

3.4 On Locality and Data Independence

It is fair to assume that any efficient and complete solution to
the frequent itemset mining problem on a general, very large
dataset is going to require data structures that do not fit
entirely in memory. Recent work on FP-Growth accepts this
inevitability for very large datasets and focusses on
restructuring the trie and reordering the input such that it
anticipates relying heavily on a virtual memory based solution.
In particular, they aim to reuse a block of data so much as
possible before swapping it out again. Our method naturally
does this because it operates in a sequential manner on
prefaces of sorted lists. Work that is to be done on a particular
contiguous block of the data structure is entirely done before
the next block is used, because the algorithm proceeds in
sorted order and the blocks are sorted. Consequently, we fully
process blocks of data before we swap them out. Our method
probably also performs decently well in terms of cache
utilisation because contiguous blocks of itemsets will be
highly similar given that they are fully sorted. Perhaps of even
more importance is the independence of itemsets. The
candidates of a particular size, so long as their order is
ultimately maintained in the output to the next iteration, can be
processed together in blocks in whatever order desired. The
lists of frequent itemsets can be similarly grouped into blocks,
so long as care is taken to ensure that a block boundary occurs
between two itemsets fi and fi+1 only when they are not near-
equal. The indices can also be grouped into blocks with the
additional advantage that this can be done in a manner
corresponding exactly to how the candidates were grouped. As
such, all of the data structures can be partitioned quite easily,
which lends itself quite nicely to the prospects of
parallelization and fault tolerance.
3.5 Proposed Apriori Algorithm

Frequent itemsets play an essential role in many data mining
tasks that try to find interesting patterns from databases, such
as association rules, correlations, sequences, episodes,
classifiers, clusters. A Priori, and improve it quite significantly
by introducing what we call a vertical sort. We then use the
large dataset, web documents to contrast our performance
against several state-of-the-art implementations and
demonstrate not only equal efficiency with lower memory
usage at all support thresholds, but also the ability to mine
support thresholds as yet un-attempted in literature. We also
indicate how we believe this work can be extended to achieve
yet more impressive results. We have demonstrated that our
implementation produces the same results with the same
performance as the best of the state-of-the art implementations.

Apriori uses breadth-first search and a tree structure to count
candidate item sets efficiently. It generates candidate item sets
of length k from item sets of length k-1. Then it prunes the
candidates which have an infrequent sub pattern. According to
the downward closure lemma, the candidate set contains all
frequent k-length item sets. After that, it scans the transaction
database to determine frequent item sets among the candidates.

Apriori, while historically significant, suffers from a number
of inefficiencies or trade-offs, which have spawned other
algorithms. Candidate generation generates large numbers of
subsets (the algorithm attempts to load up the candidate set
with as many as possible before each scan). Bottom-up subset
exploration (essentially a breadth-first traversal of the subset
lattice) finds any maximal subset S only after all 2|s| -1 of its
proper subsets.

The following is a formal statement of the problem: Let τ={i1,
i2, i3……..} be a set of literals, called items. Let D be a set of
transactions, where each transaction T is a set of items such
that T⊆ τ. Associated with each transaction is a unique
identifier, called its TID. We say that a
transaction T contains X, a set of some items in τ, if X ⊆ T.
An association rule is an implication of the form X ⇒ Y ,
where X ⊂ τ, Y ⊂ τ, and X ∩ Y = ∅. The rule X ⇒ Y holds in
the transaction set D with confidence if c% of transactions
in D that contain X also contain Y. The rule X ⇒ Y has
support in the transaction set D if S% of transactions
in D contain X ∪ Y. Given a set of transactions D, the problem
of mining association rules is to generate all association rules
that have support and confidence greater than the user-
specified minimum support (called minsup) and minimum
confidence (called minconf) respectively.

The problem is usually decomposed into two sub problems.
One is to find those itemsets whose occurrences exceed a
predefined threshold in the database; those itemsets are called
frequent or large itemsets. The second problem is to generate
association rules from those large itemsets with the constraints
of minimal confidence. Suppose one of the large itemsets is
Lk, Lk = {I1, I2, … , Ik}, association rules with this itemsets
are generated in the following way: the first rule is {I1, I2, … ,
Ik-1}⇒ {Ik}, by checking the confidence this rule can be
determined as interesting or not. Then other rule are generated

Sanjaydeep Singh Lodhi et al., International Journal of Computing, Communications and Networking, 1(1), July-August, 19-26

24
@ 2012, IJCCN All Rights Reserved

by deleting the last items in the antecedent and inserting it to
the consequent, further the confidences of the new rules are
checked to determine the interestingness of them. Those
processes iterated until the antecedent becomes empty. Since
the second sub-problem is quite straight forward, most of the
researches focus on the first sub-problem. The Apriori
algorithm finds the frequent sets L In Database D.

Let X, Y ⊆ I be any two itemsets. Observe that if X ⊆ Y , then
sup(X) ≥ sup(Y), which leads to the following two corollaries:

 If X is frequent, then any subset Y ⊆ X is also
frequent.

 If X is not frequent, then any superset Y ⊇ X cannot
be frequent.

Based on the above observations, we can significantly improve
the itemset mining algorithm by reducing the number of
candidates we generate, by limiting the candidates to be only
those that will potentially be frequent. First we can stop
generating supersets of a candidate once we determine that it is
infrequent, since no superset of an infrequent itemset can be
frequent. Second, we can avoid any candidate that has an
infrequent subset. These two observations can result in
significant pruning of the search space.

Find frequent set Lk-1.

Join Step.

 C k is generated by joining L k-1 with itself

Prune Step.

Any (k-1) -itemset that is not frequent cannot be a subset of
a frequent k -itemset, hence should be removed.
where

(C k: Candidate itemset of size k)

(L k: frequent itemset of size k)
The changes that have come out of this sorting are far-reaching
and have impacted every phase of the algorithm.

Algorithm: The revised Vertically-Sorted A Priori algorithm

INPUT: A dataset D and a support threshold s
OUTPUT: All sets that appear in at least s transactions of D F is set
of frequent itemsets
C is set of candidates
C ← U
Scan database to count support of each item in C
Add frequent items to F
Sort F least-frequent-first (LFF) by support (using quicksort)
Output F
for all f ∈ F, sorted LFF do

for all g ∈ F, supp(g) ≥ supp(f), sorted LFF do
Add {f, g} to C
end for
Update index for item f
end for
while |C| > 0 do
{Count support}
for all t ∈ D do
for all i ∈ t do
RelevantCans ← using index, compressed cans from file that start
with i
for all CompressedCans ∈ RelevantCans do
if First k − 2 elements of CompressedCans are in t then
Use compressed candidate support counting technique to update
appropriate
support counts
end if
end for
end for
end for
Add frequent candidates to F
Output F
Clear C
{Generate candidates}
Start ← 0
for 1 ≤ i ≤ |F| do
if i == |F| OR fi is not near-equal to fi−1 then
Create super candidate from fstart to fi−1 and update index as
necessary
Start ← i
end if
end for
{Candidate pruning—not needed!}
Clear F
Reset hash
end while

The proposed of our method is the classical A Priori algorithm.
Our contributions are in providing novel scalable approaches
for each building block. We start by counting the support of
every item in the dataset and sort them in decreasing order of
their frequencies. Next, we sort each transaction with respect
to the frequency order of their items. We call this a horizontal
sort. We also keep the generated candidate itemsets in
horizontal sort. Furthermore, we are careful to generate the
candidate itemsets in sorted order with respect to each other.
We call this a vertical sort. When itemsets are both
horizontally and vertically sorted, we call them fully sorted. As
we show, generating sorted candidate itemsets (for any size k),
both horizontally and vertically, is computationally free and
maintaining that sort order for all subsequent candidate and
frequent itemsets requires careful implementation, but no cost
in execution time. This conceptually simple sorting idea has
implications for every subsequent part of the algorithm.
Apriori algorithm is an influential algorithm for mining
frequent itemsets for Boolean association rules.

Sanjaydeep Singh Lodhi et al., International Journal of Computing, Communications and Networking, 1(1), July-August, 19-26

25
@ 2012, IJCCN All Rights Reserved

4. EXPERIMENTAL RESULTS

We could generate our own large dataset against which to also
run tests, but the value of doing so is minimal. The data in the
web documents set comes from a real domain and so is
meaningful. Constructing a random dataset will not necessarily
portray the true performance characteristics of the algorithms.
At any rate, the other implementations were designed with
knowledge of web documents, so it is a fairer comparison. For
these reasons, we used other datasets only for the purpose of
verifying the correctness of our output. In previous works are
state-of-the-art implementations of the A Priori algorithm
which use a tire structure to store candidates. In order to
maximally remove uncontrolled variability in the comparisons
the choice of programming language is important. The
correctness of our implementation’s output is compared to the
output of these other algorithms.

We test each implementation on webdocs with support
thresholds of 21%, 14%, 11%, 7%, and 6%. Reducing the
support threshold in this manner increases the size of the
problem as observed in Figure 1 and Figure 2.The number of
candidate itemsets is implementation-dependent and in general
will be less than the number in the Figure 1.

Number of Itemsets vs. Supports Threshod (%)

Figure 1: Number of Itemsets in Web documents at Various

Support Thresholds

Our implementation uses explicit file-handling instead of
relying on virtual memory, the memory requirements are
effectively constant. However, those of all the other algorithms
grow beyond the limits of memory and consequently cannot
initialize. Without the data structures, the programs must
obviously abort.

File Size (Mb) vs. Supports (%)

Figure 2: Size of web documents dataset with noise

(infrequent 1-itemsets) removed, graphed against the number
of frequent itemsets.

It should be noted that in the previous works, their FP-Growth
implementation on the same benchmark web-docs dataset as
do we and they report impressive running times.
Unfortunately, the implementation is now unavailable. The
details in the accompanying paper are not sufficiently precise
that we could implement their modifications to the FP-Growth
algorithm. As such, no fair comparison can truly be made. Yet
still, they only publish results up to 8% which is insufficient as
we demonstrated in Figure 2.

Running Time (s) vs. Support Threshold (%)

Figure 3: The Performance of Our Implementations on

Webdocs Dataset

Sanjaydeep Singh Lodhi et al., International Journal of Computing, Communications and Networking, 1(1), July-August, 19-26

26
@ 2012, IJCCN All Rights Reserved

Memory Consumed (%) vs. Supports Thresholds (%)

Figure 4: Memory Usage of Our implementations on webdocs

as Measured by final stages of execution

It is a fair hypothesis that, were their implementation available,
if would suffer the same consequences as do the other trie-
based implementations when the support threshold is dropped
further. So, through these experiments, we have demonstrated
that our implementation produces the same results with the
same performance as the best of the state-of-the art
implementations. But, whereas they blow their memory in
order to decrease the support threshold, the memory utilization
of our implementation remains relatively constant. As such,
our performance continues to follow a predictable trend and
our programmed can successfully mine support thresholds that
are impossibly low for the other implementations.

5. CONCLUSION AND FUTURE WORKS

Advantage of apriori is its easy implementation. Association
rule mining has a wide range of applicability in many areas.
By introducing a vertical sort at the onset of the classic A
Priori algorithm, significant improvements can be made.
Besides simply having better localized data storage, the
candidate generation can be done more efficiently and an
indexing structure can be built on the candidates at the same
time. Candidates can be compressed to improve comparison
times as well as data structure size, and support counting is
thus speeded up. The cumulative effect of these improvements
is observable in the implementation that we created. Through
these experiments, we have demonstrated that our
implementation produces the same results with the same
performance as the best of the state-of-the art implementations.
But, whereas they blow their memory in order to decrease the
support threshold, the memory utilization of our
implementation remains relatively constant. As such, our
performance continues to follow a predictable trend and our
program can successfully mine support thresholds that are
impossibly low for the other implementations.

Furthermore, whereas other algorithms in the literature are
being fully optimized already, we believe that this work opens
up many avenues for yet more pronounced improvement.

Given the locality and independence of the data structures
used, they can be partitioned quite easily. We intend to do
precisely that in parallelizing the algorithm. Extending the
index to more than one item to improve its precision on larger
sets of candidates will likely also yield significant
improvement.

REFERENCES

1. T. Bernecker, H.-P. Kriegel, M. Renz, F. Verhein, and A. Züfle.
Probabilistic frequent itemset mining in uncertain databases,
Proc. 15th ACM SIGKDD Conf. on Knowledge Discovery and Data
Mining, Paris, France, 2009.

2. C. K. Chui and B. Kao. A decremental approach for mining
frequent itemsets from uncertain data, The 12th Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD),
pp. 64–75, 2008.

3. C. K. Chui, B. Kao, and E. Hung. Mining frequent itemsets from
uncertain data, 11th Pacific-Asia Conference on Advances in
Knowledge Discovery and Data Mining, PAKDD 2007, Nanjing,
China, pp. 47–58, 2007.

4. Toon Calders, Calin Garboni and Bart Goethals. Approximation
of Frequentness Probability of Itemsets in Uncertain Data, IEEE
International Conference on Data Mining, pp-749-754, 2010.

5. Bin Fu, Eugene Fink and Jaime G. Carbonell. Analysis of
Uncertain Data: Tools for Representation and Processing, IEEE
2008.

6. N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. The VLDB Journal, 16(4):523–544, 2007.

7. C. K.-S. Leung, C. L. Carmichael, and B. Hao. Efficient mining of
frequent patterns from uncertain data, ICDMW ’07: Proceedings
of the Seventh IEEE International Conference on Data Mining
Workshops, pp. 489–494, 2007.

8. K. Leung, M. Mateo, and D. Brajczuk. A tree-based approach for
frequent pattern mining from uncertain data, Advances in
Knowledge Discovery and Data Mining, 2008.

9. C. C. Agarwal, Y. Li, J. Wang, and J. Wang. Frequent pattern
mining with uncertain data, Proc. of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2009.

10. P. Agrawal, O. Benjelloun, A. Das Sarma, C. Hayworth, S. Nabar,
T. Sugihara, and J. Widom. Trio: A system for data, uncertainty,
and lineage, Proc. Int. Conf. on Very Large Databases, 2006.

11. R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. Proc. ACM SIGMOD Int. Conf. on Management
of Data, Minneapolis, MN, 1994.

12. L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and Simple
Relational Processing of Uncertain Data. Proc. 24th Int. Conf. on
Data Engineering, Cancún, México, 2008.

