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ABSTRACT 

Frequent itemsets play an essential role in many data mining tasks 
that try to find interesting patterns from databases, such as association 
rules, correlations, sequences, episodes, classifiers, clusters and many 
more of which the mining of association rules is one of the most 
popular problems. In computer science and data mining, Apriori is a 
classic algorithm for learning association rules. Apriori is designed to 
operate on databases containing transactions. Other algorithms are 
designed for finding association rules in data having no transactions, 
or having no timestamps. Frequent itemset mining is not a real-time 
system, so the precise speed of execution is not especially important. 
What is important is the ability to process datasets that are otherwise 
simply too large from which to extract meaningful patterns. In this 
paper proposed an efficient frequent itemset mining using Priori 
algorithm which naturally lends it to sorting because, without any loss 
in efficiency, every step of it can be designed to either create or 
preserve sort order. This allows us to improve every step of the 
original algorithm. We believe that this work opens up many avenues 
for yet more pronounced improvement. Given the locality and 
independence of the data structures used, they can be partitioned quite 
easily. 

Keywords: Data Mining, Frequent Itemset Mining, Apriori 
Algorithm. 

1. INTRODUCTION 

Frequent patterns are itemsets, subsequences, or substructures 
that appear in a data set with frequency no less than a user-
specified threshold. For example,  a set of items, such as milk 
and bread that appear frequently together in a transaction data 
set is a frequent itemset. A substructure can refer to different 
structural forms, such as subgraphs, subtrees, or sublattices, 
which may be combined with itemsets or subsequences. If a 
substructure occurs frequently in a graph database, it is called 

a (frequent) structural pattern. Finding frequent patterns plays 
an essential role inmining associations, correlations, and many 
other interesting relationships among data. Moreover, it helps 
in data indexing, classification, clustering, and other data 
mining tasks as well. Thus, frequent pattern mining has 
become an important data mining task and a focused theme in 
data mining research. Frequent pattern mining was first 
proposed by Agrawal et al. for market basket analysis in the 
form of association rule mining [1] and [3] and [7]. 
 
Frequent itemsets play an essential role in many data mining 
tasks that try to find interesting patterns from databases, such 
as association rules, correlations, sequences, episodes, 
classifiers, clusters and many more of which the mining of 
association rules is one of the most popular problems. In this 
thesis, we take the classic algorithm for the problem, A Priori, 
and improve it quite significantly by introducing what we call 
a vertical sort. We then use the  large dataset, web documents 
to contrast our performance against several state-of-the-art 
implementations and demonstrate not only equal efficiency 
with lower memory usage at all support thresholds, but also 
the ability to mine support thresholds as yet un-attempted in 
literature. We also indicate how we believe this work can be 
extended to achieve yet more impressive results. We have 
demonstrated that our implementation produces the same 
results with the same performance as the best of the state-of-
the art implementations. In this paper proposed an efficient 
frequent itemset mining using Priori algorithm which naturally 
lends it to sorting because, without any loss in efficiency, 
every step of it can be designed to either create or preserve sort 
order. This allows us to improve every step of the original 
algorithm. 
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2. BACKGROUND TECHNIQUES 
 
2.1 Sequence Mining 
 
Sequence mining is concerned with finding statistically 
relevant patterns between data examples where the 
values are delivered in a sequence. It is usually presumed 
that the values are discrete, and thus Time series mining 
is closely related, but usually considered a different 
activity. Sequence mining is a special case of structured 
data mining. There are two different kinds of sequence 
mining: string mining and itemset mining. String mining 
is widely used in biology, to examine gene and protein 
sequences, and is primarily concerned with sequences 
with a single member at each position. There exist a 
variety of prominent algorithms to perform alignment of 
a query sequence with those existing in databases. The 
kind of alignment could either involve matching a query 
with one subject e.g. BLAST or matching multiple query 
sets with each other. Itemset mining is used more often 
in marketing and CRM applications, and is concerned 
with multiple-symbols at each position. Itemset mining is 
also a popular approach to text mining. There are several 
key problems within this field. These include building 
efficient databases and indexes for sequence information, 
extracting the frequently occurring patterns, comparing 
sequences for similarity, and recovering missing 
sequence members. Two common techniques that are 
applied to sequence databases for frequent itemset 
mining are the influential apriori algorithm and the more-
recent FP-Growth technique. However, there is nothing 
in these techniques that restricts them to sequences [6] 
and [7]. 
 
2.2 Maximal Frequent Itemset 
 
The concept of MFI (Maximal Frequent Item sets) and the 
Max-Miner algorithm for mining only MFI. Max-Miner looks 
only the MFIs, because of that, the search space can be 
reduced. Max-Miner uses a bottom up traversal of a database. 
Max-Miner employs a purely breadth-first search of the set-
enumeration tree in order to limit the number of passes made 
over the data. 
 
The key to an efficient set-enumeration search is the pruning 
strategies that are applied to remove entire branches from 
consideration. Without pruning, a set-enumeration tree search 
for frequent item sets will consider every item set over the set 
of all items. Max-Miner uses pruning based on subset 
infrequency, as does Apriori, but it also uses pruning based on 
superset frequency. In Max-Miner each node represent in the 
set enumeration tree let us call it a candidate group. A 
candidate group g consists of two item sets. The first, called 
the head and denoted h (g), represents the item set enumerated 

by the node. The second item set, called the tail and denoted t 
(g), is an ordered set and contains all items not in h (g) that can 
potentially appear in any sub-node. The ordering of tail items 
reflect how the sub-nodes are to be expanded. In the case of a 
static lexical ordering without pruning, the tail of any 
candidate group is trivially the set of all items and the greatest 
item in the head according to the item ordering [3] and [5]. 

 Apriori algorithm 

Apriori is the best-known algorithm to mine association rules. 
It uses a breadth-first search strategy to counting the support of 
itemsets and uses a candidate generation function which 
exploits the downward closure property of support. 

 Eclat algorithm 

Eclat is a depth-first search algorithm using set intersection. 

 FP-growth algorithm 

FP-growth (frequent pattern growth uses an extended prefix-
tree (FP-tree) structure to store the database in a compressed 
form. FP-growth adopts a divide-and-conquer approach to 
decompose both the mining tasks and the databases. It uses a 
pattern fragment growth method to avoid the costly process of 
candidate generation and testing used by Apriori. 

 GUHA procedure ASSOC 

GUHA is a general method for exploratory data analysis that 
has theoretical foundations in observational calculi.[18] The 
ASSOC procedure is a GUHA method which mines for 
generalized association rules using fast bitstrings operations. 
The association rules mined by this method are more general 
than those output by apriori, for example "items" can be 
connected both with conjunction and disjunctions and the 
relation between antecedent and consequent of the rule is not 
restricted to setting minimum support and confidence as in 
apriori: an arbitrary combination of supported interest 
measures can be used. 

 OPUS search 

OPUS is an efficient algorithm for rule discovery that, in 
contrast to most alternatives, does not require either monotone 
or anti-monotone constraints such as minimum support. 
Initially used to find rules for a fixed consequent it has 
subsequently been extended to find rules with any item as a 
consequent. OPUS search is the core technology in the popular 
Magnum Opus association discovery system [4] and [9]. 
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2.3 Uncertain Data Model 
 
The uncertain data model applied in this paper is based on the 
possible worlds semantic with existential uncertain items.  
 
Definition 1: An uncertain item is an item x ∈ I whose 
presence in a transaction t ∈ T is defined by an existential 
probability P(x ∈ t) ∈ (0; 1). A certain item is an item where 
P(x ∈ t) ∈ f0; 1g. I is the set of all possible items. 
 
Definition 2: An uncertain transaction t is a transaction that 
contains uncertain items. A transaction database T containing 
uncertain transactions are called an uncertain transaction 
database. An uncertain transaction t is represented in an 
uncertain transaction database by the items x ∈ I associated 
with an existential probability value P(x ∈ t) 2 (0; 1]. 
 
Example uncertain transaction databases are depicted. To 
interpret an uncertain transaction database we apply the 
possible world model. An uncertain transaction database 
generates possible worlds, where each world is defined by a 
fixed set of (certain) transactions. A possible world is 
instantiated by generating each transaction ti ∈ T according to 
the occurrence probabilities P(x ∈ ti). Consequently, each 
probability 0 < P(x ∈ ti) < 1 derives two possible worlds per 
transaction: One possible world in which x exists in ti, and one 
possible world where x does not exist in ti. Thus, the number 
of possible worlds of a database increases exponentially in 
both the number of transactions and the number of uncertain 
items contained in it [3] and [6]. 
 
2.4 Related Works on Frequent Itemset Mining: 
 
The approach proposed by Chui et. al computes the expected 
support of itemsets by summing all itemset probabilities in 
their U-Apriori algorithm. Later, they additionally proposed a 
probabilistic filter in order to prune candidates early.  
 
The UF-growth algorithm is proposed. Like U-Apriori, UF-
growth computes frequent itemsets by means of the expected 
support, but it uses the FP-tree approach in order to avoid 
expensive candidate generation. In contrast to our probabilistic 
approach, itemsets are considered frequent if the expected 
support exceeds minSup. The main drawback of this estimator 
is that information about the uncertainty of the expected 
support is lost; ignore the number of possible worlds in which 
an itemset is frequent. Proposes exact and sampling-based 
algorithms to find likely frequent items in streaming 
probabilistic data. However, they do not consider itemsets with 
more than one item. The current state-of the art (and only) 
approach for probabilistic frequent itemset mining (PFIM) in 
uncertain databases was proposed. Their approach uses an 
Apriori-like algorithm to mine all probabilistic frequent 
itemsets and the poisson binomial recurrence to compute the 
support probability distribution function (SPDF). 
 
We provide a faster solution by proposing the first 
probabilistic frequent pattern growth approach (ProFP-

Growth), thus avoiding expensive candidate generation and 
allowing us to perform PFIM in large databases. Furthermore, 
use a more intuitive generating function method to compute 
the SPDF. 
 
Existing approaches in the field of uncertain data management 
and mining can be categorized into a number of research 
directions. Most related to our work are the two categories 
“probabilistic databases” and “probabilistic query processing”. 
The uncertainty model used in the approach is very close to the 
model used for probabilistic databases. A probabilistic 
database denotes a database composed of relations with 
uncertain tuples, where each tuple is associated with a 
probability denoting the likelihood that it exists in the relation. 
This model, called “tuple uncertainty”, adopts the possible 
worlds semantics. A probabilistic database represents a set of 
possible “certain” database instances (worlds), where a 
database instance corresponds to a subset of uncertain tuples. 
Each instance (world) is associated with the probability that 
the world is “true”. The probabilities reflect the probability 
distribution of all possible database instances. 
 
In the general model description, the possible worlds are 
constrained by rules that are defined on the tuples in order to 
incorporate object (tuple) correlations.  
 
The ULDB model proposed, which is used in Trio, supports 
uncertain tuples with alternative instances which are called x-
tuples. Relations in ULDB are called x-relations containing a 
set of x-tuples. Each x-tuple corresponds to a set of tuple 
instances which are assumed to be mutually exclusive, i.e. no 
more than one instance of an x-tuple can appear in a possible 
world instance at the same time. Probabilistic top-k query 
approaches are usually associated with uncertain databases 
using the tuple uncertainty model. The approach proposed was 
the first approach able to solve probabilistic queries efficiently 
under tuple independency by means of dynamic programming 
techniques [10] and [11]. 
 
Recently, a novel approach was proposed to solve a wide class 
of queries in the same time complexity, but in a more elegant 
and also more powerful way using generating functions. 
 
The Probabilistic Frequent Itemset Mining (PFIM) problem is 
to find itemsets in an uncertain transaction database that are 
(highly) likely to be frequent. This problem has two 
components; efficiently computing the support probability 
distribution and frequentness probability, and efficiently 
mining all probabilistic frequent itemsets.  
 
The efficient data structures and techniques used in frequent 
itemset mining such as TID-lists, FP-tree, which adopts a 
prefix tree structure as used in FP-growth, and the hyper-
linked array based structure as used in H-mine can no longer 
be used as such directly on the uncertain data. Therefore, 
recent work on frequent itemset mining in uncertain data that 
inherits the breadth-first and depth-first approaches from 
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traditional frequent itemset mining adapts the data structures to 
the probabilistic model [8] and [12]. 
 
3. PROPOSED SCHEME ANALYSIS 

 
The publication of A Priori, many subsequent ideas have been 
proposed. However, the majority of these interest us very little 
because they do not address the real trouble of frequent itemset 
mining: scalability. There are lots of cute ideas that use various 
novel data structures or some tricks to try to reduce the scope 
of the problem, but if they merely improve the execution time 
on a dataset that already fits in memory, their value is 
questionable. Frequent itemset mining is not a real-time 
system, so the precise speed of execution is not especially 
important. What is important is the ability to process datasets 
that are otherwise simply too large from which to extract 
meaningful patterns. As such, we focus our discussion on 
those proposals that are designed to address the issue of 
scalability. 
 
The proposed of our method is the classical A Priori algorithm. 
Our contributions are in providing novel scalable approaches 
for each building block. We start by counting the support of 
every item in the dataset and sort them in decreasing order of 
their frequencies. Next, we sort each transaction with respect 
to the frequency order of their items. We call this a horizontal 
sort. We also keep the generated candidate itemsets in 
horizontal sort. Furthermore, we are careful to generate the 
candidate itemsets in sorted order with respect to each other.  
 
We call this a vertical sort. When itemsets are both 
horizontally and vertically sorted, we call them fully sorted. As 
we show, generating sorted candidate itemsets (for any size k), 
both horizontally and vertically, is computationally free and 
maintaining that sort order for all subsequent candidate and 
frequent itemsets requires careful implementation, but no cost 
in execution time. This conceptually simple sorting idea has 
implications for every subsequent part of the algorithm.  
 
3.1 Generating Candidates 
 
Let us consider generating candidates of an arbitrarily chosen 
size, k + 1. We will assume that the frequent k-itemsets are 
sorted both horizontally and vertically. The (k − 1) × (k − 1) 
technique generates candidate (k+1) itemsets by taking the 
union of frequent k-itemsets. If the first k−1 elements are 
identical for two distinct frequent k-itemsets, fi and fj , we call 
them near-equal and denote their near-equality by fi = fj . 
Then, classically, every frequent itemset fi is compared to 
every fj and the candidate fi ∪ fj is generated whenever fi = fj. 
However, our method needs only ever compare one frequent 
itemset, fi, to the one immediately following it, fi+1. 
A crucial observation is that near-equality is transitive because 
the equality of individual items is transitive. So, if fi = fi+1, . . . 
, fi+m-2 = fi+m-1 then we know that (∀j, k) < m, fi+j = fi+k. 
Recall also that the frequent k-itemsets are fully sorted (that is, 
both horizontally and vertically), so all those that are near-

equal appear contiguously. This sorting taken together with the 
transitivity of near-equality is what our method exploits. 
 
In this way, we successfully generate all the candidates with a 
single pass over the list of frequent k-itemsets as opposed to 
the classical nested-loop approach. Strictly speaking, it might 

seem that our processing of  candidates effectively 
causes extra passes, but it can be shown using the A Priori 
Principle that m is typically much less than the number of 
frequent itemsets. First, it remains to be shown that our one 
pass does not miss any potential candidates. Consider some 
candidate c = {ia, . . . , ik}. If it is a valid candidate, then by the 
A Priori Principle, fi = {i1, . . . , ik-2, ik-1} and fj = {i1, . . . , ik-2, 
ik} are frequent. Then, because of the sort order that is required 
as a precondition, the only frequent itemsets that would appear 
between fi and fj are those that share the same (k − 2)-prefix as 
they do. The method described above merges together all pairs 
of frequent itemsets that appear contiguously with the same (k 
− 2)-prefix. Since this includes both fi and fj , c = fi ∪ fj must 
have been discovered. 
 
3.2 Candidate Pruning 
 
When A Priori was first proposed, its performance was 
explained by its effective candidate generation. What makes 
the candidate generation so effective is its aggressive 
candidate pruning. We believe that this can be omitted entirely 
while still producing nearly the same set of candidates. Stated 
alternatively, after our particular method of candidate 
generation, there is little value in running a candidate pruning 
step. 
 
In recent, the probability that a candidate is generated is shown 
to be largely dependent on its best testset that is, the least 
frequent of its subsets. Classical A Priori has a very effective 
candidate generation technique because if any itemset c \ {ci} 
for 0 ≤ i ≤ k is infrequent the candidate c = {c0, . . . , ck} is 
pruned from the search space. By the A Priori Principle, the 
best testset is guaranteed to be included among these. 
However, if one routinely picks the best testset when first 
generating the candidate, then the pruning phase is redundant. 
In our method, on the other hand, we generate a candidate 
from two particular subsets, fk = c \ {ck} and fk-1 = c \ {ck-1}. If 
either of these happens to be the best testset, then there is little 
added value in a candidate pruning phase that checks the other 
k−2 size k subsets of c. Because of our least-frequent-first sort 
order, f0 and f1 correspond exactly to the subsets missing the 
most frequent items of all those in c. We observed that usually 
either f0 or f1 is the best testset. 
 
We are also not especially concerned about generating a few 
extra candidates, because they will be indexed and compressed 
and counted simultaneously with others, so if we do not retain 
a considerable number of prunable candidates by not pruning, 
then we do not do especially much extra work in counting 
them, anyway. 
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3.3 Support Counting 
 
It was recognized quite early that A Priori would suffer a 
bottleneck in comparing the entire set of transactions to the 
entire set of candidates for every iteration of the algorithm. 
Consequently, most A Priori -based research has focused on 
trying to address this bottleneck. Certainly, we need to address 
this bottleneck as well. The standard approach is to build a 
prefix trie on all the candidates and then, for each transaction, 
check the trie for each of the k-itemsets present in the 
transaction. But this suffers two traumatic consequences on 
large datasets. First, if the set of candidates is large and not 
heavily overlapping, the trie will not fit in memory and then 
the algorithm 
will thrash about exactly as do the other tree-based algorithms. 
Second, generating every possible itemset of size k from a 

transaction t = {t0, . . . , tw-1} produces  possibilities. Even 
after pruning infrequent items with a support threshold of 
10%, w still ranges so high. 
 
3.4 On Locality and Data Independence 
 
It is fair to assume that any efficient and complete solution to 
the frequent itemset mining problem on a general, very large 
dataset is going to require data structures that do not fit 
entirely in memory. Recent work on FP-Growth accepts this 
inevitability for very large datasets and focusses on 
restructuring the trie and reordering the input such that it 
anticipates relying heavily on a virtual memory based solution. 
In particular, they aim to reuse a block of data so much as 
possible before swapping it out again. Our method naturally 
does this because it operates in a sequential manner on 
prefaces of sorted lists. Work that is to be done on a particular 
contiguous block of the data structure is entirely done before 
the next block is used, because the algorithm proceeds in 
sorted order and the blocks are sorted. Consequently, we fully 
process blocks of data before we swap them out. Our method 
probably also performs decently well in terms of cache 
utilisation because contiguous blocks of itemsets will be 
highly similar given that they are fully sorted. Perhaps of even 
more importance is the independence of itemsets. The 
candidates of a particular size, so long as their order is 
ultimately maintained in the output to the next iteration, can be 
processed together in blocks in whatever order desired. The 
lists of frequent itemsets can be similarly grouped into blocks, 
so long as care is taken to ensure that a block boundary occurs 
between two itemsets fi and fi+1 only when they are not near-
equal. The indices can also be grouped into blocks with the 
additional advantage that this can be done in a manner 
corresponding exactly to how the candidates were grouped. As 
such, all of the data structures can be partitioned quite easily, 
which lends itself quite nicely to the prospects of 
parallelization and fault tolerance. 
3.5 Proposed Apriori Algorithm 
 

Frequent itemsets play an essential role in many data mining 
tasks that try to find interesting patterns from databases, such 
as association rules, correlations, sequences, episodes, 
classifiers, clusters. A Priori, and improve it quite significantly 
by introducing what we call a vertical sort. We then use the  
large dataset, web documents to contrast our performance 
against several state-of-the-art implementations and 
demonstrate not only equal efficiency with lower memory 
usage at all support thresholds, but also the ability to mine 
support thresholds as yet un-attempted in literature. We also 
indicate how we believe this work can be extended to achieve 
yet more impressive results. We have demonstrated that our 
implementation produces the same results with the same 
performance as the best of the state-of-the art implementations. 

Apriori uses breadth-first search and a tree structure to count 
candidate item sets efficiently. It generates candidate item sets 
of length k from item sets of length k-1. Then it prunes the 
candidates which have an infrequent sub pattern. According to 
the downward closure lemma, the candidate set contains all 
frequent k-length item sets. After that, it scans the transaction 
database to determine frequent item sets among the candidates. 

Apriori, while historically significant, suffers from a number 
of inefficiencies or trade-offs, which have spawned other 
algorithms. Candidate generation generates large numbers of 
subsets (the algorithm attempts to load up the candidate set 
with as many as possible before each scan). Bottom-up subset 
exploration (essentially a breadth-first traversal of the subset 
lattice) finds any maximal subset S only after all 2|s| -1 of its 
proper subsets. 

The following is a formal statement of the problem: Let τ={i1, 
i2, i3……..} be a set of literals, called items. Let D be a set of 
transactions, where each transaction T is a set of items such 
that T⊆ τ. Associated with each transaction is a unique 
identifier, called its TID. We say that a 
transaction T contains X, a set of some items in τ, if X ⊆ T. 
An association rule is an implication of the form X ⇒ Y , 
where X ⊂ τ, Y ⊂ τ, and X ∩ Y = ∅. The rule X ⇒ Y holds in 
the transaction set D with confidence  if c% of transactions 
in D that contain X also contain Y. The rule X ⇒ Y has 
support  in the transaction set D if S% of transactions 
in D contain X ∪ Y. Given a set of transactions D, the problem 
of mining association rules is to generate all association rules 
that have support and confidence greater than the user-
specified minimum support (called minsup) and minimum 
confidence (called minconf ) respectively. 

The problem is usually decomposed into two sub problems. 
One is to find those itemsets whose occurrences exceed a 
predefined threshold in the database; those itemsets are called 
frequent or large itemsets. The second problem is to generate 
association rules from those large itemsets with the constraints 
of minimal confidence. Suppose one of the large itemsets is 
Lk, Lk = {I1, I2, … , Ik}, association rules with this itemsets 
are generated in the following way: the first rule is {I1, I2, … , 
Ik-1}⇒ {Ik}, by checking the confidence this rule can be 
determined as interesting or not. Then other rule are generated 
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by deleting the last items in the antecedent and inserting it to 
the consequent, further the confidences of the new rules are 
checked to determine the interestingness of them. Those 
processes iterated until the antecedent becomes empty. Since 
the second sub-problem is quite straight forward, most of the 
researches focus on the first sub-problem. The Apriori 
algorithm finds the frequent sets L In Database D. 

Let X, Y ⊆ I be any two itemsets. Observe that if X ⊆ Y , then 
sup(X) ≥ sup(Y ), which leads to the following two corollaries: 

 If X is frequent, then any subset Y ⊆ X is also 
frequent. 

 If X is not frequent, then any superset Y ⊇ X cannot 
be frequent. 

Based on the above observations, we can significantly improve 
the itemset mining algorithm by reducing the number of 
candidates we generate, by limiting the candidates to be only 
those that will potentially be frequent. First we can stop 
generating supersets of a candidate once we determine that it is 
infrequent, since no superset of an infrequent itemset can be 
frequent. Second, we can avoid any candidate that has an 
infrequent subset. These two observations can result in 
significant pruning of the search space. 

Find frequent set Lk-1. 

Join Step. 

     C k is generated by joining L k-1 with itself 

Prune Step. 

Any (k-1) -itemset that is not frequent cannot be a subset of 
a frequent k -itemset, hence should be removed. 
where 

(C k: Candidate itemset of size k) 

(L k: frequent itemset of size k) 
The changes that have come out of this sorting are far-reaching 
and have impacted every phase of the algorithm. 
 
Algorithm: The revised Vertically-Sorted A Priori algorithm 
 
INPUT: A dataset D and a support threshold s 
OUTPUT: All sets that appear in at least s transactions of D F is set 
of frequent itemsets 
C is set of candidates 
C ← U 
Scan database to count support of each item in C 
Add frequent items to F 
Sort F least-frequent-first (LFF) by support (using quicksort) 
Output F 
for all f ∈ F, sorted LFF do 

for all g ∈ F, supp(g) ≥ supp(f), sorted LFF do 
Add {f, g} to C 
end for 
Update index for item f 
end for 
while |C| > 0 do 
{Count support} 
for all t ∈ D do 
for all i ∈ t do 
RelevantCans ← using index, compressed cans from file that start 
with i 
for all CompressedCans ∈ RelevantCans do 
if First k − 2 elements of CompressedCans are in t then 
Use compressed candidate support counting technique to update 
appropriate 
support counts 
end if 
end for 
end for 
end for 
Add frequent candidates to F 
Output F 
Clear C 
{Generate candidates} 
Start ← 0 
for 1 ≤ i ≤ |F| do 
if i == |F| OR fi is not near-equal to fi−1 then 
Create super candidate from fstart to fi−1 and update index as 
necessary 
Start ← i 
end if 
end for 
{Candidate pruning—not needed!} 
Clear F 
Reset hash 
end while 
 

The proposed of our method is the classical A Priori algorithm. 
Our contributions are in providing novel scalable approaches 
for each building block. We start by counting the support of 
every item in the dataset and sort them in decreasing order of 
their frequencies. Next, we sort each transaction with respect 
to the frequency order of their items. We call this a horizontal 
sort. We also keep the generated candidate itemsets in 
horizontal sort. Furthermore, we are careful to generate the 
candidate itemsets in sorted order with respect to each other. 
We call this a vertical sort. When itemsets are both 
horizontally and vertically sorted, we call them fully sorted. As 
we show, generating sorted candidate itemsets (for any size k), 
both horizontally and vertically, is computationally free and 
maintaining that sort order for all subsequent candidate and 
frequent itemsets requires careful implementation, but no cost 
in execution time. This conceptually simple sorting idea has 
implications for every subsequent part of the algorithm. 
Apriori algorithm is an influential algorithm for mining 
frequent itemsets for Boolean association rules. 
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4. EXPERIMENTAL RESULTS 
 
We could generate our own large dataset against which to also 
run tests, but the value of doing so is minimal. The data in the 
web documents set comes from a real domain and so is 
meaningful. Constructing a random dataset will not necessarily 
portray the true performance characteristics of the algorithms. 
At any rate, the other implementations were designed with 
knowledge of web documents, so it is a fairer comparison. For 
these reasons, we used other datasets only for the purpose of 
verifying the correctness of our output. In previous works are 
state-of-the-art implementations of the A Priori algorithm 
which use a tire structure to store candidates. In order to 
maximally remove uncontrolled variability in the comparisons 
the choice of programming language is important. The 
correctness of our implementation’s output is compared to the 
output of these other algorithms.  
 
We test each implementation on webdocs with support 
thresholds of 21%, 14%, 11%, 7%, and 6%. Reducing the 
support threshold in this manner increases the size of the 
problem as observed in Figure 1 and Figure 2.The number of 
candidate itemsets is implementation-dependent and in general 
will be less than the number in the Figure 1. 

 
Number of Itemsets vs. Supports Threshod (%) 

 
Figure 1: Number of Itemsets in Web documents at Various 

Support Thresholds 
 
Our implementation uses explicit file-handling instead of 
relying on virtual memory, the memory requirements are 
effectively constant. However, those of all the other algorithms 
grow beyond the limits of memory and consequently cannot 
initialize. Without the data structures, the programs must 
obviously abort. 
 
 

 
File Size (Mb) vs. Supports (%) 

 
Figure 2: Size of web documents dataset with noise 

(infrequent 1-itemsets) removed, graphed against the number 
of frequent itemsets. 

 
It should be noted that in the previous works, their FP-Growth 
implementation on the same benchmark web-docs dataset as 
do we and they report impressive running times. 
Unfortunately, the implementation is now unavailable. The 
details in the accompanying paper are not sufficiently precise 
that we could implement their modifications to the FP-Growth 
algorithm. As such, no fair comparison can truly be made. Yet 
still, they only publish results up to 8% which is insufficient as 
we demonstrated in Figure 2. 
 

 
Running Time (s) vs. Support Threshold (%) 

 
Figure 3: The Performance of Our Implementations on 

Webdocs Dataset 
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Memory Consumed (%) vs. Supports Thresholds (%) 

 
Figure 4: Memory Usage of Our implementations on webdocs 

as Measured by final stages of execution 
 
 
It is a fair hypothesis that, were their implementation available, 
if would suffer the same consequences as do the other trie-
based implementations when the support threshold is dropped 
further. So, through these experiments, we have demonstrated 
that our implementation produces the same results with the 
same performance as the best of the state-of-the art 
implementations. But, whereas they blow their memory in 
order to decrease the support threshold, the memory utilization 
of our implementation remains relatively constant. As such, 
our performance continues to follow a predictable trend and 
our programmed can successfully mine support thresholds that 
are impossibly low for the other implementations. 
 
5. CONCLUSION AND FUTURE WORKS 

 
Advantage of apriori is its easy implementation. Association 
rule mining has a wide range of applicability in many areas. 
By introducing a vertical sort at the onset of the classic A 
Priori algorithm, significant improvements can be made. 
Besides simply having better localized data storage, the 
candidate generation can be done more efficiently and an 
indexing structure can be built on the candidates at the same 
time. Candidates can be compressed to improve comparison 
times as well as data structure size, and support counting is 
thus speeded up. The cumulative effect of these improvements 
is observable in the implementation that we created. Through 
these experiments, we have demonstrated that our 
implementation produces the same results with the same 
performance as the best of the state-of-the art implementations. 
But, whereas they blow their memory in order to decrease the 
support threshold, the memory utilization of our 
implementation remains relatively constant. As such, our 
performance continues to follow a predictable trend and our 
program can successfully mine support thresholds that are 
impossibly low for the other implementations.  
 
Furthermore, whereas other algorithms in the literature are 
being fully optimized already, we believe that this work opens 
up many avenues for yet more pronounced improvement. 

Given the locality and independence of the data structures 
used, they can be partitioned quite easily. We intend to do 
precisely that in parallelizing the algorithm. Extending the 
index to more than one item to improve its precision on larger 
sets of candidates will likely also yield significant 
improvement.  
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