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ABSTRACT 
In this paper, we present a new lattice-based public-key 
cryptosystem mixed with a factoring (RSA), which has 
reasonable key size and quick encryption and decryption. We 
consider the situation that the RSA secret key d is small and a 
sufficient amount of the LSBs (least significant bits) of d are 
known by the attacker. We show that our lattice construction 
is theoretically more efficient than known attacks proposed in 
[7, 14]. Moreover, we can use the same module strategy to 
construct a framework for some GGH-type cryptosystems to 
improve their security.  
 
Keywords: Lattice, RSA, Public-key Cryptosystem, Subset 
sum problem, factorization. 
 
1. INTRODUCTION 
 
In 1978 Rivest, Shamir and Adleman published their idea of a 
public key cryptosystem which has been named after their 
surnames since then: RSA [35]. 

Generally a public key (or asymmetric) cryptosystem 
makes use of key pairs consisting of a secret private key and a 
public key. A main advantage compared to symmetric 
cryptosystems is that there is no need of an initial key 
exchange. The public key is used for encryption whereas the 
private key is used for decryption. Additionally, messages 
may be signed by the private key and this signature can be 
verified by the public key. 

The RSA cryptosystem was the first algorithm which could 
be used for signing and encryption. Its security relies on the 
hardness of the problem to take the e-th roots modulo a 
composite integer N of unknown factorization. This task can 
be reduced to the problem of factoring the integer N. Until 
now it is not known whether these problems are equivalent. 
However, there may be other ways to compute the e-th roots 
modulo N. Depending on the choice of the RSA key 
parameters there are in fact other possibilities to break RSA 
(see e.g. the survey by Boneh [6]). 

Furthermore, an attacker might gain additional 
information on the private keys because of implementation 
mistakes or so-called side-channel attacks. These attacks are 

 
 

applied to physical implementation of cryptosystems. An 
attacker may analyze e.g. the power consumption, timing 
information or reaction to faults or electromagnetic radiation 
in order to get knowledge of the private keys. Heninger and 
Shacham introduced a new RSA private key reconstruction 
algorithm [21] that requires fewer bits of the private keys to be 
known and is more efficient. 

Since the seminal work of Ajtai [2] connecting the 
average-case complexity of lattice problems to their 
complexity in the worst case, cryptographic constructions 
based on lattices have drawn considerable attention. Ajtai and 
Dwork [4] proposed the first lattice-based public-key 
cryptosystem whose security is based on the worstcase 
hardness assumptions. After their results, several 
lattice-based cryptosystems [16, 20, 10, 31, 32, 3, 17, 30] have 
been proposed. 

Lattice-based cryptosystems have many advantages: first, 
the computations involved are very simple and usually require 
only modular addition; second, by now they resist the 
cryptanalysis by quantum algorithms while there already exist 
the efficient quantum algorithms [36] for factoring integers 
and computing discrete logarithms. However, most of the 
presented lattice-based cryptosystems which are efficient 
have no security proofs based on the worst-case hardness 
while most of those which have security proofs are not 
efficient. Recently, some efficient lattice-based cryptosystems 
[17, 30] with security proofs have been presented. 

In Crypto97, Goldreich, Goldwasser and Halevi [16] 
proposed a public key cryptosystem based on the closest 
vector problem, which is NP-hard. Although the cryptosystem 
GGH has not a security proof, it has efficient encryption and 
decryption. Moreover, it has a natural signature scheme. 
However, Nguyen [28] showed there is a major flaw in it, and 
it cannot provide sufficient security without being 
impractical. 

The NTRU cryptosystem proposed by Hoffstein, Pipher, 
Silverman [20] is the most practical scheme known to date. It 
features reasonably short, easily created keys, high speed, and 
low memory requirements. By the results of Coppersmith and 
Shamir [9], the security of NTRU can be based on, but not 
equivalent to, the hardness of some lattice problems. To date, 
the chosen-ciphertext attacks against NTRU may be the most 
dangerous and most of the ciphertext-only attacks [9, 24, 19] 
against NTRU relies on the special cyclical structure. 
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Although the Ajtai-Dwork cryptosystem was thought to be 
secure if a particular lattice problem is difficult in the 
worst-case, Nguyen and Stern [27] gave a heuristic attack to 
show that in order to be secure, the implementations of the 
Ajtai-Dwork cryptosystem would require very large keys, 
making it impractical in a real-life environment. In 1998, Cai 
and Cusick [10] proposed another efficient lattice-based 
public-key cryptosystem with much less data expansion by 
mixing the Ajtai-Dwork cryptosystem with a knapsack. 
However, an efficient ciphertext-only attack presented by Pan 
and Deng [29] shows that it’s not secure. 
        In this paper, we also propose a new lattice-based public 
key cryptosystem mixed with a RSA scheme. This paper deals 
with RSA key reconstruction by the means of lattice 
techniques.  For all reconstruction methods a certain fraction 
of random bits of the private keys is given. The remainder of 
the paper is organized as follows. In the second section the 
mathematical basics e.g. on RSA and lattices are briefly 
described. In Section 3, we describe our lattice-based public 
key cryptosystem. The algorithm can be transformed into a 
subset sum problem and hence, a lattice problem. This is the 
first approach. Section 4, we give the security analysis and 
some experimental evidence. Finally, we give a short 
conclusion in Section 5. 

 
2 PRELIMINARIES 
Given an n-bit string n

n xxx }1,0{)....( 01   where xo is 
the least significant bit of x, let x[i] = xi denote the i-th bit of 
x. 

 
2.1 RSA 
The RSA cryptosystem was published by Rivest, Shamir and 
Adleman in 1978 [35] and was the first public key 
cryptosystem. Nowadays it is the de facto standard and 
described in the Public Key Cryptography Standard (PKCS) 
#1 [33]. A public key cryptosystem in general is defined by 
 
Definition2.1. A public key cryptosystem is a tuple (P; C; K; 
E; D) such that: 
• P is a finite set of possible plaintexts. 
• C is a finite set of possible ciphertexts. 
• K is a finite set of possible keys. 
• For each k 2 K there is an encryption function ke ; 

 ek: P →C and a decryption function Ddk  ; dk : C → P 
Such that dk(ek(m)) = m for all mЄ P. 
• The encryption function ek is public; the decryption function 
dk is secret. 
 
The following notation will be useful to introduce the RSA 
cryptosystem. 
 
Remark2.2. Let N be a positive integer. 
• Then the ring of integers modulo N is denoted by ZN: = {0, 
1, 2... N − 1}. 

• and its unit group is denoted by NZ . 

• The unit group consists of all integers in NZ  which is    
coprime to N and forms an abelian group under 
multiplication. 
• The Euler Totient Function '(N) describes the number of 
elements of NZ *  . 
Definition2.3.RSA Cryptosystem Let p and q be two primes. 
Then N = pq (the RSA-modulus) defines P=C: = NZ and 

K: = {(N, e, d) | ed = 1modφ (N)}       (1) 
The public encryption function ek: NZ  → NZ  is defined by 

PmNmme e
k  mod)(     (2) 

And the secret decryption function dk : NZ  → NZ  is 

defined by CcNccd d
k  mod)(        (3) 

e is called public exponent, the tuple (N, e) is called public key 
and d is called private exponent or private key. 
 
Remark2.4. According to the PKCS #1 [33] an RSA private 
key must at least contain the following information: 
• the public key (N, e) 
• the prime factors p and q of N 
• the private exponent d 
• dp := d mod p − 1 and dq := d mod q − 1 
• the inverse of q mod p, denoted by q−1p . 

The usual decryption operation can be accelerated by using 
dp, dq and q−1p: One computes (c mod p)dp and (c mod q)dq 
and then combines the results by the Chinese remainder 
theorem and q−1p . This method is about four times faster 
than the original one [26]. With regard to the best known 
factorization algorithms and the capability of modern 
computers the key elements have to be chosen large enough to 
provide security. Currently the recommended bit length for 
the modulus N is 2048, i.e., p and q are of bit length 1024 as 
they should be of the same size (but also not too close to each 
other). To prevent attacks that take advantage of a too small 
private exponent d (see Wiener’s attack [38] and the 
improvement by Boneh and Durfee [6]) d is chosen large, i.e., 
of the same size like N. 
 
2.2 Subset sum problems 
The subset sum problem is an important problem in computer 
science and mathematics, in particular in complexity theory, 
operations research and cryptography. 
 
Definition2.5. Let inin aAZaa  11 max,0.... and 

n
neee }1,0{)....(: 1  . Define 




n

i
iiaes

1
: . 

Then the subset sum problem (SSP) P is to find x1 ...xn Є {0, 

1} satisfying sxa i

n

i
i 

1
 given a1 ...an and s. 
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The density of the set of weights a1 ...an is defined by  
d: = n/log n (A). 
 
Definition2.6. Let 0 < aij Є Z; i = 1, ....,m; j = 1, ...., n, 

ijniji aA  1max ; i = 1, ....m; 

and n
neee }1,0{)....(: 1  . Define 




n

j
ijji aes

1

:  ; i = 1 

...m. 
The m-dim SSP is: Given aij ; i = 1, ....m; j = 1, ...n and s1, 

....sm find x1, ....xn Є {0, 1}satisfying ij

n

j
ij sxa 

1

for i = 1, 

....m. 
The density of the set of weights aij; i = 1 ...m; j = 1 ...n is 

defined by
))((

:
12  

 n

i
AijLog

nd . 

 
Remark2.7. It was shown that the SSP is NP-complete (in its 
feasibility recognition form) [22]. However, there are 
lattice-based methods which solve almost all SSP of a certain 
low density in polynomial time [8, 11, and 23]. 
 
2.3 Lattices 
Lattice theory has important applications in cryptography. 
Perhaps the most widely known are attacks against many 
knapsack based cryptosystems, RSA, and DSA. But lattice 
theory has also been used in security proofs and in the 
construction of new cryptosystems. In contrast to 
cryptosystems based on factoring or discrete logarithms, there 
are no known quantum algorithms that allow attacking lattice 
based cryptosystems significantly faster than with classical 
algorithms. Lattice based cryptography may therefore serve as 
a long term alternative to established cryptosystems. 

We will give a brief introduction to lattices and lattice 
problems. 

 
Definition2.8. Let b1, b2... bk Є Rn, k≤n linearly 

independent. Then the set }.../{: 1
1

ZbL k

k

i
ii  



                 

(4) 
is a lattice of dimension k. It is called lattice of full rank if k 
=n. 
 
Definition2.9.d (L):= 2/1

,1)det( kjij
t

i bb   is called 

discriminant of the lattice. 
 
Theorem 2.10  (Minkowski). Let L be a full-rank lattice. 
Then there exists a vector x Є L {0} 

with
n

Ldnx
/1

)( where x denotes the Euclidean 

norm of x. 
 

Remark2.11. As a lattice is discrete it has a shortest non-zero 
vector. Though Minkowski’s theorem does not result in a 
constructive method to determine shortest vectors of lattices, 
we sometimes use the following heuristic assumption. 
 
Assumption2.12. In a full-rank lattice L, a vector 0 6= v 2 L 
that satisfies Minkowski’s bound is the only vector 6= 0 in L 
with this property, and hence the smallest vector in L. 

We will see soon that the subset sum problem can be 
reduced to the problem of finding the shortest vector of a 
lattice. 

 
Definition2.13. (Shortest vector problem (SVP)) given a 
basis of a lattice L and a norm N, find the shortest non-zero 
vector x ЄL, as measured by N. 
 
Definition2.14. (Closest vector problem (CVP)) Given a 
basis of a lattice L, a metric M and a vector v Є Rn, find a 
lattice vector x ЄL minimizing the distance to v, as measured 
by M. 
 
Remark2.15. In 1981 it was shown by van Emde Boas that 
the CVP is NP-hard [37] and in 1996 Ajtai proved that the 
SVP is NP-hard under so-called randomized reductions [1]. 
The best known polynomial time algorithm for SVP and CVP 
is the L3 lattice basis reduction algorithm by Lenstra, Lenstra 
and Lov`asz [22]. In practice L3 performs a lot better than its 
worst case bounds suggest. Hence, it is reasonable to 
distinguish the reduction from SSP to SVP from the problem 
of finding a shortest vector in a lattice. 
 
3 OUR LATTICE BASED RSA KEY 
RECONSTRUCTION 
 
There have been many approaches to factoring and RSA 
private key reconstruction in the case of a low public exponent 
e. As attacks on cryptosystems often result in partial key 
exposures, this scenario seemed worthwhile to examine. 

In one model a subset of consecutive bits of the factors or 
private keys is given. The first ones who solved this problem 
were Rivest and Shamir [34] who efficiently factored N = pq 
given a consecutive 2 3 -fraction of the most or least 
significant bits of a factor p or q by means of integer 
programming. Coppersmith [13] applied lattice reduction 
techniques to the reconstruction problem and improved the 
bound to 1 2 of the most or least significant bits of a factor. 
Boneh, Durfee and Frankel [5] used similar techniques to 
reconstruct d given 1 4 of the least significant bits of d. These 
lattice-based methods compute consecutive bits as small 
integer solutions to modular equations. 

In our case we are not given consecutive bits but a fully 
random subset of the private key bits. Hence, the missing bits 
are randomly scattered over the private key bits as well and 
the lattice techniques mentioned above are not usable. 
However, there is another approach to this reconstruction 
problem that relates it to lattices: 
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One can transform the problem into a multidimensional 
subset sum problem which is solvable by lattice techniques. 

 
3.1 Deduction of a subset sum problem from RSA 
equations 
Let (N, e) be an RSA public key and (d, dp, dq) the 
corresponding private key. As above let p and q be two n 2 -bit 
primes, i.e., N is an n-bit modulus and dp and dq are n 2 -bit 
numbers d can be represented by at most n bits. 
 
Key Generation 
First, we divide the bits of the private key elements into the 
unknown and known bits. 
 
• Let }][;12/0:{: knownisipniiI   be the 
index set of known bits of p and 

}....{:}][;12/0:{: 1 iiunknownisipniiI 

, where lk ii   if  k < l, be the index set of unknown bits of p. 
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• Let }][;12/0:{: knownisjpnjjJ   be 
the index set of known bits of q and 

}....{:}][;12/0:{: 1 jjunknownisjpnjjJ 

, where lk jj   if  k < l, be the index set of unknown bits of 
q. 
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• Let }][;12/0:{: knownisrdnrrR   be 
the index set of known bits of d 
and

}....{:}][;12/0:{: 1 krrunknownisrdnrrR 

, where lk rr   if k < l, be the index set of unknown bits of d. 
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• Let }][;12/0:{: knownissdnssS p  be 

the index set of known bits of dp  
and 

}....{:}][;12/0:{: 1 ssunknownissdnssS p 
,where sk < sl if k < l, be the index set of unknown bits of dp. 
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• Let }][;12/0:{: knownistdnttT q  be the 

index set of known bits of dq 
and

}....{:}][;12/0:{: 1 ttunknownistdnttT q 
, where tk < tl if k < l, be the index set of unknown bits of dq. 
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We will be concerned with the case where e is small. This 

case is very common in RSA applications and particularly e = 
216 + 1 = 65537 is widely-used. When e is small each of the 
elements of the private key (d, dp, dq) alone suffices to reveal 
the factorization of N [12]. Accordingly, the private key 
includes highly redundant information. There are a few 
relations between the parameters: 

N = pq                              (5) 
ed ≡1modφ(N)                  (6) 
edp ≡1modφ(p)                  (7) 
edq ≡1modφ(q)                  (8) 

 
The three congruence’s can be transformed into equations 
over the integers with three unknowns’ k, kp and kq: 
ed = k’(N) + 1 = k(p − 1)(q − 1) + 1 by equation (5) 
                       = k (N − p − q + 1) + 1                (9) 

edp = kp'(p) + 1 = kp(p − 1) + 1           (10) 
edq = kq'(q) + 1 = kq(q − 1) + 1           (11) 

 
Encryption 
For any message nM }1,0{ , first, we uniformly choose a 

vector r from n}1,0{ , and then compute the cipher text: 

NrMC e mod  
 
 



Nandini Sarma et al, International Journal of Computing, Communications and Networking, 2(2), April - June 2013, 60 - 66 

64 
@  2012,  IJCCN   All Rights Reserved 

 

Decryption  
Compute the original message NCM d mod and e is 
called public exponent, the tuple (N, e) is called public key 
and (d, dp, dq) is called private exponent or private key. 
 
4 COMPARISION WITH STANDARD RSA 
CRYPTOSYSTEM 
 
We can compare the new cryptosystem to the RSA 
cryptosystem. For the latter, the natural security parameter is 
k = the logarithm of the RSA modulus. The public and secret 
keys of RSA have size O (k), and both encryption and 
decryption require time )( 3kO  (using ordinary 
multiplication algorithms). For the lattice-based 
cryptosystem, the natural security parameter is the dimension 
n. The keys for the new system are relatively large: size 

)( 3nO  for the public key and )( 2nO  for the secret key. 
However, the time required for encryption is only O (n) and 
no multiplications are needed. Decryption requires 
time )( 3nO , comparable to RSA (again using ordinary 
multiplication algorithms). 
 
5 SECURITIES AND EFFICIENCY ANALYSIS 
 
We divided the factors into blocks of equal size of known or 
unknown bits and required that a total of 2 3 of the bits of p 
and q are known. In some cases knowledge of fewer bits 
suffices as enough bits can be pre-computed by alternating 
divisions (modulo powers of N). The described heuristic 
method works for almost all possible forms of p and q and 
makes use of a lattice of dimension less than 9. Only if p and 
q have the same form and two blocks of unknown bits are 
separated by exactly one block of known bits; the method does 
not yield the right solution. 

Herrmann and May [18] describe a similar phenomenon in 
their paper”Solving Linear Equations Modulo Divisors: On 
Factoring Given Any Bits”. For e.g. two blocks of unknown 
bits that are separated by only one known bit it might be better 
to merge these unknown blocks into one new variable. 
However, if we merged two unknown blocks in our approach, 
this would mean that we only know half of the bits. This is 
insufficient for our method as there would exist small linear 
combinations of the basis vectors. 

Maitra, Sarkar and Sen Gupta [25] revisit the 
Heninger-Shacham algorithm and work on the problem when 
a large block of bits in p and q (located at the same position) is 
unknown. They present a lattice-based method that requires 
the subsequent bits, namely at least double the number of 
missing bits for both factors. If e.g. 60 bits are unknown their 
method requires at least the next 120 more significant bits to 
be known. This is similar to our approach where two 
unknown blocks have to be separated by at least two known 
blocks (or they are adjacent). 

This approach is only applicable if just a few bits of the 
private keys are unknown. Otherwise, there will a priori be 

several solutions to the SSP and many small linear 
dependencies among the subset sum weights. Additionally, 
the more bits are unknown the higher is the dimension of the 
SSP lattice. In practice when a lattice basis reduction 
algorithm is used instead of an SVP oracle this becomes a 
problem because these reduction algorithms only perform 
well for low dimensions. 

The algorithm shows better performance by using large N. 
On the other hand by using larger N, the lattice dimension 
also get larger. More specifically, the lattice dimension is 

)( 2nO  by our construction. 
 

Remark: Comparing with GGH, to recover the message 
using direct lattice reduction, we need solve a CVP for a 
2m-dimensional lattice instead of m-dimensional in GGH. 
This may allow us to use small dimensional matrix as public 
key to provide sufficient security. 

Comparing with NTRU, there is not an obvious attack to 
obtain the private key in our cryptosystem while the private 
key of NTRU can be obtained by finding the short vector of 
NTRU-lattice. Moreover, it seems that we use a more random 
Lattice with no special cyclical structure like NTRU, this 
makes our scheme resist some similar attacks against NTRU 
which are based on the cyclical structure. 
 
6  PROBLEMS WITH THIS METHOD 
 
In a practical scenario where the SVP-oracle is replaced by a 
lattice basis reduction algorithm the lattice dimension is very 
important. The L3-algorithm returns a short (so-called 
L3-reduced) lattice basis in time )log( 35 BndO  given a 
d-dimensional integer lattice basis that consists of 
n-dimensional vectors of maximum norm B. Here the lattice 
dimension d corresponds to the number of unknown bits from 
(p, q, d, dp, dq). Hence, the method is only implementable if 
the number of unknown bits is quite small. Then this method 
may sometimes return the correct private RSA key. 
Otherwise, the method is rather impractical. 

Example: Assume the RSA key parameters are chosen as 
recommended in remark.2 which suggests a key size of 1024 
bits for p and q and 2048 bits for d. Then dp and dq are of bit 
length 1024. Let a 0.8-fraction of the bits of each private key 
element p, q, d, dp and dq be given, i.e., a 0.2-fraction of the 
bits is unknown. Remember that in this situation the 
Heninger-Shacham algorithm requires only a 0:27 fractions 
of the bits of each key element. The number of unknown bits 
of p respectively q is approximately 200 and the number of 
unknowns in d is roughly 400. So, just for these three key 
elements the total number of unknowns is about 800 which 
lead to a lattice dimension of the same order. This is not 
efficiently computable with any lattice reduction algorithm 
(see [15] for an overview of lattice basis reduction algorithms 
and their limitations.) 
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7  CONCLUSION 
 
We gave the new lattice construction for the RSA 
cryptography in the situation that e is small. By this 
construction, the theoretical recoverable range has been 
improved. Also, the total efficiency of the lattice based pkc 
has been improved significantly compared with [14] and we 
have   shown it has reasonable key size and quick encryption 
and decryption. The constant c shows that it may resist the 
ordinary lattice attack. Moreover, we can use the same 
module strategy to construct a framework for some GGH-type 
cryptosystems to improve their security. 
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