
Dina Elsayad et al., International Journal of Bio-Medical Informatics and e-Health, 1(1), June – July 2013, 01-09

1
@ 2013, IJBMIeH All Rights Reserved


ABSTRACT

Microarrays technology allows us to measure the expression
level of hundreds of thousands of genes simultaneously. The
microarrays data analysis process involves various heavy
computational tasks such as clustering. The clustering can be
defined as partitioning a dataset into groups where objects in
the same group are similar in somehow. CLUMP (clustering
through MST in parallel) is one of the minimum spanning tree
(MST) -based clustering techniques. It employed a parallel
approach to reduce the MST construction time. An enhanced
version of CLUMP (iCLUMP) was proposed to further
improve the MST construction phase using cover tree data
structure. Despite that modification, the MST construction
phase is still a bottleneck since it is a time consuming task.
Both CLUMP and iCLUMP are based on a distributed parallel
computing model. Therefore, the objective of this paper is to
study a different approach of enhancement using a hybrid
parallel model. The proposed algorithm; hiCLUMP (hybrid
CLUMP), considers utilizing multithreading on some of the
distributed partitions suggested by the CLUMP algorithm.
The experimental results on six different microarrays datasets
show that the load balancing strategy used in hiCLUMP
succeeded to decrease the MST construction in a range
between 8% and 17% on 36 processing node. Moreover, the
results showed that the hiCLUMP could not outperform the
iCLUMP emphasizing that using another data structure is
more effective than increasing the processing power of the
underlying parallel machine.

Key words : Clustering , Microarrays , Minimum spanning
tree, Parallel.

1. INTRODUCTION

Microarrays is one of the hottest fields related to
bioinformatics. Microarrays is a multiplex lab-on-a-chip.
Which is a 2D array on a solid substrate (usually a glass slide
or silicon thin-film cell) that assays large amounts of
biological material using high-throughput screening methods
[1]. The types of that biological material determines the type
of microarrays. Therefore, there are a number of types of
microarrays including DNA microarrays [2], MMChips for
surveillance of microRNA populations [3], Protein
microarrays [4], Tissue microarrays [5], Cellular microarrays

[6], Chemical compound microarrays [6], Antibody
microarrays [7], and Carbohydrate arrays (glycoarrays) [1].

The biological material in DNA microarrays is DNA
fragments, cDNA or oligonucleotide. The DNA microarrays
providing a high-throughput experimental technique that can
measure expression levels of hundreds of thousands of genes
simultaneously. Expression level of the gene is estimated by
measuring the amount of mRNA for that gene. A gene is
active if it is being transcribed. More mRNA usually
indicates more gene activity [8]. This makes the DNA
microarrays of a special importance since it can be used not
only for efficient screening and diagnosis of cancer in early
stages of development but also for the identification of
disease genes and therapeutic targets for human cancers. In
other words, the goal of gene expression analysis is to
discover subsets of genes that are associated with occurrence
of certain diseases, for example breast cancer, leukemia or
lymphoma by comparing gene expression profiling between
tumor cell or tissues and corresponding normal cells or tissues
in humans [9]. This allows biologists to infer gene function
even when sequence similarity alone is insufficient to infer
that functionality.

However, the analysis of the data resulting from
microarrays remains a big challenge for the huge volume of
data it produces. In addition, the data analysis process itself
involves various computational tasks such as extracting
differentially expressed genes, searching similar patterns of
genes with a target gene, network analysis, clustering, and
component analysis [10]. For example, the task of clustering
aims to organize genes that those with similar expression
patterns are grouped together to identifying biologically
relevant groups of genes. It is believed that genes that behave
similarly might have coordinated transcriptional response,
possibly inferring common function or regulatory element.

Most of the clustering techniques are sequential.
However with the massive volume of data produced by
microarrays, parallel algorithms should be considered. The
CLUMP algorithm (clustering through MST in parallel)
proposed a parallel solution to the clustering problem.
However, its MST construction phase was not efficiently
handled. An enhanced version of CLUMP algorithm was
proposed in [11]. According to the authors the enhanced
CLUMP (iCLUMP) successes to improve the performance of
the MST construction phase using the cover tree data
structure. However, the implementation of both CLUMP and
iCLUMP was based on distributed memory architecture.

In this paper, we study using a hybrid parallel
approach. In this model the computation tasks are assigned to

hiCLUMP: A hybrid Implementation of the CLUMP Algorithm for Clustering
Microarrays Data

Dina Elsayad1, Amal Khalifa2, Essam Khalifa3, El-Sayed M. El-horbaty4
Faculty of Computer and Information Sciences

Ain Shams University
Abbassyia, Cairo - Egypt

1dina.elsayad@fcis.asu.edu.eg, 2amal@fcis.asu.edu.eg, 3esskhalifa@eun.eg, 4shorbaty@cis.asu.edu.eg

 ISSN 2321-9017
Volume 1, No.1, June - July 2013

International Journal of Bio-Medical Informatics and e-Health
Available Online at http://warse.org/pdfs/ijbmieh01112013.pdf

Dina Elsayad et al., International Journal of Bio-Medical Informatics and e-Health, 1(1), June – July 2013, 01-09

2
@ 2013, IJBMIeH All Rights Reserved

distributed nodes where each node executes its own task on a
number of threads.
The rest of the paper is organized as follows: section two
provides a brief review on related clustering techniques,
section 3 describes the proposed algorithm, the implantation
and the results are discussed in section 4, and finally the
conclusions are given in section5.

2. BACKGROUND AND RELATED WORK

The clustering problem is defined as partitioning a
dataset into groups called clusters where each cluster contains
a set of objects that have common characteristics [12]. In case
of a noisy background the identified clusters don’t necessarily
cover all objects. In general, clustering algorithms can be
classified into fuzzy clustering and hard clustering. The
objects in fuzzy clustering can belong to more than one cluster
with associated membership level, while in hard clustering the
object belongs to only one cluster.

As shown in Figure. 1, the hard clustering can be
further classified into sub-categories such as hierarchical
clustering [13] [14] [15], partitional algorithms [16],
density-based clustering [17] [18] and graph based clustering.
In graph based clustering techniques clusters are determined
using graph representation such as bi-partite graph [19] or
minimum spanning tree (MST) [20] [21] [22] [23] [24] [11].
The main advantage of MST-based clustering is the little
impact of the cluster boundary shape.

As shown in Figure. 2, MST-based clustering
algorithms consist of three main steps: MST construction,
inconsistent edges identification, removing inconsistent edges
from MST to get the clusters. Inconsistent edges are the edges
that may connect objects belong to different clusters. The
main difference between different MST-based clustering
algorithms is the measuring of edge inconsistency. One
approach of edge inconsistency measure is the longest edge
removal [20]. The drawback of this approach is the
partitioning without sufficient evidence.

Figure 1: Types of clustering algorithms

Figure 2: MST-based clustering algorithm steps

 Zhong et al. proposed a clustering method that is
based on two rounds of minimum spanning trees [21], to
avoid partitioning without sufficient evidence. In the first
round a MST (T1) is constructed and in the second round
another MST (T2) is constructed by considering only the
edges that do not belong to (T1). Afterwards, both T1 and T2
are merged to construct the final MST (T). The clustering
process works on the final MST (T). To ensure more evidence
in each cut at least two edges must be removed, of which at
least one edge comes from T1 and T2, respectively. Another
MST- based clustering algorithm that is based on the direct
clustering concept was proposed by Zhao and Zhang [22].

Xu et al. presented another MST-based clustering
algorithm. The main idea of this approach is that each cluster
corresponds to a sub-tree in the MST [23]. However, the size
of the data this kind of clustering algorithms can effectively
handle is limited. Therefore, Olman et al. [24] presented a
parallel MST-based clustering algorithm called CLUMP
(clustering through MST in parallel) which identifies dense
clusters in a noisy background. An enhanced version of
CLUMP called iCLUMP was proposed in [11]. It enhances
MST construction phase using a new data structure called
cover tree [25]. The implementation of both CLUMP and
iCLUMP was based on the distributed memory architecture.
In this paper we study the performance of the CUMP
algorithm using a hybrid parallel approach. The proposed
algorithm; hiCLUMP (hybrid CLUMP), enhances the MST
construction phase using threads.

3. THE PROPOSED ALGORITHM

As discussed before, MST-based clustering
algorithms consist of three phases MST construction,
inconsistent edges identification and clusters identifications.
Where the MST construction phase is considered the
computational bottleneck of the algorithm [24]. In CLUMP
[24] the MST is constructed using Prim algorithm and
Fibonacci heap [26]. The MST construction phase was done
on parallel distributed memory architecture. According to
their approach, the graph is partitioned into n subgraphs Gi
and each pair of graphs Gi and Gj are combined into bipartite
graphs Bij (as listed in Algorithm 1) . The MSTs Ti and Tij are
constructed for each subgraph Gi and each bipartite graph Bij
respectively. After that, all the MSTs are combined into one
graph G from which the MST T is constructed (Algorithm 2).
The complexity for constructing each sub-graph Gi can be
expressed using (1), while (2) describes the complexity for
each bipartite graph Bij.

O(|Ei|+|Vi| log(|Vi|)) (1)
O(|Vi||Vj|+(|Vi|+|Vj|) log(|Vi|+|Vj|)) (2)

CLUMP distributes the task of MST construction for

each subgraph Gi and bipartite graph Bij among all the
processing nodes. The number of the processing nodes P
depends on the number of partitions n where P = n(n+1)/2.
More specifically, n processing nodes are used to construct
MST Ti of subgraphs Gi, while the rest of the processing
nodes are used to construct the MST Tij of the bipartite graphs

Dina Elsayad et al., International Journal of Bio-Medical Informatics and e-Health, 1(1), June – July 2013, 01-09

3
@ 2013, IJBMIeH All Rights Reserved

Bij. Since each bipartite graph Bij is a combination of two
subgraphs Gi and Gj, the time needed to construct Tij is nearly
double the time needed to construct Ti. At this point,
hiCLUMP implements a hybrid parallel model on the MST
construction of the bipartite graphs Bij. In other words the
nodes assigned that task of constructing the MST of bipartite
graph Bij will actually implements the Prim algorithm using
threads (Algorithm 5). This load balancing strategy is
expected to reduce the MST construction time and hence will
contribute to the overall execution time of the algorithm.

The reset of the CLUMP algorithm would proceed as
it is. That is the clusters identification phase (Algorithm 3 and
4) follows the MST construction phase. Notes that the clusters
identification is a recursive process where the first cluster
consists of the whole MST edges and each cluster is
partitioned recursively until the cluster size is less than or
equal to the minimum cluster size. The cluster is identified by
two edge indexes (left index and right index). Where, the
inconsistent edge is the longest edge in the cluster range. So,
the cluster is partitioned into a left valley and a right valley
and the process is repeated recursively on each one of them.

Algorithm 1: Graph Construction

Input Dataset of N points in Rd

Output G(V,E): undirected fully connected graph, where V is the vertices set and E is the edges set

Step 1:

Add each point v as a vertex to V
Step 2: d(u, v) = the distance between each pair of points u and v
Step 3: Connect each pair of points (u, v) by edge e(u, v) where the weight of the edge is d(u, v)
Step 4: Add e(u,v) to E

Algorithm 2 : MST Construction
Input G(V, E): undirected fully connected graph

n: the partitions number

Output MST T of G(V, E)

Step 1: Calculate partition size K = |V|/n
Step 2: Partition G into n sub-graphs Gi = (Vi, Ei) each sub-graph of size K vertex
Step 3: If |V| is not evenly divided by K

Add the remaining vertices to the last sub-graph
End if

Step 4: Construct the MSTs for sub-graphs Gi and bipartite graphs Bij in parallel
Step 4.1: Assume that the distributed system consists of a set of processing nodes Pi (1 ≤ i ≤ n(n-1)/2)
Step 4.2: Distribute the work among the nodes :
Step 4.3: If Master Node:

Step 4.3.1: x = n
Step 4.3.2: For i = 0 to n-1
 Send Gi to Pi where i > 0
 For j = i+1 to n-1
 Send Gi and Gj to Px
 Increment x
 End for
 End for

Step 4.3.3: Construct MST T0 for G0
Step 4.3.4: Wait till all worker nodes send their MSTs
Step 4.3.5: Reduce and merge the whole MSTs in one graph M

 End if
Step 4.4: If Worker node:

Step 4.4.1: If receive a graph Gi
 Construct MST Ti using original Prim algorithm
 Send Ti to the master node
 End if

Step 4.4.2: If receive a two graphs Gi and Gj
 Define a bipartite graph Bij = (Vi U Vj, Eij) where Eij ⊃ E is the set of edges between Vi and Vj

Dina Elsayad et al., International Journal of Bio-Medical Informatics and e-Health, 1(1), June – July 2013, 01-09

4
@ 2013, IJBMIeH All Rights Reserved

 Construct MST Tij for bipartite graph Bij using the multithreading version of Prim (Algorithm 5)
 Send Tij to the master node
 End if
 End if

Step 5: Construct MST T of M

Algorithm 3: CLUMP Cluster identification

Input N: the number of edges in MST
min_size: cluster minimum size

Output C: the set of the data clusters where each cluster Ci is defined by edge ranges {Li, Ri}

Step 1: Initialization:
 let the first cluster C0 consists of the whole MST edges
 L0 = 1, R0 = N
Step 2: Call the routine Cluster_Partition (L0,R0,min_size)
Step 3: Build the hierarchical structure of the clusters in C
Step 4: Clean the clusters (C`)
Step 5: Rebuild the hierarchical structure of clusters in (C`)

Algorithm 4: Cluster_Partition Routine

Input Li, Ri: the left and right cluster ranges
 min_size: cluster minimum size

Output C: set of clusters

Step 1: Let max_index be the index of edge with maximum weight in range {Li+1, Ri}
Step 2: Let Left_valley contains all edges in the range {Li , max_index -1}
Step 3: Add the cluster Left_valley to C
Step 4: If size of Left_valley >= min_size

Step 4.1: Cluster_Partition(Li, max_index -1, min_size)
 End if
Step 5: Let Right_valley contains all edges in the range { max_index, Ri}
Step 6: Add the cluster Right_valley to C
Step 7: If size of Right_valley >= min_size

Step 7.1: Cluster_Partition(max_index , Ri, min_size)
 End if

Algorithm 5: Prim algorithm using Multithreading

Input G(V, E): undirected fully connected graph

Output T(VT, ET): Minimum spanning tree of G where VT is the vertices set and ET is the edges set

Step 1: Initialization:

Step1.1: Let VT consists of an arbitrary node from V: VT = {X}
Step1.2 Let ET equal empty set: ET = {}

Step 2: Parallel for i=1 to number of vertices -1
Step 2.1: Choose an edge e(u, v) with the minimal weight such that u is in VT and v is not
Step 2.2: Add v to VT: VT = VT ⋃ v
 Add e(u, v) to ET: VT = ET ⋃e(u, v)

 End

Dina Elsayad et al., International Journal of Bio-Medical Informatics and e-Health, 1(1), June – July 2013, 01-09

5
@ 2013, IJBMIeH All Rights Reserved

4. IMPLEMENTATION AND RESULTS

This section demonstrates some experiments to
evaluate the performance of the proposed MST-based
clustering algorithm hiCLUMP against the original CLUMP
and its modified version iCLUMP. The CLUMP and
iCLUMP are implemented using C++ with MPI. While,
hiCLUMP is implemented using C++ with MPI and OpenMP.
The experiments were conducted on a 36 processing nodes
cluster where each node is Intel ® Xeon® CPU E5620 @ 2.40
GHZ. Six large microarrays datasets are used for comparison,
five of them are breast cancer datasets and one ovarian cancer.
These datasets are publicly available from the GEO database
(http://www.ncbi.nlm.nih.gov/) through their accession
numbers. Table 1 shows the accession number and the size of
each dataset.

The run times of the three algorithms are measured
for the six datasets using different numbers of processing
nodes. Table 2 shows the runtime for the three algorithms
applied on the 5th and 6th datasets. As indicated from the
results, the hiCLUMP algorithm outperformed the original

CLUMP achieving better runtime. For example, at p = 36 the
achieved runtime was 40.67and 35.85 compared to 42.78 and
40 by CLUMP algorithm for the 5th and 6th dataset
respectively. The results also show that iCLUMP algorithm
outperformed both the original CLUMP and hiCLUMP
achieving better runtime for all the tested values of the
processing nodes p. For example, at p = 36 the achieved
runtime was 39.36 second and 31.23 second compared to
CLUMP algorithm for the 5th and 6th dataset respectively.
Figures 3, 4 depict the runtime of each dataset separately.

Figure 5 shows the MST construction time of the
three algorithms at p = 36, where only 28 nodes actually
handled the bipartite graphs using 2 threads. The results show
that hiCLUMP success to decrease the CLUMP MST
construction time in range between 7% and 18%. While,
Figure 6 shows the three algorithms overall execution time at
p = 36. One more time, hiCLUMP is better than CLUMP
providing up to 13% decrease in the overall execution time.
Again the iCLUMP still outperforms both CLUMP and
hiCLUMP.

Table 1: Microarrays datasets used for comparison
No. Accession number Size (number of genes x number of samples)

1 GSE6008 22283 x 104

2 GSE7390 22283 x 189

3 GSE2034 22283 x 256

4 GSE3494 22645 x 252

5 GSE9195 54675 x 78

6 GSE6532 54675 x 88

Table 2: The runtime of the tested algorithms measured in seconds as applied on two datasets with accession numbers GSE9195 and GSE6532
p GSE9195 GSE6532

CLUMP hiCLUMP iCLUMP CLUMP hiCLUMP iCLUMP
3 232.68 212.42 173.78 172.78 152.13 102.87
6 118.28 107.58 101.14 90.10 81.75 61.11
10 82.28 75.39 70.93 80.42 67.78 46.93
15 66.97 63.43 60.40 53.45 48.08 39.92
21 56.99 54.38 52.25 48.43 42.87 37.08
28 47.12 45.25 43.11 43.98 37.65 32.82
36 42.78 40.67 39.36 40.00 35.85 31.23

Dina Elsayad et al., International Journal of Bio-Medical Informatics and e-Health, 1(1), June – July 2013, 01-09

6
@ 2013, IJBMIeH All Rights Reserved

Figure 3: Runtime for dataset GSE9195

Figure 4: Runtime for dataset GSE6532

Dina Elsayad et al., International Journal of Bio-Medical Informatics and e-Health, 1(1), June – July 2013, 01-09

7
@ 2013, IJBMIeH All Rights Reserved

Figure 5: MST construction time of the tested algorithms measured in seconds as applied on all the datasets

Figure 6: Algorithm overall execution time of the tested algorithms measured in seconds as applied on all the datasets

5. CONCLUSIONS AND FUTURE WORK

One of the MST-based clustering techniques is the
CLUMP algorithm, which identifies dense clusters in a noisy
background. iCLUMP is improved version of CLUMP, which
enhances the CLUMP performance especially the MST
construction phase. iCLUMP constructs MST using the cover
tree data structure. This paper presents hiCLUMP which is
another improved version of CLUMP algorithm. The idea of
hiCLUMP is based increasing the processing power instead of
applying another data structure. In other words, hiCUMP uses
a hybrid parallel model in which the distributed and shared
memory models are merged together. The MST construction
phase in hiCLUMP is implemented using multithreading on
the bipartite graphs since the size of each bipartite graph is
double the size of an ordinary subgraph resulting an
imbalance in the computational time. Experiments were
conducted on a 36- processing nodes cluster powered by
multithreading capability. The runtime and MST construction
time were measured for the three algorithms using 6
microarrays datasets. At 36 processing nodes, the hiCLUMP
overall runtime was 35.85 seconds instead of 40 for CLUMP
using a dataset of size 54675 x 88. The MST construction time

is decreased in range between 7% and 18%. However, the
iCLUMP still outperforming both CLUMP and iCLUMP for
all the tested cases. It implies that using an efficient data
structure has much more impact on the performance than
increasing the computational power of the parallel machine.

As future work we aim to apply different distance
measure on the algorithms.

REFERENCES
1. Culf, A.S. and Cuperlovic-Culf, M. and Ouellette,

R.J. Carbohydrate microarrays: survey of fabrication
techniques. OMICS: A Journal of Integrative
Biology, vol. 10, no. 3, pp. 289-310, 2006.

2. Schena, M. and Shalon, D. and Davis, R.W. and
Brown, P.O. Quantitative monitoring of gene
expression patterns with a complementary DNA
microarray. Science (Washington), vol. 270, no.
5235, pp. 467-470, 1995.

Dina Elsayad et al., International Journal of Bio-Medical Informatics and e-Health, 1(1), June – July 2013, 01-09

8
@ 2013, IJBMIeH All Rights Reserved

3. Meenakshisundaram, K. and Carmen, L. and
Michela, B. and Diego, D.B. and Rosaria, V. and
Gabriella, M. Existence of snoRNA, microRNA,
piRNA characteristics in a novel non-coding RNA:
x-ncRNA and its biological implication in Homo
sapiens. Journal of Bioinformatics and Sequence
Analysis, vol. 1, no. 2, pp. 031-040, 2009.

4. Stoevesandt, O. and Taussig, M.J. and He, M.
Protein microarrays: high-throughput tools for
proteomics. Expert Review of Proteomics, vol. 6, no.
2, pp. 145-157, 2009.

5. Kononen, J. and Bubendorf, L. and Kallionimeni, A.
and Börlund, M. and Schraml, P. and Leighton, S.
and Torhorst, J. and Mihatsch, M.J. and Sauter, G.
and Kallionimeni, O.P. Tissue microarrays for
high-throughput molecular profiling of tumor
specimens. Nature Medicine, vol. 4, no. 7, pp.
844-847, 1998.

6. Ma, H. and Horiuchi, K.Y. Chemical microarray: a
new tool for drug screening and discovery. Drug
discovery today, vol. 11, no. 13-14, pp. 661-668,
2006.

7. Rivas, L.A. and García-Villadangos, M. and
Moreno-Paz, M. and Cruz-Gil, P. and Gómez-Elvira,
J. and Parro, V. A 200-Antibody Microarray
Biochip for Environmental Monitoring: Searching
for Universal Microbial Biomarkers through
Immunoprofiling. Analytical Chemistry, vol. 80, no.
21, pp. 7970-7979, 2008.

8. Schena, M. and Shalon, D. and Davis, R.W. and
Brown, P.O. Quantitative monitoring of gene
expression patterns with a complementary DNA
microarray. Science (Washington), vol. 270, no.
5235, pp. 467-470, 1995.

9. Li, S. and Li, D. DNA microarray technology and
data analysis in cancer research. World Scientific
Pub Co Inc, 2008.

10. Yang, Y. and Choi, J.Y. and Choi, K. and Pierce, M.
and Gannon, D. and Kim, S. BioVLAB-Microarray:
Microarray Data Analysis in Virtual Environment.
IEEE Fourth International Conference on eScience,
2008.

11. Elsayad, D. Khalifa, A. Khalifs, M.E. El-Horbaty,
E.-S. An improved parallel minimum spanning tree
based clustering algorithm for microarrays data
analysis. 8th International Conference on

Informatics and Systems (INFOS), May 2012, pp.
DE-66,DE-72.

12. D. Dembele and P. Kanstner. Fuzzy C-means
method for clustering microarray data.
Bioinformatics, vol. 19, pp. 973-980, 2003.

13.

Ivan G. Costa, Francisco de A.T. de Carvalho and
Marcilio C.P. de Souto. Comparative Analysis of
Clustering Methods for Gene Expression Time
Course Data. Genetics and Molecular Biology, vol.
27, no. 4, pp. 623-631, 2004.

14. Carlos Cotta, Pablo Moscato. A memetic-aided
approach to hierarchical clustering from distance
matrices: application to gene expression clustering
and phylogeny. Biosystems, vol. 72, no. 1, pp.
75-97, 2003.

15. Sudip Seal, Srikanth Komrina, Srinivas Aluru. An
optimal hierarchical clustering algorithm for gene
expression data. Elsevier, 2004.

16. C.M. Bishop, Neural Networks for Pattern
Recognition. Oxford Univ.Press, 1995.

17. De Bin, R. and Risso, D. A novel approach to the
clustering of microarray data via nonparametric
density estimation. BMC bioinformatics, vol. 12, no.
1, pp. 49-56, 2011.

18. McNicholas, P.D. and Murphy, T.B. Model-based
clustering of microarray expression data via latent
Gaussian mixture models. Bioinformatics, vol. 26,
no. 12, pp. 2705 – 2712, 2010.

19. Kanungo, S. and Sahoo, G. and Gore, M.M. A
Co-Clustering Technique for Gene Expression Data
Using Bi-Partite Graph Approach. International
Conference on Bioinformatics and Biomedical
Engineering, 2010, pp. 1-5.

20. Jana, PK and Naik, A. An efficient minimum
spanning tree based clustering algorithm. Proceeding
of International Conference on Methods and Models
in Computer Science, 2009, pp. 1-5.

21. Zhong, C. and Miao, D. and Wang, R. A
graph-theoretical clustering method based on two
rounds of minimum spanning trees. Pattern
Recognition, vol. 43, no. 3, pp. 752-766, 2010.

22. Zhao, W.L. and Zhang, Z.G. An Improved
Algorithm for Clustering Gene Expression Data

Dina Elsayad et al., International Journal of Bio-Medical Informatics and e-Health, 1(1), June – July 2013, 01-09

9
@ 2013, IJBMIeH All Rights Reserved

Using Minimum Spanning Trees. Applied
Mechanics and Materials, vol. 29, pp. 2656-2661,
2010.

23. XY. Xu, V. Olman, and D. Xu. Clustering Gene
Expression Data Using a Graph-Theoretic
Approach: An Application of Minimum Spanning
Tree. Bioinformatics, vol. 18, no. 4, pp. 526-535,
2001.

24. Olman, V. and Mao, F. and Wu, H. and Xu, Y.
Parallel clustering algorithm for large data sets with
applications in bioinformatics. IEEE/ACM
Transactions on Computational Biology and
Bioinformatics, vol 6, no. 2, pp. 344-352, 2009.

25. A. Beygelzimer, S. Kakade, and J.C. Langford.
Cover Trees for Nearest Neighbor. Proceedings of
the 23rd International Conference on Machine
learning, 2006, pp. 97–104.

26. Handbook of Discrete and Combinatorial
Mathematics, K.H. Rosen, ed. CRC Press, 1999.

