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 
ABSTRACT 
 
Microarrays technology allows us to measure the expression 
level of hundreds of thousands of genes simultaneously. The 
microarrays data analysis process involves various heavy 
computational tasks such as clustering. The clustering can be 
defined as partitioning a dataset into groups where objects in 
the same group are similar in somehow. CLUMP (clustering 
through MST in parallel) is one of the minimum spanning tree 
(MST) -based clustering techniques. It employed a parallel 
approach to reduce the MST construction time. An enhanced 
version of CLUMP (iCLUMP) was proposed to further 
improve the MST construction phase using cover tree data 
structure. Despite that modification, the MST construction 
phase is still a bottleneck since it is a time consuming task. 
Both CLUMP and iCLUMP are based on a distributed parallel 
computing model. Therefore, the objective of this paper is to 
study a different approach of enhancement using a hybrid 
parallel model. The proposed algorithm; hiCLUMP (hybrid 
CLUMP), considers utilizing multithreading on some of the 
distributed partitions suggested by the CLUMP algorithm. 
The experimental results on six different microarrays datasets 
show that the load balancing strategy used in hiCLUMP 
succeeded to decrease the MST construction in a range 
between 8% and 17% on 36 processing node.  Moreover, the 
results showed that the hiCLUMP could not outperform the 
iCLUMP emphasizing that using another data structure is 
more effective than increasing the processing power of the 
underlying parallel machine. 
 
Key words : Clustering , Microarrays , Minimum spanning 
tree, Parallel.  
 
1. INTRODUCTION 
 
Microarrays is one of the hottest fields related to 
bioinformatics. Microarrays is a multiplex lab-on-a-chip. 
Which is a 2D array on a solid substrate (usually a glass slide 
or silicon thin-film cell) that assays large amounts of 
biological material using high-throughput screening methods 
[1].  The types of that biological material determines the type 
of microarrays. Therefore, there are a number of types of 
microarrays including DNA microarrays [2], MMChips for 
surveillance of microRNA populations [3], Protein 
microarrays [4], Tissue microarrays [5], Cellular microarrays 
 

 

[6], Chemical compound microarrays [6], Antibody 
microarrays [7], and Carbohydrate arrays (glycoarrays) [1].  

The biological material in DNA microarrays is DNA 
fragments, cDNA or oligonucleotide. The DNA microarrays 
providing a high-throughput experimental technique that can 
measure expression levels of hundreds of thousands of genes 
simultaneously. Expression level of the gene is estimated by 
measuring the amount of mRNA for that gene. A gene is 
active if it is being transcribed.  More mRNA usually 
indicates more gene activity [8]. This makes the DNA 
microarrays of a special importance since it can be used not 
only for efficient screening and diagnosis of cancer in early 
stages of development but also for the identification of 
disease genes and therapeutic targets for human cancers.  In 
other words, the goal of gene expression analysis is to 
discover subsets of genes that are associated with occurrence 
of certain diseases, for example breast cancer, leukemia or 
lymphoma by comparing gene expression profiling between 
tumor cell or tissues and corresponding normal cells or tissues 
in humans [9].  This allows biologists to infer gene function 
even when sequence similarity alone is insufficient to infer 
that functionality.  

However, the analysis of the data resulting from 
microarrays remains a big challenge for the huge volume of 
data it produces. In addition, the data analysis process itself 
involves various computational tasks such as extracting 
differentially expressed genes, searching similar patterns of 
genes with a target gene, network analysis, clustering, and 
component analysis [10]. For example, the task of clustering 
aims to organize genes that those with similar expression 
patterns are grouped together to identifying biologically 
relevant groups of genes. It is believed that genes that behave 
similarly might have coordinated transcriptional response, 
possibly inferring common function or regulatory element. 

Most of the clustering techniques are sequential. 
However with the massive volume of data produced by 
microarrays, parallel algorithms should be considered. The 
CLUMP algorithm (clustering through MST in parallel) 
proposed a parallel solution to the clustering problem. 
However, its MST construction phase was not efficiently 
handled. An enhanced version of CLUMP algorithm was 
proposed in [11]. According to the authors the enhanced 
CLUMP (iCLUMP) successes to improve the performance of 
the MST construction phase using the cover tree data 
structure. However, the implementation of both CLUMP and 
iCLUMP was based on distributed memory architecture.  

In this paper, we study using a hybrid parallel 
approach. In this model the computation tasks are assigned to 

hiCLUMP: A hybrid Implementation of the CLUMP Algorithm for Clustering 
Microarrays Data 

Dina Elsayad1, Amal Khalifa2, Essam Khalifa3, El-Sayed M. El-horbaty4 
Faculty of Computer and Information Sciences 

Ain Shams University 
Abbassyia, Cairo - Egypt 

1dina.elsayad@fcis.asu.edu.eg, 2amal@fcis.asu.edu.eg, 3esskhalifa@eun.eg, 4shorbaty@cis.asu.edu.eg 
 

                                                                                                                                    ISSN   2321-9017 
Volume 1, No.1, June - July  2013 

International Journal of Bio-Medical Informatics and e-Health 
Available Online at http://warse.org/pdfs/ijbmieh01112013.pdf 

 



Dina Elsayad et al., International Journal of Bio-Medical Informatics and e-Health, 1(1),  June – July   2013, 01-09 

2 
@  2013,  IJBMIeH  All Rights Reserved 

 

distributed nodes where each node executes its own task on a 
number of threads.  
The rest of the paper is organized as follows:  section two 
provides a brief review on related clustering techniques, 
section 3 describes the proposed algorithm, the implantation 
and the results are discussed in section 4, and finally the 
conclusions are given in section5. 
 
2. BACKGROUND AND RELATED WORK  
 

The clustering problem is defined as partitioning a 
dataset into groups called clusters where each cluster contains 
a set of objects that have common characteristics [12]. In case 
of a noisy background the identified clusters don’t necessarily 
cover all objects. In general, clustering algorithms can be 
classified into fuzzy clustering and hard clustering. The 
objects in fuzzy clustering can belong to more than one cluster 
with associated membership level, while in hard clustering the 
object belongs to only one cluster.  

As shown in Figure. 1, the hard clustering can be 
further classified into sub-categories such as hierarchical 
clustering [13] [14] [15], partitional  algorithms [16], 
density-based clustering [17] [18] and graph based clustering. 
In graph based clustering techniques clusters are determined 
using graph representation such as bi-partite graph [19] or 
minimum spanning tree (MST) [20] [21] [22] [23] [24] [11].  
The main advantage of MST-based clustering is the little 
impact of the cluster boundary shape.   

As shown in Figure. 2, MST-based clustering 
algorithms consist of three main steps: MST construction, 
inconsistent edges identification, removing inconsistent edges 
from MST to get the clusters. Inconsistent edges are the edges 
that may connect objects belong to different clusters.  The 
main difference between different MST-based clustering 
algorithms is the measuring of edge inconsistency. One 
approach of edge inconsistency measure is the longest edge 
removal [20].  The drawback of this approach is the 
partitioning without sufficient evidence.  

 

 
Figure 1: Types of clustering algorithms 
 

 
Figure 2: MST-based clustering algorithm steps 

 Zhong et al. proposed a clustering method that is 
based on two rounds of minimum spanning trees [21], to 
avoid partitioning without sufficient evidence. In the first 
round a MST (T1) is constructed and in the second round 
another MST (T2) is constructed by considering only the 
edges that do not belong to (T1).  Afterwards, both T1 and T2 
are merged to construct the final MST (T). The clustering 
process works on the final MST (T). To ensure more evidence 
in each cut at least two edges must be removed, of which at 
least one edge comes from T1 and T2, respectively. Another 
MST- based clustering algorithm that is based on the direct 
clustering concept was proposed by Zhao and Zhang [22]. 

Xu et al. presented another MST-based clustering 
algorithm. The main idea of this approach is that each cluster 
corresponds to a sub-tree in the MST [23]. However, the size 
of the data this kind of clustering algorithms can effectively 
handle is limited.  Therefore, Olman et al. [24] presented a 
parallel MST-based clustering algorithm called CLUMP 
(clustering through MST in parallel) which identifies dense 
clusters in a noisy background. An enhanced version of 
CLUMP called iCLUMP was proposed in [11]. It enhances 
MST construction phase using a new data structure called 
cover tree [25]. The implementation of both CLUMP and 
iCLUMP was based on the distributed memory architecture. 
In this paper we study the performance of the CUMP 
algorithm using a hybrid parallel approach. The proposed 
algorithm; hiCLUMP (hybrid CLUMP), enhances the MST 
construction phase using threads. 
 
3.  THE PROPOSED ALGORITHM  
 

As discussed before, MST-based clustering 
algorithms consist of three phases MST construction, 
inconsistent edges identification and clusters identifications. 
Where the MST construction phase is considered the 
computational bottleneck of the algorithm [24].  In CLUMP 
[24] the MST is constructed using Prim algorithm and 
Fibonacci heap [26]. The MST construction phase was done 
on parallel distributed memory architecture. According to 
their approach, the graph is partitioned into n subgraphs Gi 
and each pair of graphs Gi and Gj are combined into bipartite 
graphs Bij (as listed in Algorithm 1) . The MSTs Ti and Tij are 
constructed for each subgraph Gi and each bipartite graph Bij 
respectively. After that, all the MSTs are combined into one 
graph G from which the MST T is constructed (Algorithm 2). 
The complexity for constructing each sub-graph Gi can be 
expressed using (1), while (2) describes the complexity for 
each bipartite graph Bij. 

 
O(|Ei|+|Vi| log(|Vi|))                          (1) 
O(|Vi||Vj|+(|Vi|+|Vj|) log(|Vi|+|Vj|))                 (2) 

 
CLUMP distributes the task of MST construction for 

each subgraph Gi and bipartite graph Bij among all the 
processing nodes. The number of the processing nodes P 
depends on the number of partitions n where P = n(n+1)/2. 
More specifically, n processing nodes are used to construct 
MST Ti of subgraphs Gi, while the rest of the processing 
nodes are used to construct the MST Tij of the bipartite graphs 
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Bij. Since each bipartite graph Bij is a combination of two 
subgraphs Gi and Gj, the time needed to construct Tij is nearly 
double the time needed to construct Ti. At this point, 
hiCLUMP implements a hybrid parallel model on the MST 
construction of the bipartite graphs Bij. In other words the 
nodes assigned that task of constructing the MST of bipartite 
graph Bij will actually implements the Prim algorithm using 
threads (Algorithm 5). This load balancing strategy is 
expected to reduce the MST construction time and hence will 
contribute to the overall execution time of the algorithm. 

The reset of the CLUMP algorithm would proceed as 
it is. That is the clusters identification phase (Algorithm 3 and 
4) follows the MST construction phase. Notes that the clusters 
identification is a recursive process where the first cluster 
consists of the whole MST edges and each cluster is 
partitioned recursively until the cluster size is less than or 
equal to the minimum cluster size. The cluster is identified by 
two edge indexes (left index and right index). Where, the 
inconsistent edge is the longest edge in the cluster range. So, 
the cluster is partitioned into a left valley and a right valley 
and the process is repeated recursively on each one of them.  

 
 

Algorithm 1: Graph Construction 

Input Dataset of N points in Rd 

Output G(V,E): undirected fully connected graph, where V is the vertices set and E is the edges set 
  
Step 1: 

Add each point v as a vertex to V 
Step 2: d(u, v) = the distance between each pair of points u and v 
Step 3: Connect each pair of points (u, v) by edge e(u, v) where the weight of the edge is d(u, v) 
Step 4: Add e(u,v) to E 

 
Algorithm 2 : MST Construction 
Input G(V, E): undirected fully connected graph 

n: the partitions number 

Output  MST T of G(V, E)  
  
Step 1: Calculate partition size K = |V|/n 
Step 2: Partition G into n sub-graphs Gi = (Vi, Ei) each sub-graph of size K vertex  
Step 3: If |V| is not evenly divided by K  

Add the remaining vertices to the last sub-graph 
End if 

Step 4: Construct the MSTs for sub-graphs Gi  and bipartite graphs Bij in parallel 
Step 4.1: Assume that the distributed system consists of a set of  processing nodes Pi (1 ≤ i ≤  n(n-1)/2) 
Step 4.2: Distribute the work among the nodes : 
Step 4.3: If Master Node: 

Step 4.3.1: x = n 
Step 4.3.2: For i = 0 to n-1 
 Send Gi to Pi where i > 0 
 For j = i+1 to n-1 
 Send Gi and Gj  to Px  
 Increment x 
 End for 
 End for 

Step 4.3.3: Construct MST T0 for G0 
Step 4.3.4: Wait till all worker nodes send their MSTs 
Step 4.3.5: Reduce and merge the whole MSTs in one graph M 

 End if 
Step 4.4: If Worker node: 

Step 4.4.1: If receive a graph Gi  
 Construct MST Ti using original Prim algorithm 
 Send Ti to the master node 
 End if 

Step 4.4.2: If receive a two graphs Gi and Gj 
 Define a bipartite  graph Bij = (Vi U Vj, Eij) where Eij ⊃ E is the set of  edges between Vi and Vj 
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 Construct MST Tij for bipartite graph Bij using the multithreading version of Prim (Algorithm 5) 
 Send Tij to the master node 
 End if 
 End if 

Step 5: Construct MST T of M 
 
 

Algorithm 3: CLUMP Cluster identification 

Input N: the number of edges in MST 
min_size: cluster minimum size 

Output C: the set of the data clusters where each cluster Ci is defined by edge ranges {Li, Ri} 
  
Step 1: Initialization:  
 let the first cluster C0 consists of  the whole MST  edges    
 L0 = 1, R0 = N 
Step 2: Call the routine Cluster_Partition (L0,R0,min_size) 
Step 3: Build the hierarchical structure of the  clusters in C 
Step 4: Clean the clusters (C`) 
Step 5: Rebuild the hierarchical structure of clusters in (C`) 

 
 

Algorithm 4: Cluster_Partition Routine 

Input Li, Ri: the left and right cluster ranges 
 min_size: cluster minimum size 

Output C: set of clusters 
  
Step 1: Let max_index be the index of edge with maximum weight in range {Li+1, Ri} 
Step 2: Let Left_valley contains all  edges in the range {Li , max_index -1} 
Step 3: Add the cluster Left_valley to C 
Step 4: If size of Left_valley >= min_size 

Step 4.1: Cluster_Partition(Li, max_index -1, min_size) 
 End if 
Step 5: Let Right_valley contains all  edges in the range { max_index, Ri} 
Step 6: Add the cluster  Right_valley to C 
Step 7: If size of Right_valley >= min_size 

Step 7.1: Cluster_Partition(max_index , Ri, min_size) 
 End if 

 
 

Algorithm 5: Prim algorithm using Multithreading 

Input G(V, E): undirected fully connected graph 

Output T(VT, ET): Minimum spanning tree of G where VT is the vertices set and ET is the edges set 
  
Step 1: Initialization: 

Step1.1: Let VT consists of an arbitrary node from V: VT = {X} 
Step1.2 Let ET equal empty set: ET = {}   

Step 2: Parallel for i=1 to number of vertices -1 
Step 2.1: Choose an edge e(u, v) with the minimal weight such that u is in VT and v is not 
Step 2.2: Add v to VT: VT = VT ⋃ v 
 Add e(u, v)  to ET: VT = ET ⋃e(u, v)   

 End 
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4. IMPLEMENTATION AND RESULTS  
 

This section demonstrates some experiments to 
evaluate the performance of the proposed MST-based 
clustering algorithm hiCLUMP against the original CLUMP 
and its modified version iCLUMP. The CLUMP and 
iCLUMP are implemented using C++ with MPI. While, 
hiCLUMP is implemented using C++ with MPI and OpenMP. 
The experiments were conducted on a 36 processing nodes 
cluster where each node is Intel ® Xeon® CPU E5620 @ 2.40 
GHZ. Six large microarrays datasets are used for comparison, 
five of them are breast cancer datasets and one ovarian cancer. 
These datasets are publicly available from the GEO database 
(http://www.ncbi.nlm.nih.gov/) through their accession 
numbers. Table 1 shows the accession number and the size of 
each dataset. 

The run times of the three algorithms are measured 
for the six datasets using different numbers of processing 
nodes. Table 2 shows the runtime for the three algorithms 
applied on the 5th and 6th datasets. As indicated from the 
results, the hiCLUMP algorithm outperformed the original 

CLUMP achieving better runtime. For example, at p = 36 the 
achieved runtime was 40.67and 35.85 compared to 42.78 and 
40 by CLUMP algorithm for the 5th and 6th dataset 
respectively. The results also show that iCLUMP algorithm 
outperformed both the original CLUMP and hiCLUMP 
achieving better runtime for all the tested values of the 
processing nodes p. For example, at p = 36 the achieved 
runtime was 39.36 second and 31.23 second compared to 
CLUMP algorithm for the 5th and 6th dataset respectively. 
Figures 3, 4 depict the runtime of each dataset separately. 

Figure 5 shows the MST construction time of the 
three algorithms at p = 36, where only 28 nodes actually 
handled the bipartite graphs using 2 threads. The results show 
that hiCLUMP success to decrease the CLUMP MST 
construction time in range between 7% and 18%. While, 
Figure 6 shows the three algorithms overall execution time at 
p = 36. One more time, hiCLUMP is better than CLUMP 
providing up to 13% decrease in the overall execution time. 
Again the iCLUMP still outperforms both CLUMP and 
hiCLUMP. 

 
 
Table 1: Microarrays datasets used for comparison 
No. Accession number Size (number of genes x number of samples) 

1 GSE6008 22283 x 104 

2 GSE7390 22283 x 189 

3 GSE2034 22283 x 256 

4 GSE3494 22645 x 252 

5 GSE9195 54675 x 78 

6 GSE6532   54675 x 88 

 
Table 2: The runtime of the tested algorithms measured in seconds as applied on two datasets with accession numbers GSE9195 and GSE6532  
p GSE9195 GSE6532 

CLUMP hiCLUMP iCLUMP CLUMP hiCLUMP iCLUMP 
3 232.68 212.42 173.78 172.78 152.13 102.87 
6 118.28 107.58 101.14 90.10 81.75 61.11 
10 82.28 75.39 70.93 80.42 67.78 46.93 
15 66.97 63.43 60.40 53.45 48.08 39.92 
21 56.99 54.38 52.25 48.43 42.87 37.08 
28 47.12 45.25 43.11 43.98 37.65 32.82 
36 42.78 40.67 39.36 40.00 35.85 31.23 
 



Dina Elsayad et al., International Journal of Bio-Medical Informatics and e-Health, 1(1),  June – July   2013, 01-09 

6 
@  2013,  IJBMIeH  All Rights Reserved 

 

 
Figure 3: Runtime for dataset GSE9195 

 

 
Figure 4: Runtime for dataset GSE6532 
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Figure 5: MST construction time of the tested algorithms measured in seconds as applied on all the datasets 

 

 
Figure 6: Algorithm overall execution time of the tested algorithms measured in seconds as applied on all the datasets 

 
5. CONCLUSIONS AND FUTURE WORK 
 

One of the MST-based clustering techniques is the 
CLUMP algorithm, which identifies dense clusters in a noisy 
background. iCLUMP is improved version of CLUMP, which 
enhances the CLUMP performance especially the MST 
construction phase. iCLUMP constructs MST using the cover 
tree data structure. This paper presents hiCLUMP which is 
another improved version of CLUMP algorithm. The idea of 
hiCLUMP is based increasing the processing power instead of 
applying another data structure. In other words, hiCUMP uses 
a hybrid parallel model in which the distributed and shared 
memory models are merged together. The MST construction 
phase in hiCLUMP is implemented using multithreading on 
the bipartite graphs since the size of each bipartite graph is 
double the size of an ordinary subgraph resulting an 
imbalance in the computational time. Experiments were 
conducted on a 36- processing nodes cluster powered by 
multithreading capability. The runtime and MST construction 
time were measured for the three algorithms using 6 
microarrays datasets. At 36 processing nodes, the hiCLUMP 
overall runtime was 35.85 seconds instead of 40 for CLUMP 
using a dataset of size 54675 x 88. The MST construction time 

is decreased in range between 7% and 18%. However, the 
iCLUMP still outperforming both CLUMP and iCLUMP for 
all the tested cases. It implies that using an efficient data 
structure has much more impact on the performance than 
increasing the computational power of the parallel machine. 

As future work we aim to apply different distance 
measure on the algorithms. 
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