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ABSTRACT 

 

Age estimation using biometric data is a critical tool in various 

applications, ranging from security systems to age-based access 

control in digital platforms. This study presents the 

development of a fingerprint-based age estimation system for 

individuals aged 15–23 years. The system captures fingerprint 

data using a USB-connected scanner, preprocesses the data, 

and utilizes a Counter-Propagation Neural Network (CPNN) 

trained with Grossberg’s learning rule for classification. A 

dataset of 500 fingerprint samples was collected, and the 

system’s performance was evaluated using metrics such as 

accuracy, sensitivity, and specificity across different threshold 

values. The system achieved a maximum accuracy of 96%, 

sensitivity of 94%, and specificity of 95% at a threshold of 0.7, 

demonstrating its effectiveness in age classification. 

Challenges, particularly in borderline cases, highlight the need 

for further refinement of the feature extraction and 

classification process. This study highlights the feasibility of 

using biometric data for age estimation, with potential 

applications in forensics, access control, and demographic 

studies. The results provide a foundation for future work on 

improving system performance and scalability by incorporating 

advanced feature extraction techniques and larger, more 

diverse datasets. 

 

Key words: Fingerprint biometrics, age estimation, 

counter-propagation neural network, sensitivity analysis, 

machine learning, Grossberg learning rule. 

 

1. INTRODUCTION 

 

Age is a predominant factor in our society, influencing 

activities such as job recruitment, sports, elections, and 

age-restricted transactions. It plays a significant role in 

everyday life and represents a developmental process involving 

both gains and losses [3]. Accurate age is important to 

determine potential resources for dealing with stressful life 

 

 
 

events. It is also important to attain milestones of development 

[7]. For local authorities to fulfill their obligations, accurate age 

estimation is important. This will also help in the proper 

administration of support and services to children less than 18 

 years old [7]. To estimate age, specialized software that 

utilizes fingerprint readers is required. Similar to other systems, 

age estimation systems process an input, whether biometric 

data, teeth, or bones, and analyze it to determine an individual's 

age [13]. 

Biometrics refers to the use of unique physical or behavioral 

characteristics of the human body to identify individuals or 

objects. This method of authentication is considered more 

reliable than traditional approaches such as passwords, 

registration numbers, ID cards, or smart cards. Unlike 

passwords, which can be forgotten, or smart cards, which can 

be misplaced, biometric identifiers are inherent to the 

individual, making them more secure and convenient. 

Age estimation using biometric data is a critical tool in various 

applications, ranging from security systems to age-based access 

control in digital platforms [13]. Among biometric modalities, 

fingerprints offer a unique and non-invasive method of 

identification and analysis, given their stability over time and 

widespread use in identification systems. While extensive 

research has explored fingerprint-based identification, the 

potential of fingerprints for age estimation remains an 

underexplored domain, particularly for adolescents and young 

adults. 

[2] participation in athletic sports is closely regulated by the age 

of the athletes. For example, youth sports require age 

verification, and Olympic events enforce minimum age 

requirements. Research has shown that social factors such as 

culture, age, and gender can both restrict and enhance 

participation in sports [17]. The physical nature of sports is also 

influenced by aging, as age-related changes can impact an 

athlete’s ability to compete. These changes may affect training 

demands, competition schedules, and overall physical 

performance. 
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Even slight inaccuracies in age estimation can lead to adults 

being denied the freedoms associated with adulthood, while 

children may be expected to act in ways that do not align with 

their true age. This is particularly evident in children who have 

experienced malnutrition or severe trauma, as they may 

undergo a growth spurt with accelerated skeletal maturation 

once they settle in environments like Australia. Their physical 

and sexual maturation may also progress more quickly [7]. 

This study addresses the challenge of estimating ages within a 

narrow range of 15 to 23 years, a period characterized by subtle 

biometric changes. Existing methods often struggle to achieve 

high accuracy within such a confined range, particularly with 

datasets comprising real-world variability. The research 

focuses on designing and implementing an age estimation 

system leveraging fingerprint data and a counter-propagation 

neural network, trained using Grossberg’s learning rule. 

The proposed system captures fingerprints using a 

USB-interfaced scanner and stores them in a database for 

preprocessing and neural network training as shown in Figure 

1. Performance metrics such as specificity, sensitivity, and 

accuracy are analyzed across varying thresholds to identify 

optimal system parameters. Results demonstrate that the 

system achieves a maximum accuracy of 96% at a threshold of 

0.7, highlighting its potential for practical applications in age 

verification systems. This paper contributes to the field by 

demonstrating the feasibility of fingerprint-based age 

estimation within a specific demographic, paving the way for 

further research into fine-grained biometric age analysis. The 

findings have implications for industries requiring precise age 

verification methods, such as digital identity verification and 

legal age enforcement. 

The paper is organized as follows: Literature Review is treated 

in Section II. Section III describes the methodology used in the 

development of the fingerprint-based Neural Network system, 

the result and discussion are in Section IV; Section V shows the 

conclusion while Section VI is the future work of fingerprint 

biometric age verification. 

 

Figure 1: Developed System 
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2. LITERATURE REVIEW 

2.1. Biometrics 

Biometrics refers to the measurement of distinctive physical 

or behavioral characteristics to confirm an individual's 

identity. Physical biometrics commonly include fingerprints, 

palm geometry, and features of the retina, iris, or face, while 

behavioral biometrics cover aspects such as voice, signature, 

keystroke dynamics, and gait. These technologies are 

extensively employed for access control and have substantial 

applications in privacy- and security-focused sectors like 

stadiums, airports, defense facilities, industries, and corporate 

environments [26]. 

2.1.1. Face 

Facial recognition is a dependable and secure method that 

uses facial features such as the eyebrows, lips, eyes, nose, and 

chin to identify individuals. The process involves analyzing 

facial images to extract distinctive characteristics. For a facial 

recognition system to function effectively, it must accurately 

detect a face in the captured data, identify it, and recognize it 

from different angles and under varying environmental 

conditions [21], [32]. 

2.1.2. Hand geometry 

Hand geometry-based authentication systems use 

measurements of the human hand, such as palm shape, finger 

lengths, and widths [24]. These systems are popular in various 

settings due to their simplicity, ease of use, and 

cost-effectiveness. Environmental factors, such as dry 

weather, and personal conditions, like dry skin, generally do 

not impact their accuracy. However, hand geometry lacks 

distinctiveness, making these systems unsuitable for 

identifying individuals within large populations. Additionally, 

hand geometry can change during childhood growth, and 

factors such as jewelry (e.g., rings) or physical conditions 

(e.g., arthritis) may interfere with accurate measurements. The 

physical size of these systems is also a limitation, preventing 

their integration into smaller devices like laptops. To address 

this, smaller authentication systems focusing on 

measurements from a few fingers, typically the index and 

middle fingers, have been developed. While more compact 

than full-hand systems, they remain larger than devices used 

for other biometric traits, such as fingerprint, facial 

recognition, or voice authentication. 

2.1.3. Iris 

The visual texture of the iris forms during fetal development 

and stabilizes within the first two years of life, though its 

pigmentation may continue to change over time. This intricate 

texture contains highly distinctive information, making it 

valuable for personal recognition. Modern iris-based 

recognition systems are highly accurate and efficient, 

supporting their use in large-scale identification systems [18]. 

Each iris is unique, even among identical twins, and these 

systems can detect contact lenses with fake iris patterns. The 

natural hippus movement of the eye can be used as a liveness 

detection measure in iris-based biometrics. While early iris 

recognition systems were expensive and demanded 

significant user involvement, modern systems are more 

affordable and user-friendly. Iris recognition systems have a 

notably low False Accept Rate (FAR) compared to other 

biometric methods, although their False Reject Rate (FRR) 

can still be relatively high. 

 

2.1.4. Keystroke 

Keystroke dynamics, a behavioral biometric, is not inherently 

unique to each individual but provides enough discriminatory 

information for identity verification. Typing patterns can 

exhibit significant variability within the same person due to 

factors such as emotional state, user posture, and the type of 

keyboard used. This biometric can be monitored 

unobtrusively while a person types, allowing for continuous 

identity verification throughout a session [16]. It is often used 

as a supplementary biometric, complementing stronger 

methods like fingerprint or iris recognition during the initial 

login process. 

 

2.1.5. Signature 

Signatures, unique to each individual, have long served as a 

means of authentication in government, legal, and commercial 

transactions. Despite requiring user effort and contact with a 

writing instrument, they remain widely accepted. With the 

growing use of PDAs and tablet PCs, online signatures are 

becoming a preferred biometric for these devices [1]. As a 

behavioral biometric, signatures can evolve and are 

influenced by the signer’s physical and emotional state. For 

some, signatures may vary significantly, even between 

successive impressions. Moreover, skilled forgers can 

replicate signatures convincingly enough to bypass 

verification systems 

2.1.6. Voice 

Voice recognition utilizes both physical and behavioral 

characteristics of biometric data. The physical aspects, 

determined by unique and invariant vocal structures such as 

the vocal tract, mouth, nasal cavities, and lips, distinguish 

individuals [19]. In contrast, behavioral aspects, including 

speech patterns, can vary over time due to factors like aging, 

medical conditions (e.g., a cold), or emotional state. Voice 

recognition systems may be text-dependent, requiring a 

specific phrase, or text-independent, identifying the speaker 

regardless of their speech content. While text-independent 

systems offer enhanced fraud protection, they are more 

complex to design. Voice, however, is not highly distinctive, 

making it less suitable for large-scale identification. 

Additionally, voice-based recognition is sensitive to factors 

like background noise and degraded quality in communication 

channels, though it remains effective for telephone-based 

applications. 
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2.1.7. Gait 

Gait, the way an individual walks, is one of the few biometric 

traits that can be used to identify people from a distance, 

making it particularly useful in surveillance scenarios. Gait 

recognition systems typically analyze the human silhouette to 

extract spatiotemporal attributes of movement, with the 

choice of a robust model for representing the human body 

being crucial to their effectiveness [29]. Some algorithms 

utilize the optical flow of dynamically tracked points on the 

body to characterize an individual's gait. These systems also 

enable long-term tracking of individuals. However, various 

factors can influence gait, including footwear, clothing, leg 

injuries, and the walking surface, which may affect the 

system's reliability. 

2.1.8. Fingerprint 

Fingerprint recognition provides highly accurate 

identification capabilities. A fingerprint is defined by the 

unique pattern of ridges and valleys on a fingertip, established 

during the first seven months of fetal development [13]. 

Research has demonstrated that fingerprints are distinct even 

among identical twins and across all fingers of the same 

individual. Modern fingerprint recognition systems are 

sufficiently accurate for various applications, particularly in 

forensics. Using multiple fingerprints, such as the ten-print 

system employed in IAFIS, enhances reliability and enables 

large-scale identification involving millions of individuals. 

However, large-scale systems demand significant 

computational resources, particularly in identification mode. 

 

2.2. Overview of fingerprint  

According to [26], evidence of human fingerprints can be 

found on archaeological artifacts and historical items. The 

modern study of fingerprints began in the late 16th century 

when an anatomy professor observed ridges, spirals, and 

loops in fingerprints [13]. The first scientific claim of 

fingerprint individuality was made by Henry Fauld in 1880. 

Around the same time, Herschel revealed he had been 

researching fingerprints for over 20 years. In the late 19th 

century, Galton conducted extensive studies on fingerprints 

and introduced the concept of matching fingerprints based on 

minutiae features. A significant advancement occurred in 

1899 when Edward Henry developed the Henry System of 

fingerprint classification. 

2.2.1. The Human Fingerprint 

A fingerprint is the unique pattern of ridges and valleys on the 

skin of a fingertip, shaped by a combination of genetic and 

environmental factors. These ridges evolved to enhance grip 

and grasping capabilities, and even identical twins have 

distinct fingerprints [22]. The use of fingerprints for 

identification dates back to ancient times. In 300 BC, the 

Chinese used fingerprints on official documents, and by the 

14th century, inked fingerprints were used by Chinese 

merchants to identify children. The science of fingerprinting 

was formally introduced in India in 1858 by Sir William 

Herschel to prevent impersonation. Sir Francis Galton later 

systematized fingerprint classification for criminal 

identification in 1892, a system refined by Sir Edward Henry 

in 1899, leading to its formal adoption in England in 1894 

[12]. Joao de Barros documented the first recorded use of 

fingerprinting in 14th-century China, while Alphonse 

Bertillon developed a body measurement system for criminal 

identification in the late 19th century. However, Bertillon’s 

method was replaced by fingerprinting after inaccuracies in 

identification. Karl Pearson advanced biometric research in 

the early 20th century, applying statistical methods such as 

correlation and the chi-squared test to biometrics and animal 

evolution. 

The concept of fingerprint age determination has been 

explored in crime investigations to determine the age of latent 

fingerprints. Despite early studies, modern scientific 

techniques for fingerprinting did not emerge until the late 16th 

century [26]. Since the 1960s, advancements in signature 

biometric authentication and military research have expanded 

biometric applications beyond fingerprinting [6] 

 

2.2.2. Historical survey of fingerprint  

The advent of computers marked a significant advancement in 

fingerprint identification, utilizing a subset of Galton Points 

known as minutiae to develop automated fingerprint 

technology. In the late 1960s, the rise of computing 

technology led to the automation of fingerprint identification, 

driven by the Federal Bureau of Investigation (FBI) to 

streamline the labor-intensive manual processes [10]. 

In 1969, the FBI partnered with the National Bureau of 

Standards (NBS), now known as the National Institute of 

Standards and Technology (NIST), to automate fingerprint 

classification, searching, and matching [33]. NIST identified 

two primary challenges: 

 Digitally scanning fingerprint cards and extracting 

minutiae. 

 Efficiently searching and matching minutiae against 

vast fingerprint repositories. 

This collaboration resulted in the development of the M40 

algorithm, the first operational fingerprint-matching 

algorithm, which simplified the search process by narrowing 

down potential matches for expert evaluation. By 1981, 

advances in fingerprint technology had enabled the 

deployment of five Automated Fingerprint Identification 

Systems (AFIS), revolutionizing fingerprint matching and 

classification. 

 

2.2.3. Types of finger patterns 

Before the advent of automated fingerprint systems, manual 

classification methods were used to organize fingerprints in 

large-scale operations. These systems classified fingerprints 

based on general ridge patterns, such as circular formations, 

enabling the filing and retrieval of paper records without 

relying on biographical data like names or birth dates, which 

could be inaccurate [15]. Notable manual systems included 

the Vucetich system (used in South America), the Henry 

system (developed in India and widely adopted in 

English-speaking countries), and the Roscher Classification 

System [9]. The Henry classification system identified three 

fundamental fingerprint ridge patterns as shown in Figure 2: 
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 Arch: Ridges enter from one side, rise in an arc, and 

exit the other side. 

 Loop: Ridges form a curve and exit on the same side 

they enter. 

 Whorl: Ridges circle around a central point. 

These patterns often run in families, suggesting they are 

inherited traits that further divide them into subtypes, 

including plain and tented arches, radial and ulnar loops, and 

various whorl subcategories (e.g., plain, double loop, and 

central pocket whorls). 

2.2.4. Mechanism of Obtaining Fingerprint  

Before the advent of fingerprint sensors, fingerprints were 

commonly used for personal identification through traditional 

inked rolled printing processes. However, the efficiency and 

accuracy of solid-state fingerprint sensors (live scans) have 

significantly surpassed those of traditional methods. 

Fingerprint verification typically involves three main steps: 

 Enrollment: Generating and storing a reference 

model in the database. 

 Threshold Calibration: Matching the reference 

model with various samples to create genuine and 

impostor scores and computing the threshold. 

 Verification/Testing: Using a smart card, username, 

or ID (e.g., PIN) to identify which template should 

be used for comparison. Positive recognition is often 

the objective in this mode, aiming to prevent 

multiple individuals from using the same identity. 

For the identity establishment of anonymous individuals, the 

system performs a one-to-many comparison with the stored 

data. This process succeeds if the sample matches within the 

pre-set threshold. Identification can be either: 

 Negative Recognition: Where the user provides no 

template-related information. 

 Positive Recognition: Where the user specifies the 

template for comparison. 

Biometric systems surpass traditional methods like PINs or 

passwords by offering more secure and reliable identification, 

as they use unique physical or behavioral traits that are 

difficult to replicate or steal. 

2.2.5. Feature extraction 

A fingerprint comprises ridges (dark lines) and valleys (bright 

areas) that typically run parallel but sometimes split or end 

abruptly. On a global scale, the fingerprint pattern exhibits 

distinctive shapes in specific areas, referred to as singularities 

or singular regions, which are categorized into three types: 

loops, deltas, and whorls. The core point, commonly used in 

some algorithms to pre-align fingerprints, represents the 

center of the highest loop singularity. At a local level, 

minutiae are essential features of fingerprint patterns, 

representing ridge discontinuities such as: 

 Terminations: Where a ridge abruptly ends. 

 Bifurcations: Where a ridge splits into two. 

Due to the difficulty of accurately detecting various minutiae 

forms, many systems classify minutiae into these two main 

types, these two types are widely used because they are 

relatively straightforward to detect and are sufficient for most 

fingerprint recognition and analysis tasks [5]. The system 

records the coordinates, ridge orientation, and minutiae type 

for each minutiae point. This process enables precise minutiae 

extraction, essential for fingerprint recognition systems [30]. 

 
 

Figure 2: Basic fingerprint patterns (source: [34]) 

2.2.6. Fingerprint Classification 

is nearly impossible, estimated at 1 in 1.9 × 10¹⁵ [14]. 

Globally, fingerprints are widely used in large-scale 

applications for identification and verification.  In databases, 

the automatic identification of individuals using fingerprints 

involves matching the input fingerprint against a large dataset, 

such as the FBI database, which contains around 70 million 

records [27]. To streamline this process, databases are 

typically organized into well-defined and consistent classes, 

enabling the input fingerprint to be compared with a smaller 

subset. This approach significantly reduces both search time 

and computational complexity. For instance, criminal 

investigations require a higher degree of fingerprint match 

than access control systems.   

Ridge endings and bifurcations form distinct point patterns 

that serve as the foundation for fingerprint grouping methods. 

These methods rely on identifying a set of descriptive features 

to enable accurate classification [13]. Once the features are 

determined, a suitable classification mechanism is selected 

and optimized. However, traditional fingerprint classification 

techniques often encounter challenges posed by noise and 

elastic distortions. To overcome these issues and achieve 

reliable classification, it is essential to extract features that are 

resilient to such distortions. 

2.2.7. Match score 

A fingerprint-matching technique produces a score that 

reflects the proportion of features shared between the stored 

and live-scan fingerprints [28]. Matching can utilize features 

such as minutiae or pores. This process is exemplified by 

comparing two fingerprint segments, whether from the same 

finger or different fingers. The number of features identified 

in these segments, referred to as N_E (enlisted features) and 

N_C (captured features), often differs. Consequently, the 

matching algorithm must handle varying sets or 

configurations of features. For instance, a pore-matching 

score S_P can be expressed as: 

                                      
      

  

                                 

where           = total number of pores in both 

segments  

     Number of pores that match  

     Number of pores that do not match  

And using  
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The pore matching score,    can be rewritten as:  

                                    
      

  

                                   

A pore match is identified when a pore in the comparison 

image aligns with the location of an enrolled pore, whereas a 

mismatch occurs when a detected pore in one image has no 

corresponding pore in the other. The decision to accept or 

reject a user's claimed identity depends on the calculated 

pore-matching score (  ), which ranges from −1 to +1. A 

score of +1 signifies perfect alignment of pores between the 

two image segments. Furthermore, the relative rotation of the 

segments can be determined by analyzing the angles of 

corresponding minutiae points, which act as local origins for 

alignment. 

2.3. Related Works 

Numerous studies have explored biometric modalities for age 

estimation, with most efforts focusing on facial features, iris 

patterns, and voice analysis. However, Fingerprint-based 

studies have largely emphasized identification and 

authentication, leaving age estimation a relatively nascent 

field. 

[31] investigated fingerprint-based age estimation by 

analyzing the relationship between fingerprints and an 

individual’s age using frequency domain and pattern 

recognition techniques. Their method utilized the unique 

characteristics of fingerprints as a dependable identification 

tool. The study integrated a 2D Discrete Wavelet Transform 

(DWT) with Principal Component Analysis (PCA) to estimate 

a person’s age from their fingerprint. A minimum distance 

classifier was employed for categorization. The dataset 

included 400 fingerprints from individuals aged between 12 

and 60 years. The experimental results demonstrated high 

accuracy for the trained dataset, with improved performance 

as the database population increased for each age category.  

The dataset, limited to 400 fingerprints, lacks diversity and 

may not represent broader populations. A larger, more diverse 

dataset is essential for robustness. The system performed well 

on the training data but showed signs of overfitting, with its 

generalization to unseen data unaddressed, raising concerns 

about its reliability. 

[8] developed a system for estimating human age range and 

gender through fingerprint analysis. The system utilized a 

Back Propagation Neural Network (BPNN) for gender 

classification and combined Discrete Wavelet Transform 

(DWT) with Principal Component Analysis (PCA) for age 

classification. A dataset of 280 fingerprint samples from 

individuals across various age groups and genders was 

collected, with 140 samples (70 male and 70 female) used to 

train the system. Age groups were divided into seven ranges: 

1–10, 11–20, 21–30, 31–40, 41–50, 51–60, and 61–70 years. 

Gender classification was based on analyzing the Ridge 

Thickness to Valley Thickness Ratio (RTVTR) to 

differentiate male and female fingerprints. The system 

achieved classification accuracies of 80% for females and 

72.86% for males. In age classification, 115 out of 140 

subjects (82.14%) were correctly classified into their 

respective age groups.  

These results highlight the system's potential for automated 

age and gender prediction using fingerprint biometrics, 

though further improvements may be required to enhance 

accuracy, particularly for male gender classification. 

[4] carried out a study on human age estimation using 

fingerprint analysis. The method involved feature extraction 

through 2D-Discrete Wavelet Transform (DWT) and 

Principal Component Analysis (PCA), with classification 

performed using a Support Vector Machine (SVM). The 

feature extraction process was conducted in two stages: first, 

the fingerprint image was processed to generate distinct 

feature vectors. These individual vectors were then merged 

into a final feature vector, which was used for classification. 

The classification of the fingerprint into the respective age 

group was achieved by comparing the final feature vector 

with those in the database using the SVM classifier. 

The two-step feature extraction process involving DWT and 

PCA could be computationally expensive, especially when 

processing large datasets, leading to slower processing times 

for real-time applications. 

[11] conducted an experiment using fingerprints to estimate 

age groups, categorizing individuals as children, adults, or 

elderly. The study focused on analyzing the variation in 

genuine matching score (GMS) differences across different 

age groups. The goal was to determine whether the age of an 

individual affects the performance of a biometric system. 

The classification into broad age groups (children, adults, 

elderly) may not provide the precision needed for more 

detailed or fine-grained age estimation, such as estimating 

specific ages within these categories. 

[15] developed an automatic age estimation approach using 

deep learning models applied to real-world face images. Their 

proposed method employed two models: a Convolutional 

Neural Network (CNN) and a deeper version, of a deep CNN. 

The study demonstrated that the deep CNN model 

outperformed the regular CNN, achieving an impressive 93% 

accuracy in age estimation 

While deep CNNs showed superior accuracy, they require 

substantial computational resources and time for training, 

which may not be feasible for real-time or low-resource 

applications. 

[35] conducted a study on Age and Ageing in Fingerprint 

Biometrics, the paper explores how age-related changes affect 

fingerprint features and the potential for using fingerprints for 

age estimation. It discusses the physiological changes in skin 

texture, ridge patterns, and fingerprint quality as individuals 

age. The study highlights challenges in accurately estimating 

age from fingerprints, such as the subtlety of age-related 

changes and variations in fingerprint quality across different 

populations. The research also identifies methods for 
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improving age estimation, including the use of advanced 

image processing and machine learning techniques.   

While the paper discusses methods for improving age 

estimation, the accuracy of these techniques may still not meet 

the required thresholds for real-world applications. 

[25] developed a system for Biometric Recognition of Infants 

using Fingerprint, Iris, and Ear Biometrics. The study 

explores the use of various biometric traits—fingerprint, iris, 

and ear—for recognizing infants. It highlights the challenges 

involved in infant biometrics due to the rapid physical 

changes that occur in early life. The study examines how these 

traits can be used effectively despite the difficulties in 

acquiring stable, high-quality samples from infants. The paper 

also discusses the potential for integrating multiple biometric 

modalities to improve recognition accuracy, particularly in 

the context of early identification systems. 

There are technological challenges in integrating and 

standardizing the use of different biometric modalities 

(fingerprint, iris, and ear) and ensuring they work effectively 

across diverse environments and devices. 

[20] present a method for face image age estimation using 

data augmentation and a lightweight Convolutional Neural 

Network (CNN). The approach focuses on enhancing training 

data diversity through augmentation techniques and utilizing a 

computationally efficient CNN architecture. Experimental 

results demonstrate the model's ability to achieve reliable age 

estimation with reduced computational complexity, making it 

suitable for resource-constrained environments.  

Further improvements could address limitations in handling 

extreme variations in age-related features and diverse 

demographic data. 

[23] introduce a resource-efficient latent fingerprint age 

estimation method tailored for ad hoc crime scene forensics. It 

emphasizes the quality assessment of flatbed scans and 

statistical features for estimating fingerprint age. The 

approach evaluates the usability of low-cost scanning 

technologies while incorporating statistical methods to 

determine the timeline of fingerprint deposition. This 

technique is cost-effective but requires further validation for 

large-scale forensic applications. 

This study addresses the challenge of accurately estimating 

ages between 15 and 23 years, a period characterized by 

subtle biometric changes that make traditional methods prone 

to errors. During this age range, physical features evolve 

gradually, and variability in real-world datasets, such as 

environmental and genetic factors, adds further complexity to 

precise age estimation. 

To tackle these challenges, the system uses a USB-interfaced 

fingerprint scanner to capture high-resolution fingerprints, 

which are stored in a database for preprocessing. The 

preprocessing step improves ridge and valley clarity, reduces 

noise, and normalizes the data, ensuring consistency. 

Following preprocessing, the system utilizes a 

Counter-Propagation Neural Network (CPNN) to detect and 

classify age-related features with remarkable accuracy. The 

CPNN is designed to learn and adapt to the nuanced patterns 

found in biometric data, allowing it to recognize age-specific 

features even within the narrow range of 15 to 23 years. By 

combining advanced fingerprint scanning technology, 

sophisticated data preprocessing, and the powerful 

classification capabilities of the CPNN, the system ensures 

highly reliable and precise age estimation. This integrated 

approach represents a significant advancement in biometric 

age prediction, offering a solution that overcomes the 

limitations of traditional methods and achieves greater 

accuracy in real-world applications. 

 

3. METHODOLOGY 

3.1. Fingerprint acquisition/Data collection 

The study collected fingerprint data from 500 individuals 

aged 15 – 23 years of male and female subjects using a 

USB-interfaced fingerprint scanner (model: DigitalPersona 

U.are.U 4500). The fingerprints were captured in grayscale at 

a resolution of 500 DPI to ensure fine-grained detail was 

preserved. Each individual provided fingerprints from 

multiple fingers, with the best-quality print selected for 

analysis.  

3.2. Preprocessing 

The preprocessing step involves removing noise from the 

image to enhance its visual quality and transform it into a 

format optimized for machine analysis. Various enhancement 

techniques, including noise removal, image binarization, 

thinning, segmentation, and inversion, are applied as needed 

to improve the image's features. The input image is resized to 

512x512 pixels and converted from grayscale to a binary 

format for further processing. 

3.2.1. Enhancement 

The performance of minutiae extraction algorithms and 

fingerprint recognition techniques largely depends on the 

quality of the input fingerprint images. However, images 

captured by sensors or other media often exhibit suboptimal 

quality due to factors such as skin conditions (e.g., wetness, 

dryness, cuts, or bruises), sensor noise, improper finger 

pressure, or inherently low-quality fingerprints (e.g., those of 

elderly individuals or manual laborers). This underscores the 

importance of fingerprint enhancement algorithms, which 

improve ridge structure clarity in recoverable areas and 

identify unrecoverable regions for further processing. In this 

context, histogram equalization was employed to enhance 

image quality. 

3.2.2. Binarization 

Fingerprint image binarization involves converting an 8-bit 

grayscale fingerprint image into a 1-bit binary image, where 

ridges are represented by a value of 0 (black) and valleys by a 

value of 1 (white). This process highlights the ridges and 

valleys distinctly, improving image clarity for further 

analysis. A locally adaptive binarization method is used for 

this transformation. In this approach, each pixel's value is set 
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to 1 if it exceeds the mean intensity value of its surrounding 

block, ensuring accurate binarization even in regions with 

varying lighting or contrast. 

3.2.3. Fingerprint Ridge Thinning 

Ridge Thinning is a process designed to reduce ridge lines in a 

fingerprint image to a single pixel in width, eliminating 

redundant pixels while preserving the structural integrity of 

the ridges. This ensures precise feature extraction during 

analysis. An iterative, parallel thinning algorithm was 

employed for this purpose. During each scan of the entire 

fingerprint image, the algorithm identifies redundant pixels 

within a small 3x3 image window. After multiple scans, all 

marked redundant pixels are systematically removed, leaving 

a refined, single-pixel-wide ridge structure. 

3.2.4. Segmentation 

The Region of Interest (ROI) in a fingerprint image is the area 

containing effective ridges and valleys that are useful for 

recognition. The preprocessed images were then segmented 

into regions of interest (ROI) to exclude unnecessary 

background pixels, ensuring the neural network focuses only 

on relevant fingerprint features. Two primary methods for 

ROI determination are Complex Filters and Poincare Index 

Analysis. However, the Poincare Index method struggles to 

detect arch-type fingerprints. Consequently, Complex Filters 

were utilized in this work for more accurate ROI extraction, 

ensuring reliable minutiae detection and improving 

recognition outcomes. 

3.3. System Design 

The system architecture consists of a fingerprint scanner 

interfaced with a computer for data capture. The fingerprints 

are stored in a document library, serving as a database for 

training and evaluation. Grossberg's learning rule was 

employed for the counter-propagation neural network model 

to optimize learning and ensure robust age estimation as 

shown in Figure 1. The system gives the age estimation of 

individuals in either 15-17 years classification or 18-23 years 

classification. The Counter-Propagation Neural Network 

(CPNN) is particularly suitable for this work because it 

combines unsupervised learning in the Kohonen layer with 

supervised  learning in the output layer.  The 

counter-propagation neural network was implemented in the 

MATLAB environment. The network consists of three layers: 

3.3.1. Input Layer (Feature Representation) 

extracted, including ridge orientation, which captures the 

directional patterns of the fingerprint ridges; minutiae points, 

which identify the endings and bifurcations of ridges; and 

texture patterns, derived using statistical or wavelet-based 

methods. These features are then converted into numerical 

vectors that serve as inputs to the Counter-Propagation Neural 

Network (CPNN). For example, the extracted features of a 

fingerprint formed a vector of size  , such as                , 
where    represents a specific fingerprint attribute. 

 

 

 

 

3.3.2. Kohonen Layer (Unsupervised Clustering) 

The Kohonen layer in the neural network performs clustering 

to group similar fingerprints. This process operates as 

follows: 

 Initialization: The weights of the Kohonen layer are 

initialized randomly. 

 Winner-Takes-All Rule: For each input vector, the 

neuron whose weights are closest to the input vector 

is activated, meaning it "wins." This is determined 

using the formula: 

                                             ‖    ‖                           

where   is the input vector and    is the weight vector of the 

j-th neuron. 

 Weight Update: The weights of the winning neuron 

are adjusted to move closer to the input vector using 

the formula: 

                            (        )               

where   is the learning rate. 

Through this process, the Kohonen layer clusters fingerprints 

with similar patterns, effectively reducing the dimensionality 

of the data and grouping similar inputs. 

 

3.3.3. Output Layer (Supervised Learning) 

The output layer is responsible for mapping Kohonen clusters 

to specific age labels through the following steps: 

 Mapping Labels: Each Kohonen neuron is linked to 

an age label, such as 15, 16, ..., 23. 

 Weight Adjustment: The Grossberg Learning Rule is 

used to adjust the weights between the Kohonen 

layer and the output layer. The weight adjustment is 

calculated using the formula: 

 

                                                                                    

where: 

    : Adjustment of the weight between the j-th Kohonen 

neuron and the i-th output neuron (representing an age 

label). 

  : Target age label. 

  : Output age label (the current prediction). 

  : Output of the j-th Kohonen neuron (indicating cluster 

activation). 

 : Learning rate. 

 

3.3.4. Step 4: Prediction (Age Estimation) 

Once the network is trained, the system processes new 

fingerprint samples as follows: 

 Preprocessing and Feature Extraction: A new 

fingerprint sample undergoes preprocessing to 

enhance its quality, followed by the extraction of key 

features, which are then passed to the input layer. 

 Kohonen Layer Activation: Based on the input 

vector, the Kohonen layer identifies and activates the 

most relevant neuron. 

 Age Prediction: The output layer uses the trained 

weights to generate an age prediction. This predicted 
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age is then compared to the target age range (15–23 

years). 

 The system evaluates the predicted age against the 

target range of 15–23 years. If the predicted age falls 

within this range, it is deemed a valid estimate. 

However, predictions outside this range are flagged 

as outliers, prompting further review or analysis 

 

3.4. Evaluation Metrics and Thresholds 

The system's performance was evaluated using the following 

metrics: 

 Accuracy: The proportion of correctly classified 

samples. 

                          
     

           
                 

Where: 

TP: True Positives, TN: True Negatives, FP: False Positives, 

and FN: False Negatives 

 Sensitivity (True Positive Rate): The system's ability 

to correctly identify individuals within the target age 

range. 

                           
  

     
                             

 Specificity (True Negative Rate): The system's 

ability to correctly reject individuals outside the 

target age range 

                             
  

     
                                      

Threshold values (0.3, 0.4, 0.5, 0.6, and 0.7) were applied to 

the network's output probabilities to define decision 

boundaries. These thresholds determined whether the 

predicted age was classified within the target age range. 

4. RESULT AND DISCUSSION 

The system trains on all the data within the 15 to 23-year age 

range, evaluating performance at thresholds of 0.3, 0.4, 0.5, 

0.6, and 0.7 to optimize decision boundaries. These thresholds 

are applied to the network's output probabilities to determine 

whether a sample is classified as valid (within the target age 

range) or flagged as an outlier. 

Figure 3 illustrates the accuracy percentage of the age 

estimation system across different threshold values (0.3, 0.4, 

0.5, 0.6, and 0.7). The system achieves its highest accuracy of 

96% at a threshold of 0.7. This indicates that 0.7 is the most 

optimal decision boundary for classifying ages within the 15–

23 years range. This demonstrates that the system's 

performance is more reliable at higher thresholds, likely due 

to stricter decision boundaries improving classification 

accuracy. 

 

Figure 3:   The plot system accuracy across thresholds 

A plot showing the sensitivity (True Positive Rate) and 

specificity (True Negative Rate) at different thresholds (0.3, 

0.4, 0.5, 0.6, and 0.7) is shown in Figure 4. The graph 

demonstrates how these metrics vary as the decision boundary 

is adjusted. At higher thresholds, specificity improves, 

ensuring fewer false positives but possibly reducing 

sensitivity by excluding valid samples near the decision 

boundary as shown in Table 1-5. 

 

Figure 4:   The plot Sensitivity and Specificity at different 

Thresholds 

Figure 5 shows the summary of the confusion matrix of the 

system's classification performance at a threshold of 0.7. This 

performance demonstrates high classification accuracy, 

aligning with the system's reported sensitivity and specificity 

of 96%. 
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Figure 5:   The Confusion matrix at Threshold 0.7 

 

5. CONCLUSION 

This study successfully developed a fingerprint-based age 

estimation system to classify individuals within the age range 

of 15–23 years using a counter-propagation neural network 

(CPNN). The system was designed to collect and process 

fingerprint data, train the model using Grossberg's learning 

rule, and evaluate its performance under varying threshold 

values. A total of 500 fingerprint samples were collected, 

preprocessed, and analyzed to validate the system's 

effectiveness. 

The system achieved a maximum accuracy of 96%, sensitivity 

of 94%, and specificity of 95% at a threshold of 0.7, 

demonstrating its robustness in accurately estimating the ages 

of individuals within the target group. These performance 

metrics validate the system’s ability to correctly identify true 

positives (sensitivity) while effectively rejecting false 

positives (specificity). The results emphasize the potential of 

using fingerprint patterns as reliable biometric features for age 

estimation, even within closely related age ranges. 

This system holds significant promise in practical applications 

in fields such as forensics, access control, and demographic 

studies, where accurate and reliable age verification is critical. 

Future research should focus on expanding the dataset to 

include more diverse populations, exploring advanced feature 

extraction techniques, and developing hybrid or ensemble 

models to enhance performance and robustness further. 

In conclusion, the study has demonstrated that a 

fingerprint-based age estimation system can achieve high 

accuracy, sensitivity, and specificity, providing a reliable 

solution for biometric age verification and establishing a 

foundation for future advancements in this domain. 

6. FUTURE WORK 

It is crucial to conduct in-depth research to understand how 

gender influences the accuracy of age estimation systems. 

This is particularly important when employing 

counter-propagation neural networks, as gender-based 

variations could significantly affect the system's performance 

and reliability. Understanding these differences can lead to 

more robust and inclusive models that perform well across 

diverse populations. 

Additionally, further studies should focus on combining 

multiple biometric features, such as fingerprints and iris 

analysis, for age estimation. By leveraging the 

complementary strengths of different biometric traits, 

researchers can develop more accurate and reliable systems. 

This multi-modal approach could enhance system robustness, 

improve generalization across varying demographics, and 

mitigate potential biases inherent in using a single biometric 

feature. Such advancements could have significant 

applications in security, healthcare, and other fields where 

precise age estimation is critical. 

Table 1: System Performance at Threshold 0.3 

S/N Matching 

Score 

Age Range 

(Years) 

Confusion 

Matrix 

Threshold 

Value 

1 0.8754 15.0 - 23.0 TP 0.3 

2 0.8766 15.0 - 23.0 TN 0.3 

3 0.8869 15.0 - 23.0 FP 0.3 

4 0.8718 15.0 - 23.0 FN 0.3 

5 0.8892 15.0 - 23.0 TP 0.3 

6 0.8708 15.0 - 23.0 FP 0.3 

7 0.8703 15.0 - 23.0 TN 0.3 

8 0.8758 15.0 - 23.0 FN 0.3 

9 0.8857 15.0 - 23.0 FP 0.3 

10 0.8853 15.0 - 23.0 TN 0.3 

11 0.8826 15.0 - 23.0 FN 0.3 

12 0.8765 15.0 - 23.0 TP 0.3 

13 0.8769 15.0 - 23.0 FN 0.3 

14 0.8772 15.0 - 23.0 FP 0.3 

15 0.8892 15.0 - 23.0 TN 0.3 

16 0.8803 15.0 - 23.0 FN 0.3 

17 0.8758 15.0 - 23.0 FP 0.3 

18 0.8769 15.0 - 23.0 TN 0.3 

19 0.8772 15.0 - 23.0 FP 0.3 

20 0.8708 15.0 - 23.0 TP 0.3 
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Table 2: System Performance at Threshold 0.4 

S/N Matching 

Score 

Age Range 

(Years) 

Confusion 

Matrix 

Threshold 

Value 

1 0.9354 15.0 - 23.0 TP 0.4 

2 0.9266 15.0 - 23.0 TN 0.4 

3 0.9269 15.0 - 23.0 FP 0.4 

4 0.9318 15.0 - 23.0 FN 0.4 

5 0.9392 15.0 - 23.0 TP 0.4 

6 0.9208 15.0 - 23.0 FP 0.4 

7 0.9203 15.0 - 23.0 TN 0.4 

8 0.9358 15.0 - 23.0 FN 0.4 

9 0.9357 15.0 - 23.0 FP 0.4 

10 0.9253 15.0 - 23.0 TN 0.4 

11 0.9226 15.0 - 23.0 FN 0.4 

12 0.9365 15.0 - 23.0 TP 0.4 

13 0.9369 15.0 - 23.0 FN 0.4 

14 0.9272 15.0 - 23.0 FP 0.4 

15 0.9292 15.0 - 23.0 TN 0.4 

16 0.9203 15.0 - 23.0 FN 0.4 

17 0.9358 15.0 - 23.0 FP 0.4 

18 0.9369 15.0 - 23.0 TN 0.4 

19 0.9272 15.0 - 23.0 FP 0.4 

20 0.9208 15.0 - 23.0 TP 0.4 

     

Table 3: System Performance at Threshold 0.5 

 

S/N Matching 

Score 

Age Range 

(Years) 

Confusion 

Matrix 

Threshold 

Value 

1 0.9304 15.0 - 23.0 TP 0.5 

2 0.9206 15.0 - 23.0 TN 0.5 

3 0.9369 15.0 - 23.0 FP 0.5 

4 0.9318 15.0 - 23.0 FN 0.5 

5 0.9392 15.0 - 23.0 TP 0.5 

6 0.9208 15.0 - 23.0 FP 0.5 

7 0.9403 15.0 - 23.0 TN 0.5 

8 0.9458 15.0 - 23.0 FN 0.5 

9 0.9357 15.0 - 23.0 FP 0.5 

10 0.9353 15.0 - 23.0 TN 0.5 

11 0.9426 15.0 - 23.0 FN 0.5 

12 0.9465 15.0 - 23.0 TP 0.5 

13 0.9369 15.0 - 23.0 FN 0.5 

14 0.9372 15.0 - 23.0 FP 0.5 

15 0.9392 15.0 - 23.0 TN 0.5 

16 0.9403 15.0 - 23.0 FN 0.5 

17 0.9458 15.0 - 23.0 FP 0.5 

18 0.9469 15.0 - 23.0 TN 0.5 

19 0.9472 15.0 - 23.0 FP 0.5 

20 0.9408 15.0 - 23.0 TP 0.5 

     

Table 4: System Performance at Threshold 0.6 

 

S/N Matching 
 Score 

Age Range 
 (Years) 

Confusion  
Matrix 

Threshold  
Value 

1 0.9454 15.0 - 23.0 TP 0.6 

2 0.9466 15.0 - 23.0 TN 0.6 

3 0.9469 15.0 - 23.0 FP 0.6 

4 0.9418 15.0 - 23.0 FN 0.6 

5 0.9592 15.0 - 23.0 TP 0.6 

6 0.9508 15.0 - 23.0 FP 0.6 

7 0.9503 15.0 - 23.0 TN 0.6 

8 0.9558 15.0 - 23.0 FN 0.6 

9 0.9457 15.0 - 23.0 FP 0.6 

10 0.9453 15.0 - 23.0 TN 0.6 

11 0.9426 15.0 - 23.0 FN 0.6 

12 0.9465 15.0 - 23.0 TP 0.6 

13 0.9469 15.0 - 23.0 FN 0.6 

14 0.9472 15.0 - 23.0 FP 0.6 

15 0.9492 15.0 - 23.0 TN 0.6 

16 0.9403 15.0 - 23.0 FN 0.6 

17 0.9558 15.0 - 23.0 FP 0.6 

18 0.9569 15.0 - 23.0 TN 0.6 

19 0.9572 15.0 - 23.0 FP 0.6 

20 0.9508 15.0 - 23.0 TP 0.6 

 

Table 5: System Performance at Threshold 0.7 

S/N Matching 
 score 

Age Range 
 (Years) 

Confusion  
Matrix 

Threshold  
Value 

1 0.9554 15.0 - 23.0 TP 0.7 

2 0.9566 15.0 - 23.0 TN 0.7 

3 0.9569 15.0 - 23.0 FP 0.7 

4 0.9518 15.0 - 23.0 FN 0.7 

5 0.9592 15.0 - 23.0 TP 0.7 
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6 0.9508 15.0 - 23.0 FP 0.7 

7 0.9503 15.0 - 23.0 TN 0.7 

8 0.9558 15.0 - 23.0 FN 0.7 

9 0.9657 15.0 - 23.0 FP 0.7 

10 0.9653 15.0 - 23.0 TN 0.7 

11 0.9626 15.0 - 23.0 FN 0.7 

12 0.9665 15.0 - 23.0 TP 0.7 

13 0.9669 15.0 - 23.0 FN 0.7 

14 0.9672 15.0 - 23.0 FP 0.7 

15 0.9692 15.0 - 23.0 TN 0.7 

16 0.9503 15.0 - 23.0 FN 0.7 

17 0.9658 15.0 - 23.0 FP 0.7 

18 0.9669 15.0 - 23.0 TN 0.7 

19 0.9672 15.0 - 23.0 FP 0.7 

20 0.9608 15.0 - 23.0 TP 0.7 
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