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ABSTRACT 

Intelligent health systems and a range of patient care can 

benefit from the help of artificial intelligence. In the medical 

field, artificial intelligence methods from machine learning to 

deep learning are widely used for patient risk assessment, 

medication development, and illness diagnosis. To accurately 

detect illnesses using artificial intelligence approaches, a 

variety of medical data sources are needed, including 

computed tomography scans, genomes, mammograms, 

ultrasound, magnetic resonance imaging, and more. 

Additionally, artificial intelligence mainly improved the 

experience of patients in the hospital and expedited the 

process of getting them ready to continue their recovery at 

home. This article discusses a thorough analysis of artificial 

intelligence-based methods for diagnosing a wide range of 

illnesses, including cancer, diabetes, Alzheimer's disease, 

chronic heart disease, stroke, cerebrovascular, hypertension, 

skin, and liver disease. We carried out a thorough analysis that 

included the medical imaging dataset that was utilized, as well 

as the feature extraction and classification procedure for 

making predictions. For the purpose of early prediction of 

various disease types using artificial intelligence-based 

methods, articles published up until October 2020 on the Web 

of Science, Scopus, Google Scholar, PubMed, Excerpta 

Medical Database, and Psychology Information are chosen 

based on preferred reporting items for systematic reviews and 

Meta-Analysis guidelines. 

 

Key words: Medical Image Processing; Machine Learning; 

Deep Learning; X-Ray; Symptoms. 

 

1. INTRODUCTION 

 

Medical image processing is one of the most essential tasks 

when it comes to the diagnosis of diseases. Recently, 

researchers have used advanced methods of machine learning 

and deep learning to interpret, analyze, and modify medical 

images which help in diagnosis and treatment [1]. From the 

first decade of the 2000s new technologies in machine 

learning, deep learning, and big-data technologies have greatly 

affected the medical image processing field. Specifically, 

machine learning algorithms have matured, coupled with the 

increased access to large repositories of medical images [2], 

leading to faster growth worldwide and greater reliance on 

more consistent, accurate, and comprehensive solutions in 

oncology, radiology, and cardiac science[3]. The progress of 

medical image technology has also run hand-in-hand with 

healthcare needs for the accuracy of images. The main focus of 

early studies conducted in this area was the different image 

processing methods such as feature extraction, segmentation, 

and classification. The emergence of machine learning 

systems, most particularly deep learning seems to have 

accelerated the pace of these models and their attendant 

studies. Since 2010, cloud computing and the big-data era 

have progressed and this area has expanded further with cloud 

picture processing technology, massive data, and improved 

performance all contributing towards advancement. This era 

also marked the growth of artificial intelligence AI [4]. 

More studies have recently focused on the development of 

operable robotic systems for telemedical surgeries, 

multi-modal imaging, and cloud-based collaborative model 

training. These advancements are new frontiers in precision 

medicine which allow treatment to be tailored to individuals 

and increase the knowledge of complicated diseases [5]. 

We aim in this survey to provide a comprehensive overview of 

studies in medical image processing from 2000 to the present. 

By examining the technologies, applications, and future 

trends, this paper aims to give researchers, developers, and 

clinicians an in-depth understanding of past and current 

developments, as well as insights into future opportunities in 

this rapidly advancing field 

Benefits for illness diagnosis are associated with the use of 

artificial intelligence (AI). The healthcare system is a 

dynamic, ever-evolving setting [2].  And medical 

professionals always encounter fresh difficulties due to 

shifting duties and regular disruptions [3]. This diversity 

frequently causes medical professionals to see illness 

diagnosis as a secondary concern. 

Furthermore, it is a cognitively demanding effort to analyze 

medical information clinically. This is true for both seasoned 

professionals and performers with little or no experience, such 

young assistant physicians [6]. Diagnostics is a very difficult 

procedure because medical specialists often have limited time 

and because illnesses and patient dynamics may alter over time 

[7]. Nonetheless, early treatment and, consequently, safe and 

successful patient care depend heavily on an accurate 

diagnosis procedure. Our primary goal in this study is to 

provide an overview of the most recent research on deep 

learning applications for medical image processing [8, 9]. 
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Since building systems become more feasible, the role of AI in 

the diagnostic process has been progressively growing [10]. 

AI continues to generate excitement and buzz [11], and both  

practitioners and researchers give this technology equal 

attention from a variety of angle. AI is defined as "the ability 

of a machine to perform cognitive functions that we associate 

with human minds, such as perceiving, reasoning, learning, 

interacting with the environment, problem solving, decision 

making, and even demonstrating creativity", though there is no 

agreed-upon definition for the term [12]. The main 

contribution of the current study lies in investigating a wide 

range of illness symptoms and exploring how AI methods can 

be utilized for their detection. This report is particularly 

noteworthy for its detailed discussion on various illness 

diagnoses and projections, derived from a comprehensive 

survey of detection methods. 

2. FUNDAMENTALS OF MEDICAL IMAGING 

 

The evolution of contemporary medical imaging technology, 

from Wilhelm Roentgen's groundbreaking invention of X-ray 

technology in 1895 to today's most sophisticated methods, 

exemplifies the unrelenting quest for scientific progress and its 

profound impact on radiology [13] (Figure 1). 

A major turning point was the introduction of computed 

tomography in 1973 by Sir Godfrey Hounsfield and Allan 

Cormack, which went beyond the constraints of 2D imaging 

by introducing a three-dimensional (3D) format[14]. In order 

to reconstruct 3D volumetric data from the gathered 2D 

images, computed tomography combines the fundamental idea 

of differential absorption with the synchronized rotation of 

X-ray sources and detectors around the patient's body, along 

with advanced computational algorithms [13]. A vital 

component of the complex machinery of multidisciplinary 

medical teams is radiology. A comprehensive, patient-focused 

healthcare strategy is facilitated by radiologists' quick and 

accurate imaging reports, which improve communication 

between specialists and help shape important choices [15]. As 

important consultative partners, radiologists provide crucial 

information about how to select and interpret appropriate 

imaging studies, contributing to radiation safety and dose 

control while their knowledge clarifies the clinical picture and 

provides information that can significantly impact patient care 

[15, 16]. 

2.1 Medical Imaging Techniques Types 

Medical imaging techniques vary in their underlying 

technology, applications, and the type of information they 

provide. Here are some of the most commonly used types: 

 X-ray    A diagnostic method called radiography uses ionizing 
electromagnetic radiation, like X-rays, to see things. With a 
wavelength of 0.01 to 10 manometers, X-rays are high 
intensity electromagnetic radiation that may ionize gases and 
penetrate materials [17] as shown in Figure 2. 

 

Figure 2: X-Ray images example 

 Magnetic Resonance Imaging (MRI) is a diagnostic 
technique that images bodily tissues and tracks bodily 
chemistry using magnetic and radio frequency fields.The 
MRI's capacity to identify variations in proton density and 
magnetic spin relaxation times both of which are indicative 
of the environment the sick tissue presents is what allows it 
to visualize morphological abnormalities[18] as show in 
Figure 3.  

 Computed Tomography (CT) is a diagnostic technique 
that creates pictures of cross sections of the human body by 
combining X-ray equipment, a computer, and a cathode ray 
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Figure 1: A historical overview of advancements in medical image processing. 
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tube display as shown in Figure 4. A detector that measures 
the X-ray profile takes the role of the radiography film. The 
CT scanner is a revolving frame with the detector 
positioned on one side and an X-ray tube mounted on the 
other [19]. 

 

Figure 3: MRI images example 

 

Figure 4: CT images example 

 Ultrasound the first technique to do elastography was 
ultrasound elastography, which is now extensively 
researched for clinical diagnostic applications to scan soft 
tissue biomechanical characteristics [20]. as shown in 
Figure 5 

 

Figure 5: Ultrasound images example 

 PET provide details on a disease's metabolic processes. 
PET imaging uses isotopes that decay due to positron 
emission. After only a short distance, the released 
positron experiences an annihilation event, producing two 
photons that move in opposing directions to each other 
[21]. As illustrated in Figure 6. 

 Single Photon Emission Computed Tomography 
(SPECT) is a method of imaging that uses medications 
labeled with atoms that, upon decay, release at least one 
gamma ray. It is required to put a collimator in front of the 
detector so that only gamma rays released in the detector's 
direction may be detected because gamma rays are 
typically emitted equally in all directions [21]. 

 

Figure 6: PET for brain image 

 Image Acquisition and Preprocessing 

Other methods, in which predicting a result becomes 
exponentially more efficient than relying solely on visual 
diagnosis, are utilized for normal image-based diagnoses 
of diseases such as skin cancer [22], Cardiovascular 
diseases [23], Lung diseases [24],   Jaundice diseases 
[25],and so on.   

2.2 Numerical data 

Other approaches use numerical data for disease diagnosis, 

such as laboratory test results (e.g., blood pressure, heart rate, 

oxygen saturation, and temperature ) [26]. In these methods, 

the input is provided as numerical values, and the output is the 

estimated risk of these diseases [27]. 

The dataset utilized in this way is sourced from the Central 

Person Registry (CPR) and includes illness trajectories from 

the Danish National Patient Registry (DNPR) , encompassing 

229 million hospital diagnoses [28]. 

2.3 Baseline for medical image processing 

Typically, most medical image processing pipelines (see 

Figure 7) follow a series of key steps: 

 Image Categorization: Organizing images into relevant 
categories based on characteristics or intended 
analysis. 

 Image Pre-Processing: Preparing images by correcting 
artifacts, resizing, or standardizing formats for 
consistent input. 

 Image Enhancement: Improving image quality by 
adjusting contrast, reducing noise, and sharpening 
details to highlight key features. 

 Segmentation: Partitioning images into meaningful 
regions or structures, such as organs or lesions, for 
focused analysis. 

 Feature Extraction: Identifying and isolating significant 
features or patterns within the images that are relevant 
to the diagnosis. 

 Feature Selection: Selecting the most important features 
to reduce data complexity and enhance the 
performance of the analysis. 

 Classification: Assigning labels or categories to images 
or regions based on extracted features, often to detect 
or diagnose specific conditions. 

 

 



Abbas Kadhim Ali et al.,  International Journal of Advanced Trends in Computer Science and Engineering, 13(6), November - December  2024, 247 - 258 

250 

 

 

 

 

 

 

 
 

Figure 7: The pipeline of medical image processing 
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3. MEDICAL IMAGE PROCESSING BY MACHINE 

LEARNING TECHNIQUES 

Recently, machine learning approaches, together with 

artificial intelligence (AI) models, clinical data, and image 

analysis, have shown significant potential to improve people's 

lives in a relatively short period [29]. Below, we list the main 

approaches for disease diagnosis: 

3.1 Deep learning approaches 

Many approaches and algorithms that allow computers to learn 

from data form the foundation of machine learning. 

Supervised and unsupervised learning are the two main types 

of machine learning that underpin this field. 
 

1) Supervised learning  

One popular machine learning technique is supervised 

learning, which uses input-output pairs as training data or 

pre-existing examples. The goal is to develop a function that 

maps input data to corresponding outputs, allowing for 

accurate prediction or classification of new data. Essential 

algorithms in supervised learning include decision trees, 

logistic regression, and linear regression [30]. Supervised 

learning addresses a scenario where a model is trained to learn 

a relationship between input samples and a target variable 

[26]. Systems that use examples of input vectors along with 

their corresponding target vectors in the training data are 

referred to as supervised learning systems. The two main 

categories of supervised learning problems are classification 

and regression [27]. In classification, the task is to predict a 

class label, whereas in regression, the objective is to predict a 

numerical value as the target variable [28]. 

Most supervised methods use common networks, such as: 

 AlexNet : In 2012, Krizhevsky et al. [31] developed 
AlexNet to tackle the ILSVRC-2010 objective of 
categorizing 1.5 million images into 1000 classes. 
AlexNet is based on the LeNet-5 architecture, with 
some modifications: it consists of eight layers, with 
the first five dedicated to feature extraction and the 
final three for classification. 

 The Visual Geometry Group (VGG) model was 
developed in 2014 by Simonyan and Zisserman [32] 
for classification and localization tasks. With 
approximately twice as many convolutional layers as 
AlexNet, VGG extends the depth of the CNN to 16 
layers (VGG-16) and 19 layers (VGG-19). 

 GoogleNet [33] was developed for detection and 
classification tasks. It expands the CNN’s width and 
depth while keeping the computational budget 
constant, with 12 times fewer parameters than 
AlexNet. GoogleNet’s primary innovation is the 
inception module, which replaces the fully connected 
convolutional layer with a sparsely connected layer. 
Including pooling layers, inception modules, and 
auxiliary classifiers, GoogleNet comprises a total of 
100 layers, with 22 convolutional layers. 

 The deep residual network (ResNet) : In 2016, He et 
al. [34] introduced ResNet for tasks such as 
segmentation, classification, detection, and 

localization. ResNet addresses the vanishing gradient 
problem that occurs with increasing network depth by 
incorporating residual blocks. It is eight times deeper 
than VGG while maintaining lower complexity (fewer 
parameters), as the residual mapping does not require 
additional parameters. 

 Conventional Neural Network (CNN): To perform 
well and generalize effectively, CNNs require a large 
number of labeled examples. Creating a high-quality 
dataset with many samples can be costly and 
challenging, especially when labeling requires human 
involvement, as is often the case with medical 
datasets. 

 Region-Based Convolutional Neural Network 
(R-CNN) was proposed by Girshick et al. [35] for 
object segmentation, detection, and localization. 
R-CNN combines the power of a CNN, a region 
proposal method, and a support vector machine 
(SVM). The CNN extracts feature from each 
candidate region box generated by the region proposal 
method, known as selective search. The SVM then 
predicts a class and creates a bounding box for each 
potential object.  

 Faster R-CNN: To increase the speed of R-CNN, 
Girshick  [36] developed the fast region-based 
convolutional neural network (Fast R-CNN. Fast 
R-CNN extracts visual features using a single CNN. 
Following CNN's computation of the feature maps, 
Fast R-CNN converts each suggested region's size into 
a fixed length using the ROI pooling layer. 

 Mask R-CNN: To recognize an object and 
simultaneously generate a segmentation mask, He et 
al. [37] introduced Mask R-CNN for instance 
segmentation. 

 Fully Convolutional Network (FCN): The FCN was 
proposed by Long et al. [38] for semantic 
segmentation. An FCN is a CNN that consists of two 
sections: downsampling and upsampling paths, and it 
replaces all dense layers with convolutional layers. A 
CNN (including convolutional layers, ReLU, and 
pooling layers) is used in the downsampling path for 
feature extraction. Transposed convolution layers 
(also known as deconvolution) are included in the 
upsampling path to recover the spatial information of 
feature maps. 

 U-Net: U-Net was developed by Ronneberger et al. 
[39] for biomedical semantic segmentation. The 
U-Net architecture has a U-shape, with two 
symmetrical paths (contracting and expanding). The 
contraction (downsampling) path uses a conventional 
CNN for feature extraction. The expanding path, also 
known as upsampling, preserves spatial information. 
Skip connections are used to link the two paths, 
ensuring that spatial properties from the early layers 
are maintained. Figure 8 shows the accuracy of 
supervised networks. 
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2) Unsupervised learning 

 

In this section, we formally present unsupervised deep 

learning architectures used in medical image analysis. 

Unsupervised learning is a computational method in which 

computers identify hidden structures and patterns in unlabeled 

data without the use of output labels. Unlike supervised 

learning, where labeled examples are available, the model in 

unsupervised learning must discern inherent relationships and 

groupings within the data to facilitate classification and 

interpretation [41]. Selecting unsupervised learning is 

advantageous when the objective is to explore and understand 

the intrinsic structure of data. This approach is ideal for tasks 

where explicit output labels are either challenging to obtain or 

unnecessary, as well as in situations where labeled data is 

scarce or unavailable [42]. In medical imaging research, 

unsupervised learning is highly effective in various 

classification tasks, such as distinguishing between benign and 

malignant tumors [43, 44], enabling domain adaptation in 

cardiac arrhythmia classification [45], identifying brain 

diseases [46], and detecting masses in breast cancer [47]. 

Unsupervised learning’s ability to uncover hidden patterns and 

correlations, revealing subtle differences in images, is a 

critical advantage in medical image processing and analysis. 

This capability enhances understanding of complex clinical 

and anatomical phenomena.  

Unsupervised learning enables creating new ideas and 

hypotheses through the grouping of unlabeled data into 

clusters. In addition, odd distance transform and other 

dimensionality reduction techniques enhance the 

interpretability of the data that would otherwise be visually 

difficult to analyze due to the high dimensionality. But there 

are also unintended consequences raised by the unsupervised 

models that are capable of noise capturing resulting in creation 

of classification that is clinically uninformative. Thus, using 

unsupervised learning must be complemented with thorough 

validation, clinical judgement, and knowledge of its 

limitations [41]. 

3) Reinforcement Learning 

In such mechanisms of learning, it is possible to have complex 

imaging procedures and even more complex patients 

rendering such imaging for optimal decision-making in case of 

changing conditions. It is useful with regard to problems for 

which there is a solution but that is not known at the very 

beginning and has to be built up through time. Such an 

approach is preferred when the model is to learn from its 

actions and from the experiences, one is required to make 

some decisions amid uncertainty. In the literature, such aspects 

have been attributed, for instance, autonomous driving 

systems [48], robotic control [49], and game playing 

[50].Reinforcement learning is applied in medical image 

processing and analysis for tasks such as automating the 

exploration of different imaging sequences [51], developing 

patient-specific treatment plans [52], and optimizing imaging 

parameters during acquisition [53]. Additionally, by 

customizing post-processing algorithms to each patient's 

unique characteristics, reinforcement learning improves image 

quality and enhances diagnostic accuracy [54]. In anatomical 

and biological landmark detection [55], modality-invariant 

landmark localization, and minimizing the time to locate 

landmarks using a continuous action space [56], reinforcement 

learning is essential for accurately identifying landmarks 

across various imaging modalities. It is also valuable for 

applications like breast lesion detection in object identification 

and extraction tasks. 

4) Semi-Supervised Learning 

Semi-supervised learning is a combination of both 

unsupervised and supervised learning. In this method, the 

models are provided with a tiny portion of labeled data along a 

huge dataset with no labels as the models draw relations 

between the labeled data and try to learn the structure of the 

unlabeled data. In situations where one aims to utilize the 

maximum usages of unlabeled examples present in the data 

while having an additional value from the labeled examples, 

semi supervised approach should be utilized. This method is 

mostly popular in the fields like natural language processing 

[57] and automated speech recognition [58]. In the case of 

medical image processing and analysis, Semi-Supervised 

Learning and its variants are being employed to meet 

challenges resulting from the limited availability of annotated 

medical datasets leading to better evaluation and better 

understanding. It is often used in image manipulation tasks 

such as artificial image synthesis [59], segmentation [60] and 

classification [61]. The main benefit of semi supervised 

learning is enhanced generalization and robustness of the 

models where typically only a small amount of labeled data is 

available while shallow regions are sought in large unlabeled 

data sets. However, a model always requires careful attention 

to the factors that dictate the proportion between such labeled 

and unlabeled datasets [41]. 

In Figure 9, statistical data on the use of machine learning in 

medical image processing is presented. 

In Table 1, we present a summary of the most important 

research studies that have used machine learning in medical 

image processing. 

 

 

 

 

 

Figure 8: Accuracy of supervised learning networks: lowest and 

highest [40] 
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Table 1: Comparative evaluation of several disease detection methods 

Author Disease type Dataset Method Accuracy Code  

Li et al. [62] Coronary Artery  Phonocardiogram (PCG) 

and Electrocardiogram 

(ECG) images 

CNN that combines feature 

extraction in these signals. 

Highest result 93.69% Python (Keras 

framework) 

Jasti et al. [63] Breast Cancer  

 

MIAS and DDSM dataset Machine learning (AlexNet) with a 

geometric mean filter  

Highest result 95% - 

Ucar et al. [64] COVID-19 COVIDx dataset Deep Squeeze Net 98.30% MATLAB  

Heidari et al [65] COVID-19 SARS-COV-2 CT scan 

dataset 

Long short-term memory networks 

(LSTM) 

89% Pytorch and 

MATLAB 

Solayman et al.[66] COVID-19 The authors collected a 

private dataset 

The hybrid CNN-LSTM algorithm 96.34% - 

Nithya et al. [67] Kidney  Kidney ultrasound images K-means clustering, ANN, 

Segmentation based linear and 

quadratic  

99.61% MATLAB  

Khan et al. [68] Gastrointestinal The authors collected a 

private dataset through IoT 

Deep Learning (VGG 16, ANN) 98.4% - 

Gouda et al. [69] COVID-19  

 

disease CT scan dataset Deep learning 90.9% - 

Arsalan et al. [70] Hypertension DRIVE, CHASE-DB1, 

STARE 

 

Vess-net Method, Semantic 

Segmentation 

96.55% MATLAB R2019a 

Lai et al. [71] 

 

Tuberculosis a private dataset from 

―Taipei Medical 

university‖ 

ANN, Random Forest 88.67% - 

Gao et al. [72] 

 

Tuberculosis 100 CT TB images Deep Learning (ResNet) 85.29 % Python 

Keenan et al. [73] Detection of Retinal Fluid  scan data (1127 SDOCT) AI (software tool) 80.5 % AI software tool 

Sarao et al. [74] Detection of Retinopathy  Real time data of 165 

patients  

Image Analysis Software (AI 

software tool) 

90.8% AI software tool 

Ljubic et al. [75] Alzheimer EMR and SCRP dataset deep learning models (LSTM,  

RNN) 

98-99% Python 

Khan et al. [76] Alzheimer OASIS-database Machine learning, Pipeline, Pattern 

Recognition 

  

Janghel et al. [77] Alzheimer ADNI-database  KNN, SVM, Decision Tree  73.46 % Python 

Isravel et al. [78] Heart  

 

Health-dataset  

 

Naïve Bayes, KNN, ECG signals, 

Decision Tree 

80 %  Python 

Bibault et al.[79] obstructive pulmonary  ECLIPSE-dataset  

 

AI (software tool) 88.6 % AI software tool 

Rodrigues et al. [80] Skin Lesion  

 

ISIC-dataset  

 

CNN (VGG Net), Random, Forest 

KNN, SVM 

 

96.805% Python 

Memon et al. [81] Breast cancer  

 

Dataset From Wisconsin 

Diagnostic Breast Cancer 

Center 

SVM and Machine Learning 99 % Python 

Chu et al. [82] Oral cancer  408 of OSCC (patients)  

 

PCA, Decision Tree, KNN, SVM 

 

70.59% MATLAB 
 

Hosseinzadeh et al.  

[83] 

Thyroid  MRI-dataset  ANN  99% Python 

Ostovar et al. [84] 

 

Covid 19 Dataset from Laboratory of 

RTPCR  

Deep learning  60–70% Python 

Yadav et al. [85] 

 

Thyroid 3710 thyroid cases 

(patients) 

Random Forest, Decision Tree, 

Regression Tree, and Classification 

Decision tree: 98% 

Random forest:99% 

Python 

Tengnah et al. [86] 

 

Hypertension Real time dataset Multi-Layer Perceptron, Fuzzy 

logic, SVM, Decision Tree 

90.48% 

 

Python 

Ali et al. [26] Respiratory  Real time dataset Fuzzy logic 95 % MATLAB 

Chang et al. [87] 

 

Disease of Scalp 

 

Dataset gathered from a 

physiotherapist who treats 

scalp hair 

Deep learning (RNN) 

 

97.41–99.09% MATLAB 

Morabito  et al. [88] Disease of Scalp Data based on AD and 

EEG  

CNN with Multi-Layer Perceptron 

 

80% MATLAB 

Jo et al. [89] Alzheimer AD-dataset  Deep learning (RNN) 96.0% Python 

Ani et al. [90] Disease of Chronic 191 patients with and 

without stroke 

 

Random forest, KNN, Naïve Bayes, 

Classification 

93% MATLAB 

https://onlinelibrary.wiley.com/doi/abs/10.1155/2022/1918379
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3.2 Limitations, Challenges, and Future Directions 

AI's growth in healthcare, especially in diagnostic radiology, 

has created previously unheard-of chances to improve patient 

care's effectiveness and quality. The "black box" conundrum, 

the need for sufficient data volume and quality, integration 

into clinical practice, and ethical issues are only a few of the 

numerous obstacles that accompany this quick expansion. This 

section analyzes these problems and suggests possible 

solutions that might help radiologists adopt and use AI 

responsibly while taking into account a number of 

technological, infrastructure, legal, and human considerations 

[92]. 

 
4. THE QUANTITY QUALITY FOR DATA 

Artificial intelligence (AI) algorithms, which are essentially 

mathematical mirrors of reality, rely on comprehensive 

datasets that accurately reflect a range of patient 

demographics, including age, sex, ethnicity, and disease 

stages, in addition to their training datasets and accuracy [93, 

94].  

Due to the use of limited demographic groupings or particular 

clinical contexts, representation biases sometimes hinder the 

creation of such datasets [95]. In order to address data scarcity  

and guarantee dataset variety and balanced representation 

during model training, techniques such as data augmentation, 

oversampling, and undersampling are frequently used [96]. 

Given that poor management might unintentionally reinforce 

health inequities and produce AI models that perform poorly 

in particular patient populations, it is critical to identify and 

mitigate the risks associated with biased or unrepresentative 

data. The lack of transparency in AI models, known as the 

"black box" problem, makes it more difficult to identify bias 

and uncover errors, which has a negative impact on therapeutic 

utility and underrepresented populations [97]. 

 

 

 

5. CONCLUSION  

A summary of the most important discoveries, revolutionary 

possibilities, and future directions of the complex link between 

AI and medical imaging is provided in the review's conclusion. 

AI is essential to modern radiology and offers several benefits, 

including increased diagnostic precision, streamlined 

workflow, and individualized patient care. These 

developments, which include computer-aided diagnosis, 

picture segmentation, classification, and novel diagnostic and 

prognostic tools powered by radiomics and predictive 

analytics, portend a bright future for bettering patient 

outcomes. However, issues with security, data privacy, and the 

"black box" nature of AI models still need to be resolved. 

Notwithstanding these challenges, the future appears bright as 

new architectures and algorithms expand the use of medical 

image analysis.  
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