
 D. Hema Latha et al., International Journal of Advanced Trends in Computer Science and Engineering, 7(2), March –April 2018, 20- 29

20

Estimating Software Reliability Using Ant Colony Optimization

Technique with Salesman Problem for Software Process
1D. Hema Latha , 2Prof. P. Premchand

1Research Scholar, Dept of Computer Science, Rayalaseema University, Kurnool, Andhra Pradesh, India
2Professor, Dean, Faculty of Informatics, Dept of Computer Science and Engineering, UCE, Osmania University,

Hyderabad, TS, India

ABSTRACT
Software reliability means it is a failure free
operation of software for a specific period of time
under specified environment. Software reliability is
defined as the probability with which the software
will operate without any failure for a specific period
of time in a specified environment. It is one the
important software quality features. Software
reliability, when estimated in early phases of
software development life cycle, saves lot of money
and time as it prevents spending huge amount of
money on fixing of defects in the software after it has
been deployed to the client. Software reliability
prediction is very challenging in starting phases of
life cycle model. Software reliability estimation has
thus become an important research area as every
organization aims to produce reliable software, with
good quality and error or defect free software. There
are many software reliability growth models that are
used to assess or predict the reliability of the
software. These models help in developing robust
and fault tolerant systems.
In the past few years many software reliability
models have been proposed for assessing reliability
of software but developing accurate reliability
prediction models is difficult due to the recurrent or
frequent changes in data in the domain of software
engineering. As a result, the software reliability
prediction models built on one dataset show a
significant decrease in their accuracy when they are
used with new data. The objective of this paper is to
introduce a new approach that optimizes the accuracy
of software reliability predictive models when used
with raw data. Ant Colony Optimization Technique
(ACOT) is proposed to predict software reliability
based on data collected from literature. An ant colony
system by combining with Travelling Sales Problem
(TSP) algorithm has been used, which has been
changed by implementing different algorithms and
extra functionality, in an attempt to achieve better
software reliability results with new data for software
process.
The intellectual behavior of the ant colony
framework by means of a colony of cooperating

artificial ants are resulting in very promising results.
The method is validated with real dataset using Mean
Time to Failure (MTTF) and Mean Time Between
Failure (MTBF).

Keywords: Software Reliability, Bio-inspired
Computing, Ant Colony Optimization (ACO)
technique, Travelling Salesman Problem (TSP).

1 INTRODUCTION

As the past decades have seen the
computerization of all the functionalities in
all the fields turn out to be supplementary
multifaceted and therefore, there is a
constant demand for discovering innovative
well organized methodologies to software
development and preservation. There is a
prerequisite of the enormous scope of effort,
time and currency to arrange and build up
any feasible software apart from the human
resource and their organization. For
outstanding rising competition, today's
profitable conditions have become very
dynamic. Corporate industries require
proceeding extremely fast to unstable needs
of the market. Hence, software engineering
which emphasizes with all these domains
has become an individual study from
researchers. The software crisis is defined as
mismatch between what the software can
deliver and the capacities of computer
systems, as well as the expectations of their
users and where software problems cause
the system tasks to be delayed, expensive,
and/or not amenable to the user’s desires.
The software can be developed to meet the
various stages of reliability, security,

 ISSN 2278-3091
Volume 7, No.2, March - April 2018

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse04722018.pdf

https://doi.org/10.30534/ijatcse/2018/04722018

 D. Hema Latha et al., International Journal of Advanced Trends in Computer Science and Engineering, 7(2), March –April 2018, 20- 29

21

portability, usability, effective cost and
response time.
Developing awfully trustworthy software
from the user’s perspective is a demanding
profession for all software engineers.
However, Software Reliability [1], [2], [3] is
a significant aspect influencing system
reliability. The following four practical
aspects which are related to achieving
reliable software systems and these aspects
furthermore are treated as four fault
Lifecycle techniques:
1) Fault avoidance: to avoid, by building,
error existence. 2) Fault elimination: to
identify, by confirmation and proof, the
presence of faults and eliminate them. 3)
Fault tolerance: to specify, by redundancy,
facility conforming to the requirement in
spite of faults having rising. 4) Fault/failure
Predicting to estimate: by the assessment,
the occurrence of faults and consequences of
failures. Quality [10], [11] is an important
feature of reliability.
Software reliability is the probability that
software will not cause failure of a system
for a particular point in time underneath
particular circumstances. The probability is
a function of the inputs to and use of the
system as well as a function of the existence
of faults in the software. According to
ANSI, Software Reliability [13], [14] is
defined as: “the probability of failure free
software operation for a particular period of
time in a particular atmosphere”. Software
reliability evaluation is significant to
evaluate and forecast the trustworthiness and
performance of software systems. Reliability
representation is a crucial ingredient of the
reliability evaluation procedure and it also
validate whether a product meets up its
reliability objective and is ready to
distribute. The fundamental intention of
most of software reliability models is
making them to understand distinctiveness
and reasons to fail software, and try to
enumerate software reliability. The current

article lay emphasis on about a bio inspired
computing technique Swarm Intelligence
known as the Ant Colony Optimization
Technique to predict software reliability.
The anticipated method is employed into a
TSP problem with software failure datasets
to predict software reliability and the results
of our approach are reported. And, thus, the
focus of the discussion to be presented here
is an ACO for discrete optimization that has
been used to predict software reliability
using the Travelling Sales Person Problem
where failure data is given as input and the
result is calculated through Mean Time to
Failure (MTTF) and Mean Time Between
Failure (MTBF) to predict the reliability.

2 METHODOLOGY

A. Bio Inspired Computing

Natural computing [22] is a term presented
to comprise three classes of methods: (1)
those that take motivation from nature for
the development of novel problem-solving
techniques; (2) those that are constructed
with the use of computers to synthesize
natural facts; and (3) those that employ
natural resources (e.g., molecules) to
compute. The main areas of research that
comprise these three branches are the
artificial neural networks,[4], [5], [6], [16],
[17], evolutionary algorithms, swarm
intelligence [20], artificial immune systems,
fractal geometry, artificial life, DNA
computing, and quantum computing, among
others. Bio-inspired Computing is the
combination of computational aptitude and
collective intelligence. These computational
approaches are used to resolve multifaceted
problems, and developed after design
principles confronted in natural or biological
systems, and tend to be adaptive, responsive,
and distributed. The aim of bio-inspired
computing [7] is to develop computational
tools with enhanced strength, scalability,

 D. Hema Latha et al., International Journal of Advanced Trends in Computer Science and Engineering, 7(2), March –April 2018, 20- 29

22

flexibility and which can interact more
efficiently with humans. It can offer
biologists, for example, with an IT-oriented
concept for looking at how cells compute or
process information, or help computer
scientists build algorithms based on natural
systems, such as evolutionary and genetic
algorithms.
Biocomputing [23] has the potential to be a
very powerful tool. The association of bio-
inspired and soft computing techniques [18],
[19] are artificial neural networks [8], [9],
[10], evolutionary algorithms, swarm
intelligence, artificial immune systems [15],
fractal geometry, artificial life, DNA
computing and quantum computing.

B. Ant Colony Optimization Technique

Ant Colony [24-27] is one of the techniques
of bio inspired computing. The main
concept of this technique is that the self-
organizing rules which allow the highly
synchronized behavior of real ants can be
utilized to manage populations of artificial
agents that cooperate to solve computational
problems. Various distinctive attributes of
the behavior of ant colonies have inspired
different kinds of ant algorithms. Examples
are foraging, distribution of labor, issue
sorting, and cooperative transport. Ants
coordinate their activities via stigmergy, a
form of implicit interaction mediated by
changes in the environment. For example, a
foraging ant deposit a chemical on the
ground which raises the probability that
other ant will follow the same path.
Biologists have presented that many colony-
level behaviors witnessed in social insects
can be described through relatively simple
models in which only stigmergic
communication is present. In other words,
biologists have shown that it is often
sufficient to consider stigmergic, indirect
communication to explain how social insects
can attain self-organization. The notion

behind ant algorithms is to use a form of
artificial stigmergy to coordinate societies of
artificial agents. One of the most effective
examples of ant algorithms is known as ‘‘ant
colony optimization’’, or ACO. ACO is
motivated by the foraging behavior of ant
colonies, and targets discrete optimization
problems. The ants may deposit a
pheromone on the ground while returning
back to their nests. The ants follow with
high probability pheromone trails their sense
on the ground.
Each Ant evaluates the next move to another
vertex based on Gambardella et al., [28, 29],

pk
ij is the probability for a worker K to

move to vertex “ij”
ij τ is the amount of pheromone deposited on
edge to “ij”
η is the inverted distance, describes how fast
ants select their path.
The tour cost of each ant is given by di j the
tour cost from the city i to city j (edge
weight) is calculated and hence the shortest
path is found. This is applied to the
Travelling Sales Person Problem and
optimized solutions are obtained using

The amount of pheromone deposited by
each ant is given by

 D. Hema Latha et al., International Journal of Advanced Trends in Computer Science and Engineering, 7(2), March –April 2018, 20- 29

23

C. Algorithm

The ACO algorithm [30] which has been
proposed based on the study that real ants
are skilled in finding the shortest path from a
food source to the nest without using visual
signals. From the originating point the ants
start the tour selecting randomly any path.
The ACO algorithm is as follows:

1. Set the initial parameters.
2. Initialize pheromone trails.
3. Calculate the maximum specific ways in
which the ants can travel.
4. Loop //iteration
5. Each ant is positioned at a given node
randomly selecting the node according to
some distribution strategy (each node has at
least one ant)
6. For k=1 to m do //steps in a loop
7. The first step: move each ant in a different
route
8. Repeat //till all the nodes are visited
9. Select node j to be visited next // the next
node must not be an already visited node
10. Apply local updating rule
11. Until ant k has completed a tour
12. End for
13. Apply sub tour that is sub Local search //
to improve tour
14. Apply global updating rule
15. Compute entropy value of current
pheromone trails

16. Update the heuristic parameter
17. Until End_condition
18. End
The flow chart for Ant Colony Optimization
(ACO) algorithm with travelling salesman
problem is shown in fig(1)

Figure. 1. Flow chart of the ACO algorithm

 D. Hema Latha et al., International Journal of Advanced Trends in Computer Science and Engineering, 7(2), March –April 2018, 20- 29

24

3 IMPLEMENTATION RESULTS

In this experiment, time series forecasting
model is employed to predict software
reliability which has only one dependent
variable and no explanatory variables. In
this paper, the software failure data obtained
from Musa [21] data sets is employed in this
study. It is used to demonstrate the
forecasting performance of Ant colony
optimization techniques. The data contains
101 observations of the pair (t, Yt) pertaining
to software failure. Here Yt represents the
time to failure of the software after the tth
modification has been made. Five data sets
are created lag # 1,2,3,4 and 5 in view of the
foregoing discussion on generating lagged
data sets out of a time series.

Implementation results are shown in the
following screens:

Best or optimized distance travelled by
artificial ants from source to destination is
28.21743473873341 and average time taken
to travel is 15052 ms, shown in figure (2).

Figure.2. Time taken and distance travelled for
artificial ants to reach destination - screenshot 1

Best or optimized distance travelled by
artificial ants from source to destination is
28.21743473873341 and average time taken
to travel is 16986 ms, shown in figure (3).

 D. Hema Latha et al., International Journal of Advanced Trends in Computer Science and Engineering, 7(2), March –April 2018, 20- 29

25

Figure.3. Travelling time for artificial ants
from source to destination – screen shot 2

Best or optimized distance travelled by
artificial ants from source to destination is
25.518872559645526 and average time

taken to travel is 15098 ms, shown in figure
(4).

Figure.4. Time taken for artificial ants to reach
destination – screen shot 3

Best or optimized distance travelled by
artificial ants from source to destination is

 D. Hema Latha et al., International Journal of Advanced Trends in Computer Science and Engineering, 7(2), March –April 2018, 20- 29

26

28.21743473873341 and average time taken
to travel is 19170 ms, shown in figure (5).

Figure. 5. Traversing time for artificial ants from
source to destination – screen shot 4

Best or optimized distance travelled by
artificial ants from source to destination is
28.21743473873341 and average time taken
to travel is 22028 ms, shown in figure (6).

Figure.6. Time taken for artificial ants to reach
destination – screen shot 5

 D. Hema Latha et al., International Journal of Advanced Trends in Computer Science and Engineering, 7(2), March –April 2018, 20- 29

27

4 CONCLUSION

ACO is a comparatively new metaheuristic
concept for resolving tough combinatorial
optimization problems. Simulated or
Artificial ants realize a random construction
heuristic approach which compose a
probabilistic judgment. The cumulated
search practice is taken into consideration by
the adapting the pheromone trail. ACO
exhibits great performance when used for
“ill-structured” problems like network
congestion and routing. When ACO local
search is implemented is mandatory to
obtain optimistic results.
Ant algorithms fit into a group of Meta
heuristics, which are known for range of
applications to realistic problems
encountered in scientific, business
applications and industrial scenarios. A
variety of applications depicted in this study
focuses on ant algorithms that can be
applied to plenty of sensible situations. The
algorithms employed in this work are
inspired by an observation emphasizing on
real ants nature i.e. foraging and searching
abilities that can provide good answers to
genuine and real time optimization and
software reliability solutions. The indirect
interaction and the co-operative
communication of the simulated ant agents
is enthused from their actual living
counterpart, exhibiting great elasticity and
sensitivity to vibrant problems. The function
of these programs and investigational
validations are enormously studied owing to
their potential to offer most favorable
generic solutions to specific complex
problems such as imaging problems, local
search, compression theory, image mapping
and searching databases.
This research paper represents ACO
methodology and its implementation.
The exploration is still in progress as many
of the facets of ACO algorithm are still to be

unraveled. It is expected that this study
stimulates further discussion for better
reliability solutions.

5 FUTURE WORK
The prospects of Ant algorithm based
applications with reference to the geometric
tolerance amalgamation and distribution of
the potential and probable regions of
exploration.
The investigation of more efficient
pheromone models might reduce the need of
comprehensive intensification phases and
the future must evolve theoretical
development of models for experimentation
and for creating effective models.

REFERENCES

[1] R. K. Mohanty, V. Ravi, and M. R. Patra, “Hybrid
intelligent Systems for predicting Software reliability,”
Elsevier, Applied Soft Computing, vol. 13, No. 1, pp. 189-
200, 2013.
https://doi.org/10.1016/j.asoc.2012.08.015

[2] R. K. Mohanty, V. Ravi, and M. R. Patra, “Application
of Machine learning Techniques to Predict software
reliability,” International Journal of Applied Evolutionary
Computation,vol. 1, No.3, pp. 70-86, 2010.
https://doi.org/10.4018/jaec.2010070104

[3] K. Cai, C. Yuan, and M. L. Zhang, “A critical review
on software reliability modeling,” Reliability engineering
and Systems Safety, vol. 32, pp. 357-371, 1991.
https://doi.org/10.1016/0951-8320(91)90009-V

[4] T. Dohi, Y, Nishio, and S. Osaki, “Optional software
release scheduling based on artificial neural networks,”
Annals of Software engineering, vol. 8, pp. 167-185, 1999.
https://doi.org/10.1023/A:1018962910992

[5] N. Karunanithi, Y. K. Malaiya, and D. Whitley, “The
scaling problem in neural networks for software reliability
prediction,” In Proceedings of the Third International IEEE
Symposium of Software Reliability Engineering, Los
Alamitos, CA, pp. 76- 82, 1992a.
https://doi.org/10.1109/ISSRE.1992.285856

[6] N. Karunanithi, D. Whitley, and Y.K. Malaiya,
“Prediction of software reliability using connectionist
models,” IEEE Transactions on Software Engineering, vol.
18, pp. 563-574, 1992b.
https://doi.org/10.1109/32.148475

 D. Hema Latha et al., International Journal of Advanced Trends in Computer Science and Engineering, 7(2), March –April 2018, 20- 29

28

[7] T. M. Khoshgoftaar, D. L. Lanning, and A. S. Pandya,
“A neural network modeling for detection of high-risk
program,” In Proceedings of the Fourth IEEE International
Symposium on Software reliability Engineering, Denver,
Colorado, pp. 302-309, 1993.

[8] T. M. Khoshgoftaar, and P. Rebours, “Noise
elimination with partitioning filter for software quality
estimation,“ International Journal of Computer Application
in Technology, vol. 27, pp. 246-258, 2003.
https://doi.org/10.1504/IJCAT.2006.011996

[9] T. M. Khoshgoftaar, A.S. Pandya, and H.B. More, “A
neural network approach for predicting software
development faults,” In Proceedings of the third IEEE
International Symposium on Software Reliability
Engineering, Los Aiamitos, CA, pp. 83- 89, 1992.
https://doi.org/10.1109/ISSRE.1992.285855

[10] T. M. Khoshgoftaar, E. B. Allen, and J.P. Hudepohl,
S.J. Aud, “Application of neural networks to software
quality modeling of a very large telecommunications
system,” IEEE Transactions on Neural Networks, vol. 8,
No. 4, pp. 902-909, 1997.
https://doi.org/10.1109/72.595888

[11] T. M. Khoshgoftaar, E.B. Allen, W. D. Jones, and J. P.
Hudepohl, “Classification –Tree models of software quality
over multiple releases,” IEEE Transactions on Reliability,
vol. 49, No. 1, pp. 4-11, 2000.
https://doi.org/10.1109/24.855532

[12] J. R. Koza, “Genetic Programming: On the
Programming of Computers by Means of Natural
Selection”. Cambridge, MA: The MIT Press, 1992.

[13] J. D. Musa, Iannino, A., and K. Okumoto, “Software
Reliability, Measurement, Prediction and Application,”
McGraw-Hill, New York, 1987.

[14] J. D. Musa,”Software reliability data,” IEEE Computer
Society- Repository, 1979.

[15] N. Karunanithi, D. Whitley, and Y.K. Malaiya,
“Prediction of software reliability using neural networks,”
International Symposium on Software Reliability, pp. 124-
130, 1991.
https://doi.org/10.1109/ISSRE.1991.145366

[16] T.M. Khoshgoftaar, and R.M. Szabo, “Predicting
software quality, during testing using neural network
models: A comparative study,” International Journal of
Reliability, Quality and Safety Engineering, vol. 1, pp. 303-
319, 1994.
https://doi.org/10.1142/S0218539394000222

[17] L. Tian, and A. Noore, “Evolutionary neural network
modeling for software cumulative failure time prediction,”
Reliability Engineering and System Safety, vol. 87, pp. 45-
51, 2005b.
https://doi.org/10.1016/j.ress.2004.03.028

[18] N. Rajkiran, and V. Ravi. “Software Reliability
prediction by soft computing technique,” The Journal of
Systems and Software, vol. 81, No.4, pp. 576-583, 2007.
https://doi.org/10.1016/j.jss.2007.05.005

[19] N. Rajkiran, and V. Ravi, “Software Reliability
prediction using wavelet Neural Networks,” International
Conference on Computational Intelligence and Multimedia
Application (ICCIMA, 2007), pp. 195-197, 2007

[20] V. Ravi, N. J. Chauhan, and N. RajKiran., “Software
reliability prediction using intelligent techniques:
Application to operational risk prediction in Firms,”
International Journal of Computational Intelligence and
Applications, vol.8, No. 2, pp. 181-194, 2009.
https://doi.org/10.1142/S1469026809002588

[21] E. Bonabeau, M. Dorigo, and G. Théraulaz,
“Inspiration for optimization from social insect behavior,”
Nature, pp. 39–42, 2000.
https://doi.org/10.1038/35017500

[22] A. Coloni, M. Dorigo, and V. Maniezzo, “Ant system:
Optimization by a colony of cooperating agent,” IEEE
Trans. Systems Man and Cybemetics-Part B: Cybemetics,
vol. 26, No.1, pp. 29-41, 1996.

[23] M. Dorigo and G. Di Caro, “The Ant Colony
OptimizationMeta-Heuristic,” In D. Corne, M. Dorigo and
F. Glover, editors, New Ideas in Optimization, McGraw-
Hill, pp. 11-32, 1999.

[24] M. Dorigo, and L. M. Gambardella, “Ant colonies for
the traveling salesman problem”, BioSystems 43, pp. 73–
81, 1997.
https://doi.org/10.1016/S0303-2647(97)01708-5

[25] M. Dorigo, and. L. M. Gambardella, “Ant Colony
System: A cooperative learning approach to the traveling
salesman problem,” IEEE Transactions on Evolutionary
Computation, vol. 1, No.1, pp.53–66, 1997.
https://doi.org/10.1109/4235.585892

[26] M. Dorigo, V. Maniezzo, and A. Colorni, “The Ant
System: An autocatalytic optimizing process,” Technical
Report 91-016 Revised, Dipartimento di Elettronica,
Politecnico di Milano, Italy, 1991.

[27] L. M. Gambardella, E. D. Taillard, and M. Dorigo,
“Ant colonies for the quadratic assignment problem,”
Journal of the Operational Research Society, vol.50, No.2,
pp.167–176, 1999.
https://doi.org/10.1057/palgrave.jors.2600676

[28] V. Maniezzo, and A. Colorni, “The Ant System
applied to the quadratic assignment problem,” IEEE
Transactions on Data and Knowledge Engineering, Vol.11,
No. 5, pp. 769– 778, 1999.
https://doi.org/10.1109/69.806935

 D. Hema Latha et al., International Journal of Advanced Trends in Computer Science and Engineering, 7(2), March –April 2018, 20- 29

29

[29] L. M. Gambardella, E. D. Taillard, and G. Agazzi,
“MACSVRPTW: A multiple ant colony system for vehicle
routing problems with time windows,” In D. Corne, M.
Dorigo, and F. Glover, editors, New Ideas in Optimization,
pp. 63–76. Hill, London, UK, 1999.

[30] R. Poli, and W.B. Langdon, J.R. Koza, “A field guide
to Genetic Programming,” ISBN: 978-1-4092-0073-4,
publisher- Lulu.com , United Kingdom, 2008.

