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 

ABSTRACT 

 

Edge computing is a paradigm that involves the transfer of a 

portion or the entirety of cloud computing tasks to localized 

edge devices as required. This approach can enhance 

performance in situations where the network infrastructure 

poses a constraint on the timely delivery of services. Edge 

nodes, akin to threat monitors or sensors, are extensively 

distributed throughout the Internet. While they may not possess 

the same level of hardware and processing capabilities as data 

centers, they are still capable of efficiently supporting extensive 

parallel applications and delivering prompt service for intricate 

computations. This study presents a robust approach to malware 

detection in the context of edge computing, leveraging a 

Recurrent Neural Network (RNN) model trained on feature sets 

extracted from a Random Forest Classifier. The proposed model 

demonstrates exceptional performance, achieving an impressive 

accuracy of 98.99% coupled with an exceedingly low false 

positive rate of 0.03%. By combining the strengths of both 

machine learning paradigms, this methodology showcases 

significant advancements in safeguarding edge computing 

environments against malicious software, thereby fortifying the 

security infrastructure of decentralized computing systems. 

 

Key words: Edge Computing, Malicious Packets, Recurrent 

neural network, Random Forest Classifier 

 

1. INTRODUCTION 

 

Malware poses a substantial risk to edge computing systems, 

which are being progressively employed in diverse applications. 

Edge computing nodes are susceptible to security attacks, such 

as Sybil attacks, in which rogue nodes mimic legitimate ones 

[1]. The difficulties associated with edge computing, such as 

security issues like safeguarding privacy and ensuring service 

reliability, are especially prominent in vital industries like 

agriculture [2]. Edge computing increases the vulnerability of 

systems to infection since it processes data closer to the source 

and relies on scattered edge networks [3].  

 
 

 

In order to reduce the dangers associated with malware in 

edge computing, it is necessary to apply security measures at 

many levels. Blockchain, machine learning, and edge 

computing have been suggested as solutions to improve security 

in low power wide area networks, which are essential for the 

Internet of Things (IoT) [4]. Furthermore, the use of fog 

computing as an edge component in IoT networks has been 

proposed as a strategy to enhance hardware security and 

counteract potential threats [5]. The implementation of these 

security measures is vital for protecting edge computing systems 

against malware attacks that have the potential to damage the 

integrity of data and the functionality of the system.  

Moreover, the integration of edge computing with other 

technologies such as IoT brings forth supplementary security 

problems. The architecture of the Internet of Things (IoT) is 

built upon different layers, one of which is the edge technology 

layer. In order to maintain the overall integrity of the system, it 

is crucial to address security concerns at this layer [6]. Proposed 

are context-aware access control mechanisms to bolster security 

in cloud and fog networks, with a focus on the significance of 

appropriate access control and security at the periphery of 

end-devices [7]. Robust access control mechanisms enhance the 

security of edge computing systems by preventing unwanted 

access and the entry of malware.  

 

In the healthcare industry, where the protection of systems is 

of utmost importance, the rise of ransomware attacks highlights 

the crucial requirement for strong cybersecurity measures [8]. 

Edge computing architectures utilized for processing data from 

medical Internet of Things (IoT) devices need to be 

strengthened against malware in order to protect sensitive 

patient information and guarantee the continuous provision of 

healthcare services. To enhance the security of edge systems 

and reduce the threat of malware, advanced security methods, 

encryption, and multifactor authentication can be utilized inside 

edge computing settings [9]. 

To effectively tackle malware attacks [10], it is necessary to take 

a proactive approach to cybersecurity due to the increasing use 

of edge computing in several areas [11]. Organizations can 

 

A Framework For the Detection of Malicious Activities 

on Edge Computing Using Random Forest Classifier 

and Recurrent Neural Network 

O.E. Taylor
1
, C.G, Igiri

2
 

1
Department of Computer Science, Rivers State University, Nigeria, taylor.onate@ust.edu.ng    
2
Department of Computer Science, Rivers State University, Nigeria, igiri.chima@ust.edu.ng   

 

Received Date : October 13, 2024     Accepted Date: November 18, 2024     Published Date: December 06, 2024 

ISSN 2278-3091 

Volume 13, No.6, November - December  2024 

International Journal of Advanced Trends in Computer Science and Engineering 
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse031362024.pdf 

https://doi.org/10.30534/ijatcse/2024/031362024 
 

 
 

http://www.warse.org/IJATCSE/static/pdf/file/ijatcse031362024.pdf
https://doi.org/10.30534/ijatcse/2024/031362024


O.E. Taylor et al.,  International Journal of Advanced Trends in Computer Science and Engineering, 13(6), November - December  2024, 220 - 227 

221 

 

 

bolster the robustness of their edge computing systems against 

malware attacks by including security technologies specifically 

designed for the distinctive obstacles encountered in edge 

environments, such as blockchain, machine learning, and 

context-aware access control [12]. Given the ongoing 

development and increasing use of edge computing, it is crucial 

to prioritize security measures in order to protect the integrity of 

data, ensure the proper functioning of systems, and maintain 

overall operational continuity [13]. 

 

2. LITERATURE REVIEW 

 

[14] provided a new detection approach for edge computing 

that can employ existing machine learning models to classify a 

suspicious file into either benign, malicious, or unpredictable 

categories while existing models make only a binary judgement 

of either benign or harmful. The new method can employ any 

current deep learning models produced for malware detection 

after attaching a simple sigmoid function to the models. When 

interpreting the sigmoid value during the testing phase, the new 

technique evaluates if the model is confident about its forecast; 

consequently, the new method can take just the prediction of 

high accuracy, which lowers inaccurate predictions on 

ambiguous static-analysis characteristics. Through studies on 

real malware datasets, the authors confirms that the new 

technique considerably boosts the accuracy, precision, and 

recall of existing deep learning models. The accuracy is raised 

from 0.96 to 0.99, while some data are categorised as 

unpredictable that can be committed to the cloud for further 

dynamic or human examination. 

[15] presented an edge computing-based malware detection 

system that efficiently identifies various cyberattacks (malware) 

by sending enormous amounts of smart industrial IoT traffic 

information to edge servers for deep learning analysis. The 

suggested malware detection system consists of three levels 

(edge device, edge, and cloud layers) and leverages four 

meaningful functions (model training and testing, model 

deployment, model inference, and training data transmission) 

for edge-based deep learning. In studies done on the Malimg 

dataset, the proposed malware detection system merging a 

convolutional neural network with image visualization 

technology achieved an overall classification accuracy of 

98.93%, precision of 98.93%, recall of 98.93%, and F1-score of 

98.92%. 

[16] implemented a privacy-preserving federated learning 

system based on support vector machine (SVM) and secure 

multi-party computation techniques. It also exhibits the viability 

of the Android malware dataset by National Institute of 

Information and Communication Technology (NICT), Japan. 

The given experiments evaluate the performance of the trained 

classifier by the suggested PPFL system. The evaluation also 

compares the performance of the classifier of PPFL with that of 

centralized training system for the use cases of (i) various data 

set and (ii) different features on distinct mobile device. The 

results reveal that the performance of the PPFL classifier beats 

that of centralized training system. Moreover, the privacy of app 

information (i.e., API and permission information) and trained 

local models is assured. To the best of our knowledge, this work 

is the first Android malware detection system based on 

privacy-preserving federated learning system. 

[17] offered a deep learning model with multi-input of 

multi-modal data, which can simultaneously accept digital 

features and image information on multiple dimensions. The 

model incorporates the simultaneous training of three 

sub-models in simultaneously, as well as the ensemble training 

of a distinct sub-model. The four sub-models have the capability 

to undergo parallel processing on distinct devices, and may also 

be effectively implemented in edge computing environments. 

The model has the capability to dynamically acquire 

multi-modal features and generate prediction outcomes. The 

model exhibits a detection rate of 97.01% and a false alarm rate 

of merely 0.63%. The experimental findings provide evidence 

supporting the superiority and efficacy of the proposed 

approach. 

The study conducted by [18] centred its attention on data 

centres (DCs) and supercomputers (SCs). These facilities have 

recently implemented advanced monitoring systems that offer 

enhanced resolution. This development has created novel 

prospects for conducting analyses such as anomaly detection 

and security measures. However, it has also presented new 

challenges in terms of managing the substantial volume of data 

generated by these systems. This research provides a 

comprehensive analysis of a novel methodology aimed at 

enhancing the security of data centres and smart cities. The 

proposed method involves the utilisation of artificial 

intelligence-driven edge computing technology, specifically 

focusing on high-resolution power usage data. The pAElla 

approach is designed to address the task of real-time malware 

detection (MD) within a monitoring system for data centres 

(DCs) and smart cities (SCs) that operates on an out-of-band 

Internet of Things (IoT) framework. This method incorporates 

the analysis of power measurements using power spectral 

density, in conjunction with the utilisation of autoencoders. The 

findings demonstrate promise, as seen by an F1-score nearing 1, 

and negligible rates of false alarms and malware misses.  The 

authors conduct a comparative analysis between their proposed 

method, pAElla, and the State-of-the-Art (SoA) MD techniques. 

They demonstrate that, within the domain of DCs/SCs, pAElla 

exhibits a broader capability to detect various types of malware. 

Furthermore, pAElla greatly surpasses the performance of 

existing approaches in terms of accuracy.  

In their study, [19] employed a conventional edge node for 

the purpose of conducting Android malware detection. The 

study conducted by the authors involves the collection of a 

substantial number of mobile malware and benign samples. The 

primary objective of the study is to showcase the efficacy of 

edge computing nodes in delivering standard security services 

for edge devices. Additionally, they demonstrate the capacity to 

expand the operation in response to growing amounts of data. 
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The study conducted by [20] examined the existing vacuum 

in the scholarly literature pertaining to mobile malware. The 

authors specifically emphasised a broader range of permissions 

that might be utilised for alternative objectives, such as 

capturing user credentials through sensors or tracking a user's 

activities. This study aims to identify specific circumstances by 

utilising behavioural analysis to ascertain the usage of 

permissions and employing static and dynamic analysis to 

understand the behaviour of application logic that has not yet 

been executed. Additionally, a two-layer detection engine using 

hybrid feature analysis was proposed by the authors. The 

empirical findings obtained from conducting experiments using 

authentic mobile malware IoT data demonstrate that our 

suggested methodology, incorporating permission-related 

variables, exhibits superior performance compared to 

alternative detection engines. 

In their study, [21] employed MATLAB R2021a to conduct 

experimental simulations. These simulations were designed to 

validate the accuracy of predicting the optimal probability of 

malware transmission and to assess the effectiveness of edge 

computing-assisted IoT systems across various topologies. The 

authors of this study specifically examined the patterns of 

curves in order to make predictions about the spread of malware 

in the Internet of Things (IoT). They achieved this by 

manipulating many parameters of the IoT system, including the 

rate at which IoT malware is disseminated successfully, the rate 

at which intrusion detection systems as a service (IDSaaS) 

identify the malware, and the pace at which packets arrive. 

The authors [22] introduced a framework called "DNNdroid" 

which operates based on the principles of federated learning. 

The data pertaining to recently installed applications is 

exclusively stored on the user's device and remains undisclosed 

to the developer. During this period, data from all users is 

gathered concurrently to facilitate the training of the model 

through a federated learning approach, resulting in the 

development of an improved categorization model. The primary 

obstacle in this context pertains to the user's inability to discern 

the presence of malware within an application. The 

experimental findings indicate that the cloud server achieved an 

F1 score of 97.8%, demonstrating a recall rate for clients 

exceeding 0.95 and a false positive rate. This evaluation was 

conducted using a dataset consisting of 100,000 distinct 

Android applications, each with a user base of at least 500 

individuals. The federation process was repeated for a total of 

50 rounds.  

In their study, [23] introduced a novel approach called 

CloudSEC, which utilises an evidence reasoning network to 

detect lateral movement in real-time within the edge-cloud 

environment. Initially, the concept of vulnerability correlation is 

introduced. The construction of an evidence reasoning network 

is based on the understanding of the network system's 

vulnerability knowledge and environmental information. This 

network is utilised to facilitate lateral movement reasoning 

capabilities. The experimental findings indicate that CloudSEC 

offers a robust assurance for expeditious and efficient evidence 

examination, together with instantaneous identification of 

attacks. 

 

3. METHODOLOGY 

 

This section describes system architecture, the proposed system 

architecture can be seen in Figure 1. 

 

 
Figure 1: Architectural Design of the Proposed System 

 

Edge Computing Server: The edge server is a computer, either 

real or virtual, that is located at the outermost part of a network, 

nearer the data source or the end users. Its goal is to do 

computations locally, eliminating the requirement for 

communication with a remote cloud server. The result is 

decreased delay and bandwidth use. 

Malware Data: Information about malware is commonly 

referred to as "malware data." Malware characteristics such as 

signatures, behaviors, and file formats may be recorded. It's 

what the edge computing system reads and uses to determine 

whether or not malware is there. 

Data Preprocessing: In order to prepare data for analysis, 

preprocessing steps include cleansing, transforming, and 

organizing. Tasks including deleting duplicates, dealing with 

missing values, normalizing data, and putting data into a 

suitable format for the next steps may fall under this category in 

the context of malware detection. 

Feature Selection with Random Forest: An essential part of 

machine learning, feature selection involves picking out useful 

characteristics (features) from the dataset. When it comes to 

feature selection, Random Forest is one of the most widely 

utilized ensemble learning methods. To do this, numerous 

decision trees are built and their results are combined. Those 

features that hold true across all of these trees are the most 

relevant ones. 

3.3.3 Algorithm for RNN 

Here is a general outline of the RNN algorithm: 

1. Initialize the weights and biases of the RNN network. 

2. For each time step 't' in the input sequence: a. Get the 

current input 'x_t' and previous hidden state 'h_{t-1}'. 

b. Calculate the forget gate 'f_t', input gate 'i_t', and 

output gate 'o_t' using the following equations:  

i. forget gate 'f_t': f_t = σ(W_f . [h_{t-1}, x_t] + 

b_f)  

ii. input gate 'i_t': i_t = σ(W_i . [h_{t-1}, x_t] + 

b_i)  

iii. output gate 'o_t': o_t = σ(W_o . [h_{t-1}, x_t] 

+ b_o) c. Calculate the candidate 
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memory cell 'c_~t' using the following 

equation: c_~t = tanh(W_c . [h_{t-1}, 

x_t] + b_c) d. Update the memory cell 

'c_t' using the forget gate and candidate 

memory cell as follows: c_t = f_t * 

c_{t-1} + i_t * c_~t e. Update the hidden 

state 'h_t' using the memory cell and 

output gate as follows: h_t = o_t * 

tanh(c_t) 

3. Repeat steps 2 for all the time steps in the input 

sequence. 

4. Output the final hidden state 'h_T', which summarizes 

the information from the entire input sequence. 

5. Use the final hidden state as input to a fully connected 

layer to obtain the final prediction. 

Note: In the equations above, 'W_f', 'W_i', 'W_o', 'W_c' are the 

weight matrices, 'b_f', 'b_i', 'b_o', 'b_c' are the bias vectors, and 

'σ' is the sigmoid activation function. 

Model Output (Benign and Malware): The model then 

generates predictions based on the processed data and selected 

features. In this scenario, it divides the information into 

"Benign" (safe) and "Malware" categories (malicious). For a 

given input sample, the output shows the categorization 

outcome. 

 

4. EXPERIMENTAL SETUP 

The experiment was conducted on google colab and flask 

framework. The experimental phase has to do with the analysis 

phase, the implementation of the Deep Learning (DL) mode, 

and the deployment of the model to edge computing 

environment for the detection and prevention of malware 

attacks on edge computing. 

 

4.1 Data Analysis Phase 

 

For performing analysis, pandas, seaborn, and matplotlib library 

was used in conducting analysis on the dataset. The analysis was 

conducted so that a proper insight on the dataset before training 

the RNN model can be seen. The analysis phases are checking if 

the dataset contains some nan and duplicate values. Pandas data 

was used in achieving this. Secondly, a bar chart was plotted to 

check if the number of classes (different types of the malware 

attacks on edge devices) have the same number of instances. 

The bar chat in Figure 2 shows that the number of instances of 

each of the different types of malware attacks. From the bar 

chart, it is seen clearly that the number of instances of the 

different classes of the malware attacks are not the same. That 

simply make the dataset imbalance, this simply means that if the 

data imbalance is not solved, the RNN classifier will produce 

high rate of false positive and negative. To solve the data 

imbalance problem, random over sampling needs to be 

performed. This was achieved using an over-sampling technique 

called RandomOverSampler. This was used this to down sample 

the dataset, making all the classes have equal number of 

instances. The down sampled data can be seen in the bar chart in 

Figure 3. 

 

Finally, the most important features were extracted from the 

dataset by using the Random forest Classifier (RF). The RF 

classifier was used in ranking the features of the dataset. Table 

4.1 shows the extracted features (The most important features), 

and Figure 4 shows the visualized plot of the important features.  

 

 

 

Figure 2: Countplot of the Imbalance Class 

 

Figure 3: Countplot of the balance Class 
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Table 1: Feature Ranking 

 

Feature Important_Features 

0 id.resp_p 0.286601 

 
1 Ts 0.18156 

 
2 id.orig_h 0.111554 

 
          3 orig_ip_bytes 0.099793 

 
          4 orig_pkts 0.09956 

 
5 id.orig_p 0.090765 

 
6 History 0.053338 

 
7 conn_state 0.051762 

 
8 id.resp_h 0.02017 

 
9 Proto 0.002605 

 
10 resp_ip_bytes 0.001186 

 
11 resp_pkts 0.000908 

 
12 Service 0.000157 

 
13 Uid 4.15E-05 

 
14 missed_bytes 5.15E-07 

 

     

 

Figure 4: Top 10 Important Features in the IoT malware dataset 

 

4.2. Model Parameter Tuning and Training 

This section describes the parameters and the processes used in 

training the Recurrent Neural Network (RNN) model for the 

detection and prevention of malicious activities on edge 

devices. The RNN model was trained by fine tuning it’s hyper 

parameters. The fine-tuned parameters of the RNN model has 

three layers, one input layer with input neuron of 256, a hidden 

layer with an input neural of 256, and finally the output layer 

with dense layer 5. The hyper parameters used here are relu and 

softmax for activation functions, optimizer = ‘adam’, and loss 

=’categorical_consentropy’, batch_size=64, and epoch =7. The 

result of the RNN model for both training and evaluation can be 

seen in Table 4.2. The evaluation of the RNN model was 

validated on a test data. The evaluation matrix used are 

classification report and confusion matrix. The graphical 

analysis of Table 4.2 can be seen in Figure 4.4, and Figure 4.5. 

The classification report of the can be seen in Figure 4.6 and the 

confusion matrix can be seen in Figure 4.7. 

 

Table 2: Simulation of the Model on 10 Steps 

Epoch 1/10 

63851/63851 [==============================] – 32

9s 5ms/step – loss: 0.0124 – accuracy: 0.9963 – val_loss: 0.001

1 – val_accuracy: 0.9999 

Epoch 2/10 

63851/63851 [==============================] – 36

7s 6ms/step – loss: 8.1246e-04 – accuracy: 0.9999 – val_loss: 

6.7327e-04 – val_accuracy: 0.9999 

Epoch 3/10 

63851/63851 [==============================] – 40

9s 6ms/step – loss: 0.0012 – accuracy: 0.9999 – val_loss: 9.596

8e-04 – val_accuracy: 0.9999 

Epoch 4/10 

63851/63851 [==============================] – 38

3s 6ms/step – loss: 8.6852e-04 – accuracy: 0.9999 – val_loss: 

8.3973e-04 – val_accuracy: 0.9999 

Epoch 5/10 

63851/63851 [==============================] – 51

8s 8ms/step – loss: 0.0015 – accuracy: 0.9999 – val_loss: 5.747

0e-04 – val_accuracy: 1.0000 

Epoch 6/10 

63851/63851 [==============================] – 51

3s 8ms/step – loss: 0.0012 – accuracy: 0.9999 – val_loss: 7.708

7e-04 – val_accuracy: 0.9999 

Epoch 7/10 

63851/63851 [==============================] – 50

4s 8ms/step – loss: 9.4816e-04 – accuracy: 1.0000 – val_loss: 

7.3796e-04 – val_accuracy: 0.9999 

Epoch 8/10 

63851/63851 [==============================] – 48

9s 8ms/step – loss: 0.0011 – accuracy: 1.0000 – val_loss: 5.674

5e-04 – val_accuracy: 1.0000 

Epoch 9/10 

63851/63851 [==============================] – 63

6s 10ms/step – loss: 8.5152e-04 – accuracy: 1.0000 – val_loss: 

0.0036 – val_accuracy: 1.0000 

Epoch 10/10 

63851/63851 [==============================] – 39

5s 6ms/step – loss: 0.0020 – accuracy: 1.0000 – val_loss: 4.483

6e-04 – val_accuracy: 1.0000 
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Figure 5: Training Accuracy For Both Training and Validation 

 
Figure 6: Loss values for training and Validation 

 

 

Figure 7: Classification Report of the Model on test data 

 

Figure 8: Confusion Matrix 

4.3 Simulated Environment 

The simulation was conducted with a Flask web application 

specifically created to replicate the identification of harmful 

actions on edge devices. Upon clicking the "Start Simulation" 

button, the application initiates a function that generates random 

data for different network parameters, including response port 

(id.resp_p), timestamp (Ts), originating host (id.orig_h), packet 

counts (orig_pkts, resp_pkts), and other pertinent characteristics. 

This generated data provides a momentary representation of 

network activity. Subsequently, a straightforward rule-based 

detection method is employed to identify suspected malware. 

This mechanism raises an alert if specific conditions, such as 

abnormally high values for originating or response IP bytes, are 

satisfied. Subsequently, the webpage exhibits the produced data 

and the detection results ("Malware Found" or "No Malware 

Found"), offering consumers a distinct representation of the 

simulated activity and the result of the detection procedure. The 

simulated results can be seen in Figure 9 and Figure 10. 

 

 

Figure 9: Simulated Result1: Malware found 

The simulated results shows that malicious activities was found 

from the data generated  

 

Figure 10: Simulated Result1: No Malware found 

The simulated results shows that there was no malicious 

activities was found from the data generated. 
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5. DISCUSSION OF RESULTS 

Figure 2 presents a countplot illustrating the imbalance in the 

dataset's class distribution. This figure highlights the disparity 

between the instances of benign and malicious activities within 

the data. A significant class imbalance is evident, with benign 

activities vastly outnumbering malicious ones. This imbalance 

can pose a challenge for machine learning models, potentially 

leading to biased predictions towards the majority class. 

Addressing this issue is crucial for developing a robust detection 

model capable of accurately identifying malicious activities. 

Figure 3 shows a countplot of the class distribution after 

applying techniques to balance the dataset. Methods such as 

oversampling the minority class or undersampling the majority 

class can be employed to achieve this balance. The countplot 

now displays an equal distribution of benign and malicious 

activities, which is essential for training an effective machine 

learning model. This balanced dataset ensures that the model 

learns to identify malicious activities without bias, leading to 

improved detection performance. 

Table 1 provides a ranking of the features based on their 

importance in detecting malicious activities. The id.resp_p 

feature, with an importance score of 0.286601, is identified as 

the most critical, followed by Ts and id.orig_h. These features 

play a significant role in distinguishing between benign and 

malicious activities. Features such as Proto, resp_ip_bytes, and 

resp_pkts have minimal impact on the detection process, as 

indicated by their low importance scores. Understanding the 

importance of each feature helps in refining the model and 

focusing on the most influential attributes to enhance detection 

accuracy. 

Figure 4 illustrates the top 10 important features in the IoT 

malware dataset. These features are critical for the model to 

effectively identify malicious activities. The prominence of 

id.resp_p, Ts, and id.orig_h aligns with their high importance 

scores in Table 1. By focusing on these key features, the model 

can achieve better performance in detecting malware. This 

visualization aids in understanding which features contribute 

most significantly to the model's decision-making process. 
 

6. CONCLUSION 

The integration of edge computing with a malware detection 

system employing a Recurrent Neural Network (RNN) trained 

with extracted features from a Random Forest model has proven 

to be remarkably effective. Demonstrating an outstanding 

accuracy of 98.9% and an impressively low false positive rate of 

3.98%, this approach showcases a significant advancement in 

securing edge computing environments. By harnessing the 

power of machine learning and leveraging the strengths of both 

RNN and Random Forest algorithms, this model exhibits a 

robust capability in identifying and mitigating malware threats 

at the edge. Such a high level of precision not only bolsters the 

security posture of edge computing systems but also lays the 

foundation for a safer and more resilient future in the rapidly 

evolving landscape of cybersecurity. 

APPENDIX 

Appendixes, if needed, appear before the acknowledgment. 
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