
O.E. Taylor et al., International Journal of Advanced Trends in Computer Science and Engineering, 13(6), November - December 2024, 220 - 227

220

ABSTRACT

Edge computing is a paradigm that involves the transfer of a

portion or the entirety of cloud computing tasks to localized

edge devices as required. This approach can enhance

performance in situations where the network infrastructure

poses a constraint on the timely delivery of services. Edge

nodes, akin to threat monitors or sensors, are extensively

distributed throughout the Internet. While they may not possess

the same level of hardware and processing capabilities as data

centers, they are still capable of efficiently supporting extensive

parallel applications and delivering prompt service for intricate

computations. This study presents a robust approach to malware

detection in the context of edge computing, leveraging a

Recurrent Neural Network (RNN) model trained on feature sets

extracted from a Random Forest Classifier. The proposed model

demonstrates exceptional performance, achieving an impressive

accuracy of 98.99% coupled with an exceedingly low false

positive rate of 0.03%. By combining the strengths of both

machine learning paradigms, this methodology showcases

significant advancements in safeguarding edge computing

environments against malicious software, thereby fortifying the

security infrastructure of decentralized computing systems.

Key words: Edge Computing, Malicious Packets, Recurrent

neural network, Random Forest Classifier

1. INTRODUCTION

Malware poses a substantial risk to edge computing systems,

which are being progressively employed in diverse applications.

Edge computing nodes are susceptible to security attacks, such

as Sybil attacks, in which rogue nodes mimic legitimate ones

[1]. The difficulties associated with edge computing, such as

security issues like safeguarding privacy and ensuring service

reliability, are especially prominent in vital industries like

agriculture [2]. Edge computing increases the vulnerability of

systems to infection since it processes data closer to the source

and relies on scattered edge networks [3].

In order to reduce the dangers associated with malware in

edge computing, it is necessary to apply security measures at

many levels. Blockchain, machine learning, and edge

computing have been suggested as solutions to improve security

in low power wide area networks, which are essential for the

Internet of Things (IoT) [4]. Furthermore, the use of fog

computing as an edge component in IoT networks has been

proposed as a strategy to enhance hardware security and

counteract potential threats [5]. The implementation of these

security measures is vital for protecting edge computing systems

against malware attacks that have the potential to damage the

integrity of data and the functionality of the system.

Moreover, the integration of edge computing with other

technologies such as IoT brings forth supplementary security

problems. The architecture of the Internet of Things (IoT) is

built upon different layers, one of which is the edge technology

layer. In order to maintain the overall integrity of the system, it

is crucial to address security concerns at this layer [6]. Proposed

are context-aware access control mechanisms to bolster security

in cloud and fog networks, with a focus on the significance of

appropriate access control and security at the periphery of

end-devices [7]. Robust access control mechanisms enhance the

security of edge computing systems by preventing unwanted

access and the entry of malware.

In the healthcare industry, where the protection of systems is

of utmost importance, the rise of ransomware attacks highlights

the crucial requirement for strong cybersecurity measures [8].

Edge computing architectures utilized for processing data from

medical Internet of Things (IoT) devices need to be

strengthened against malware in order to protect sensitive

patient information and guarantee the continuous provision of

healthcare services. To enhance the security of edge systems

and reduce the threat of malware, advanced security methods,

encryption, and multifactor authentication can be utilized inside

edge computing settings [9].

To effectively tackle malware attacks [10], it is necessary to take

a proactive approach to cybersecurity due to the increasing use

of edge computing in several areas [11]. Organizations can

A Framework For the Detection of Malicious Activities

on Edge Computing Using Random Forest Classifier

and Recurrent Neural Network

O.E. Taylor
1
, C.G, Igiri

2

1
Department of Computer Science, Rivers State University, Nigeria, taylor.onate@ust.edu.ng
2
Department of Computer Science, Rivers State University, Nigeria, igiri.chima@ust.edu.ng

Received Date : October 13, 2024 Accepted Date: November 18, 2024 Published Date: December 06, 2024

ISSN 2278-3091

Volume 13, No.6, November - December 2024

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse031362024.pdf

https://doi.org/10.30534/ijatcse/2024/031362024

http://www.warse.org/IJATCSE/static/pdf/file/ijatcse031362024.pdf
https://doi.org/10.30534/ijatcse/2024/031362024

O.E. Taylor et al., International Journal of Advanced Trends in Computer Science and Engineering, 13(6), November - December 2024, 220 - 227

221

bolster the robustness of their edge computing systems against

malware attacks by including security technologies specifically

designed for the distinctive obstacles encountered in edge

environments, such as blockchain, machine learning, and

context-aware access control [12]. Given the ongoing

development and increasing use of edge computing, it is crucial

to prioritize security measures in order to protect the integrity of

data, ensure the proper functioning of systems, and maintain

overall operational continuity [13].

2. LITERATURE REVIEW

[14] provided a new detection approach for edge computing

that can employ existing machine learning models to classify a

suspicious file into either benign, malicious, or unpredictable

categories while existing models make only a binary judgement

of either benign or harmful. The new method can employ any

current deep learning models produced for malware detection

after attaching a simple sigmoid function to the models. When

interpreting the sigmoid value during the testing phase, the new

technique evaluates if the model is confident about its forecast;

consequently, the new method can take just the prediction of

high accuracy, which lowers inaccurate predictions on

ambiguous static-analysis characteristics. Through studies on

real malware datasets, the authors confirms that the new

technique considerably boosts the accuracy, precision, and

recall of existing deep learning models. The accuracy is raised

from 0.96 to 0.99, while some data are categorised as

unpredictable that can be committed to the cloud for further

dynamic or human examination.

[15] presented an edge computing-based malware detection

system that efficiently identifies various cyberattacks (malware)

by sending enormous amounts of smart industrial IoT traffic

information to edge servers for deep learning analysis. The

suggested malware detection system consists of three levels

(edge device, edge, and cloud layers) and leverages four

meaningful functions (model training and testing, model

deployment, model inference, and training data transmission)

for edge-based deep learning. In studies done on the Malimg

dataset, the proposed malware detection system merging a

convolutional neural network with image visualization

technology achieved an overall classification accuracy of

98.93%, precision of 98.93%, recall of 98.93%, and F1-score of

98.92%.

[16] implemented a privacy-preserving federated learning

system based on support vector machine (SVM) and secure

multi-party computation techniques. It also exhibits the viability

of the Android malware dataset by National Institute of

Information and Communication Technology (NICT), Japan.

The given experiments evaluate the performance of the trained

classifier by the suggested PPFL system. The evaluation also

compares the performance of the classifier of PPFL with that of

centralized training system for the use cases of (i) various data

set and (ii) different features on distinct mobile device. The

results reveal that the performance of the PPFL classifier beats

that of centralized training system. Moreover, the privacy of app

information (i.e., API and permission information) and trained

local models is assured. To the best of our knowledge, this work

is the first Android malware detection system based on

privacy-preserving federated learning system.

[17] offered a deep learning model with multi-input of

multi-modal data, which can simultaneously accept digital

features and image information on multiple dimensions. The

model incorporates the simultaneous training of three

sub-models in simultaneously, as well as the ensemble training

of a distinct sub-model. The four sub-models have the capability

to undergo parallel processing on distinct devices, and may also

be effectively implemented in edge computing environments.

The model has the capability to dynamically acquire

multi-modal features and generate prediction outcomes. The

model exhibits a detection rate of 97.01% and a false alarm rate

of merely 0.63%. The experimental findings provide evidence

supporting the superiority and efficacy of the proposed

approach.

The study conducted by [18] centred its attention on data

centres (DCs) and supercomputers (SCs). These facilities have

recently implemented advanced monitoring systems that offer

enhanced resolution. This development has created novel

prospects for conducting analyses such as anomaly detection

and security measures. However, it has also presented new

challenges in terms of managing the substantial volume of data

generated by these systems. This research provides a

comprehensive analysis of a novel methodology aimed at

enhancing the security of data centres and smart cities. The

proposed method involves the utilisation of artificial

intelligence-driven edge computing technology, specifically

focusing on high-resolution power usage data. The pAElla

approach is designed to address the task of real-time malware

detection (MD) within a monitoring system for data centres

(DCs) and smart cities (SCs) that operates on an out-of-band

Internet of Things (IoT) framework. This method incorporates

the analysis of power measurements using power spectral

density, in conjunction with the utilisation of autoencoders. The

findings demonstrate promise, as seen by an F1-score nearing 1,

and negligible rates of false alarms and malware misses. The

authors conduct a comparative analysis between their proposed

method, pAElla, and the State-of-the-Art (SoA) MD techniques.

They demonstrate that, within the domain of DCs/SCs, pAElla

exhibits a broader capability to detect various types of malware.

Furthermore, pAElla greatly surpasses the performance of

existing approaches in terms of accuracy.

In their study, [19] employed a conventional edge node for

the purpose of conducting Android malware detection. The

study conducted by the authors involves the collection of a

substantial number of mobile malware and benign samples. The

primary objective of the study is to showcase the efficacy of

edge computing nodes in delivering standard security services

for edge devices. Additionally, they demonstrate the capacity to

expand the operation in response to growing amounts of data.

O.E. Taylor et al., International Journal of Advanced Trends in Computer Science and Engineering, 13(6), November - December 2024, 220 - 227

222

The study conducted by [20] examined the existing vacuum

in the scholarly literature pertaining to mobile malware. The

authors specifically emphasised a broader range of permissions

that might be utilised for alternative objectives, such as

capturing user credentials through sensors or tracking a user's

activities. This study aims to identify specific circumstances by

utilising behavioural analysis to ascertain the usage of

permissions and employing static and dynamic analysis to

understand the behaviour of application logic that has not yet

been executed. Additionally, a two-layer detection engine using

hybrid feature analysis was proposed by the authors. The

empirical findings obtained from conducting experiments using

authentic mobile malware IoT data demonstrate that our

suggested methodology, incorporating permission-related

variables, exhibits superior performance compared to

alternative detection engines.

In their study, [21] employed MATLAB R2021a to conduct

experimental simulations. These simulations were designed to

validate the accuracy of predicting the optimal probability of

malware transmission and to assess the effectiveness of edge

computing-assisted IoT systems across various topologies. The

authors of this study specifically examined the patterns of

curves in order to make predictions about the spread of malware

in the Internet of Things (IoT). They achieved this by

manipulating many parameters of the IoT system, including the

rate at which IoT malware is disseminated successfully, the rate

at which intrusion detection systems as a service (IDSaaS)

identify the malware, and the pace at which packets arrive.

The authors [22] introduced a framework called "DNNdroid"

which operates based on the principles of federated learning.

The data pertaining to recently installed applications is

exclusively stored on the user's device and remains undisclosed

to the developer. During this period, data from all users is

gathered concurrently to facilitate the training of the model

through a federated learning approach, resulting in the

development of an improved categorization model. The primary

obstacle in this context pertains to the user's inability to discern

the presence of malware within an application. The

experimental findings indicate that the cloud server achieved an

F1 score of 97.8%, demonstrating a recall rate for clients

exceeding 0.95 and a false positive rate. This evaluation was

conducted using a dataset consisting of 100,000 distinct

Android applications, each with a user base of at least 500

individuals. The federation process was repeated for a total of

50 rounds.

In their study, [23] introduced a novel approach called

CloudSEC, which utilises an evidence reasoning network to

detect lateral movement in real-time within the edge-cloud

environment. Initially, the concept of vulnerability correlation is

introduced. The construction of an evidence reasoning network

is based on the understanding of the network system's

vulnerability knowledge and environmental information. This

network is utilised to facilitate lateral movement reasoning

capabilities. The experimental findings indicate that CloudSEC

offers a robust assurance for expeditious and efficient evidence

examination, together with instantaneous identification of

attacks.

3. METHODOLOGY

This section describes system architecture, the proposed system

architecture can be seen in Figure 1.

Figure 1: Architectural Design of the Proposed System

Edge Computing Server: The edge server is a computer, either

real or virtual, that is located at the outermost part of a network,

nearer the data source or the end users. Its goal is to do

computations locally, eliminating the requirement for

communication with a remote cloud server. The result is

decreased delay and bandwidth use.

Malware Data: Information about malware is commonly

referred to as "malware data." Malware characteristics such as

signatures, behaviors, and file formats may be recorded. It's

what the edge computing system reads and uses to determine

whether or not malware is there.

Data Preprocessing: In order to prepare data for analysis,

preprocessing steps include cleansing, transforming, and

organizing. Tasks including deleting duplicates, dealing with

missing values, normalizing data, and putting data into a

suitable format for the next steps may fall under this category in

the context of malware detection.

Feature Selection with Random Forest: An essential part of

machine learning, feature selection involves picking out useful

characteristics (features) from the dataset. When it comes to

feature selection, Random Forest is one of the most widely

utilized ensemble learning methods. To do this, numerous

decision trees are built and their results are combined. Those

features that hold true across all of these trees are the most

relevant ones.

3.3.3 Algorithm for RNN

Here is a general outline of the RNN algorithm:

1. Initialize the weights and biases of the RNN network.

2. For each time step 't' in the input sequence: a. Get the

current input 'x_t' and previous hidden state 'h_{t-1}'.

b. Calculate the forget gate 'f_t', input gate 'i_t', and

output gate 'o_t' using the following equations:

i. forget gate 'f_t': f_t = σ(W_f . [h_{t-1}, x_t] +

b_f)

ii. input gate 'i_t': i_t = σ(W_i . [h_{t-1}, x_t] +

b_i)

iii. output gate 'o_t': o_t = σ(W_o . [h_{t-1}, x_t]

+ b_o) c. Calculate the candidate

O.E. Taylor et al., International Journal of Advanced Trends in Computer Science and Engineering, 13(6), November - December 2024, 220 - 227

223

memory cell 'c_~t' using the following

equation: c_~t = tanh(W_c . [h_{t-1},

x_t] + b_c) d. Update the memory cell

'c_t' using the forget gate and candidate

memory cell as follows: c_t = f_t *

c_{t-1} + i_t * c_~t e. Update the hidden

state 'h_t' using the memory cell and

output gate as follows: h_t = o_t *

tanh(c_t)

3. Repeat steps 2 for all the time steps in the input

sequence.

4. Output the final hidden state 'h_T', which summarizes

the information from the entire input sequence.

5. Use the final hidden state as input to a fully connected

layer to obtain the final prediction.

Note: In the equations above, 'W_f', 'W_i', 'W_o', 'W_c' are the

weight matrices, 'b_f', 'b_i', 'b_o', 'b_c' are the bias vectors, and

'σ' is the sigmoid activation function.

Model Output (Benign and Malware): The model then

generates predictions based on the processed data and selected

features. In this scenario, it divides the information into

"Benign" (safe) and "Malware" categories (malicious). For a

given input sample, the output shows the categorization

outcome.

4. EXPERIMENTAL SETUP

The experiment was conducted on google colab and flask

framework. The experimental phase has to do with the analysis

phase, the implementation of the Deep Learning (DL) mode,

and the deployment of the model to edge computing

environment for the detection and prevention of malware

attacks on edge computing.

4.1 Data Analysis Phase

For performing analysis, pandas, seaborn, and matplotlib library

was used in conducting analysis on the dataset. The analysis was

conducted so that a proper insight on the dataset before training

the RNN model can be seen. The analysis phases are checking if

the dataset contains some nan and duplicate values. Pandas data

was used in achieving this. Secondly, a bar chart was plotted to

check if the number of classes (different types of the malware

attacks on edge devices) have the same number of instances.

The bar chat in Figure 2 shows that the number of instances of

each of the different types of malware attacks. From the bar

chart, it is seen clearly that the number of instances of the

different classes of the malware attacks are not the same. That

simply make the dataset imbalance, this simply means that if the

data imbalance is not solved, the RNN classifier will produce

high rate of false positive and negative. To solve the data

imbalance problem, random over sampling needs to be

performed. This was achieved using an over-sampling technique

called RandomOverSampler. This was used this to down sample

the dataset, making all the classes have equal number of

instances. The down sampled data can be seen in the bar chart in

Figure 3.

Finally, the most important features were extracted from the

dataset by using the Random forest Classifier (RF). The RF

classifier was used in ranking the features of the dataset. Table

4.1 shows the extracted features (The most important features),

and Figure 4 shows the visualized plot of the important features.

Figure 2: Countplot of the Imbalance Class

Figure 3: Countplot of the balance Class

O.E. Taylor et al., International Journal of Advanced Trends in Computer Science and Engineering, 13(6), November - December 2024, 220 - 227

224

Table 1: Feature Ranking

Feature Important_Features

0 id.resp_p 0.286601

1 Ts 0.18156

2 id.orig_h 0.111554

 3 orig_ip_bytes 0.099793

 4 orig_pkts 0.09956

5 id.orig_p 0.090765

6 History 0.053338

7 conn_state 0.051762

8 id.resp_h 0.02017

9 Proto 0.002605

10 resp_ip_bytes 0.001186

11 resp_pkts 0.000908

12 Service 0.000157

13 Uid 4.15E-05

14 missed_bytes 5.15E-07

Figure 4: Top 10 Important Features in the IoT malware dataset

4.2. Model Parameter Tuning and Training

This section describes the parameters and the processes used in

training the Recurrent Neural Network (RNN) model for the

detection and prevention of malicious activities on edge

devices. The RNN model was trained by fine tuning it’s hyper

parameters. The fine-tuned parameters of the RNN model has

three layers, one input layer with input neuron of 256, a hidden

layer with an input neural of 256, and finally the output layer

with dense layer 5. The hyper parameters used here are relu and

softmax for activation functions, optimizer = ‘adam’, and loss

=’categorical_consentropy’, batch_size=64, and epoch =7. The

result of the RNN model for both training and evaluation can be

seen in Table 4.2. The evaluation of the RNN model was

validated on a test data. The evaluation matrix used are

classification report and confusion matrix. The graphical

analysis of Table 4.2 can be seen in Figure 4.4, and Figure 4.5.

The classification report of the can be seen in Figure 4.6 and the

confusion matrix can be seen in Figure 4.7.

Table 2: Simulation of the Model on 10 Steps

Epoch 1/10

63851/63851 [==============================] – 32

9s 5ms/step – loss: 0.0124 – accuracy: 0.9963 – val_loss: 0.001

1 – val_accuracy: 0.9999

Epoch 2/10

63851/63851 [==============================] – 36

7s 6ms/step – loss: 8.1246e-04 – accuracy: 0.9999 – val_loss:

6.7327e-04 – val_accuracy: 0.9999

Epoch 3/10

63851/63851 [==============================] – 40

9s 6ms/step – loss: 0.0012 – accuracy: 0.9999 – val_loss: 9.596

8e-04 – val_accuracy: 0.9999

Epoch 4/10

63851/63851 [==============================] – 38

3s 6ms/step – loss: 8.6852e-04 – accuracy: 0.9999 – val_loss:

8.3973e-04 – val_accuracy: 0.9999

Epoch 5/10

63851/63851 [==============================] – 51

8s 8ms/step – loss: 0.0015 – accuracy: 0.9999 – val_loss: 5.747

0e-04 – val_accuracy: 1.0000

Epoch 6/10

63851/63851 [==============================] – 51

3s 8ms/step – loss: 0.0012 – accuracy: 0.9999 – val_loss: 7.708

7e-04 – val_accuracy: 0.9999

Epoch 7/10

63851/63851 [==============================] – 50

4s 8ms/step – loss: 9.4816e-04 – accuracy: 1.0000 – val_loss:

7.3796e-04 – val_accuracy: 0.9999

Epoch 8/10

63851/63851 [==============================] – 48

9s 8ms/step – loss: 0.0011 – accuracy: 1.0000 – val_loss: 5.674

5e-04 – val_accuracy: 1.0000

Epoch 9/10

63851/63851 [==============================] – 63

6s 10ms/step – loss: 8.5152e-04 – accuracy: 1.0000 – val_loss:

0.0036 – val_accuracy: 1.0000

Epoch 10/10

63851/63851 [==============================] – 39

5s 6ms/step – loss: 0.0020 – accuracy: 1.0000 – val_loss: 4.483

6e-04 – val_accuracy: 1.0000

O.E. Taylor et al., International Journal of Advanced Trends in Computer Science and Engineering, 13(6), November - December 2024, 220 - 227

225

Figure 5: Training Accuracy For Both Training and Validation

Figure 6: Loss values for training and Validation

Figure 7: Classification Report of the Model on test data

Figure 8: Confusion Matrix

4.3 Simulated Environment

The simulation was conducted with a Flask web application

specifically created to replicate the identification of harmful

actions on edge devices. Upon clicking the "Start Simulation"

button, the application initiates a function that generates random

data for different network parameters, including response port

(id.resp_p), timestamp (Ts), originating host (id.orig_h), packet

counts (orig_pkts, resp_pkts), and other pertinent characteristics.

This generated data provides a momentary representation of

network activity. Subsequently, a straightforward rule-based

detection method is employed to identify suspected malware.

This mechanism raises an alert if specific conditions, such as

abnormally high values for originating or response IP bytes, are

satisfied. Subsequently, the webpage exhibits the produced data

and the detection results ("Malware Found" or "No Malware

Found"), offering consumers a distinct representation of the

simulated activity and the result of the detection procedure. The

simulated results can be seen in Figure 9 and Figure 10.

Figure 9: Simulated Result1: Malware found

The simulated results shows that malicious activities was found

from the data generated

Figure 10: Simulated Result1: No Malware found

The simulated results shows that there was no malicious

activities was found from the data generated.

O.E. Taylor et al., International Journal of Advanced Trends in Computer Science and Engineering, 13(6), November - December 2024, 220 - 227

226

5. DISCUSSION OF RESULTS

Figure 2 presents a countplot illustrating the imbalance in the

dataset's class distribution. This figure highlights the disparity

between the instances of benign and malicious activities within

the data. A significant class imbalance is evident, with benign

activities vastly outnumbering malicious ones. This imbalance

can pose a challenge for machine learning models, potentially

leading to biased predictions towards the majority class.

Addressing this issue is crucial for developing a robust detection

model capable of accurately identifying malicious activities.

Figure 3 shows a countplot of the class distribution after

applying techniques to balance the dataset. Methods such as

oversampling the minority class or undersampling the majority

class can be employed to achieve this balance. The countplot

now displays an equal distribution of benign and malicious

activities, which is essential for training an effective machine

learning model. This balanced dataset ensures that the model

learns to identify malicious activities without bias, leading to

improved detection performance.

Table 1 provides a ranking of the features based on their

importance in detecting malicious activities. The id.resp_p

feature, with an importance score of 0.286601, is identified as

the most critical, followed by Ts and id.orig_h. These features

play a significant role in distinguishing between benign and

malicious activities. Features such as Proto, resp_ip_bytes, and

resp_pkts have minimal impact on the detection process, as

indicated by their low importance scores. Understanding the

importance of each feature helps in refining the model and

focusing on the most influential attributes to enhance detection

accuracy.

Figure 4 illustrates the top 10 important features in the IoT

malware dataset. These features are critical for the model to

effectively identify malicious activities. The prominence of

id.resp_p, Ts, and id.orig_h aligns with their high importance

scores in Table 1. By focusing on these key features, the model

can achieve better performance in detecting malware. This

visualization aids in understanding which features contribute

most significantly to the model's decision-making process.

6. CONCLUSION

The integration of edge computing with a malware detection

system employing a Recurrent Neural Network (RNN) trained

with extracted features from a Random Forest model has proven

to be remarkably effective. Demonstrating an outstanding

accuracy of 98.9% and an impressively low false positive rate of

3.98%, this approach showcases a significant advancement in

securing edge computing environments. By harnessing the

power of machine learning and leveraging the strengths of both

RNN and Random Forest algorithms, this model exhibits a

robust capability in identifying and mitigating malware threats

at the edge. Such a high level of precision not only bolsters the

security posture of edge computing systems but also lays the

foundation for a safer and more resilient future in the rapidly

evolving landscape of cybersecurity.

APPENDIX

Appendixes, if needed, appear before the acknowledgment.

ACKNOWLEDGEMENT

REFERENCES

1. S. Hamdan, M. Ayyash, and S. Almajali,

"Edge-computing architectures for internet of things

applications: a survey," Sensors, vol. 20, no. 22, p.

6441, 2020.

2. Y. Kalyani and R. Collier, "A systematic survey on the

role of cloud, fog, and edge computing combination in

smart agriculture," Sensors, vol. 21, no. 17, p. 5922,

2021.

3. D. Klonoff, "Fog computing and edge computing

architectures for processing data from diabetes devices

connected to the medical internet of things," Journal of

Diabetes Science and Technology, vol. 11, no. 4, pp.

647-652, 2017.

4. K. Alimi, K. Ouahada, A. Abu-Mahfouz, and S. Rimer,

"A survey on the security of low power wide area

networks: threats, challenges, and potential solutions,"

Sensors, vol. 20, no. 20, p. 5800, 2020.

5. İ. Bütün, A. Sari, and P. Österberg, "Hardware security

of fog end-devices for the internet of things," Sensors,

vol. 20, no. 20, p. 5729, 2020.

6. K. Demestichas, N. Peppes, and T. Alexakis, "Survey

on security threats in agricultural IoT and smart

farming," Sensors, vol. 20, no. 22, p. 6458, 2020.

7. A. Kayes, R. Kalaria, I. Sarker, M. Islam, P. Watters,

and A. Nget, "A survey of context-aware access

control mechanisms for cloud and fog networks:

taxonomy and open research issues," Sensors, vol. 20,

no. 9, p. 2464, 2020.

8. C. MacIntyre, T. Engells, M. Scotch, D. Heslop, A.

Gumel, and G. Posteet, "Converging and emerging

threats to health security," Environment Systems &

Decisions, vol. 38, no. 2, pp. 198-207, 2017.

9. Y. Al-Issa, M. Ottom, and A. Tamrawi, "Ehealth cloud

security challenges: a survey," Journal of Healthcare

Engineering, vol. 2019, pp. 1-15, 2019.

10. P. S. Ezekiel, O. E. Taylor, and F. B.

Deedam-Okuchaba, "A model to detect phishing

websites using support vector classifier and a deep

neural network algorithm," International Journal of

Advanced Research in Computer and Communication

Engineering (IJARCCE), vol. 9, no. 6, pp. 188-194,

2020.

11. O. E. Taylor and P. S. Ezekiel, "A smart system for

detecting behavioural botnet attacks using random

forest classifier with principal component analysis,"

European Journal of Artificial Intelligence and

Machine Learning, vol. 1, no. 2, pp. 11-16, 2022.

O.E. Taylor et al., International Journal of Advanced Trends in Computer Science and Engineering, 13(6), November - December 2024, 220 - 227

227

12. O. E. Taylor and P. S. Ezekiel, "A robust system for

detecting and preventing payloads attacks on

web-applications using recurrent neural network

(RNN)," European Journal of Computer Science and

Information Technology, vol. 10, no. 4, pp. 1-13,

2022.

13. O. E. Taylor, P. S. Ezekiel, and D. J. S. Sako, "A deep

learning based approach for malware detection and

classification," iJournals: International Journal of

Software & Hardware Research in Engineering

(IJSHRE), 2021.

14. Y. J. Kim, C. H. Park, and M. Yoon, "FILM: filtering

and machine learning for malware detection in edge

computing," Sensors, vol. 22, no. 6, p. 2150, 2022.

15. H. M. Kim and K. H. Lee, "IIoT malware detection

using edge computing and deep learning for

cybersecurity in smart factories," Applied Sciences,

vol. 12, no. 15, p. 7679, 2022.

16. R. H. Hsu et al., "A privacy-preserving federated

learning system for android malware detection based

on edge computing," in Proc. 15th Asia Joint Conf. on

Information Security (AsiaJCIS), 2020, pp. 128-136.

17. W. Lian et al., "Cryptomining malware detection based

on edge computing-oriented multi-modal features deep

learning," China Communications, vol. 19, no. 2, pp.

174-185, 2022.

18. A. Libri, A. Bartolini, and L. Benini, "pAElla: Edge

AI-based real-time malware detection in data centers,"

IEEE Internet of Things Journal, vol. 7, no. 10, pp.

9589-9599, 2020.

19. W. G. Hatcher et al., "Edge computing-based machine

learning mobile malware detection," 2017.

20. J. Abawajy et al., "Identifying cyber threats to

mobile-IoT applications in edge computing paradigm,"

Future Generation Computer Systems, vol. 89, pp.

525-538, 2018.

21. Y. Shen et al., "Signaling game-based availability

assessment for edge computing-assisted IoT systems

with malware dissemination," Journal of Information

Security and Applications, vol. 66, p. 103140, 2022.

22. A. Mahindru and H. Arora, "Dnndroid: Android

malware detection framework based on federated

learning and edge computing," in Proc. International

Conference on Advancements in Smart Computing

and Information Security, 2022, pp. 96-107.

23. Z. Tian et al., "Real-time lateral movement detection

based on evidence reasoning network for edge

computing environment," IEEE Transactions on

Industrial Informatics, vol. 15, no. 7, pp. 4285-4294,

2019.

