
Isma’il Aliyu et al., International Journal of Advanced Trends in Computer Science and Engineering, 13(6), November - December 2024, 210 - 219

210

ABSTRACT

Software Development is a skillful task that has evolved over

time with various tools, models and processes. DevOps is one of

the recent methodologies that seek to strengthen collaboration,

and automation culture during software development thereby

improving efficiency. Despite adoption of DevOps by some

teams/organizations as reported by various studies, many

software development teams particularly those in tertiary

institutions stick to traditional methodologies. Noncompliance

with the principles that DevOps preaches usually results in

chaos or confusion after initial deployment of application or

deployment of new features. Guide on how to integrate available

tools to fully realize what DevOps stands for, is a significant

software engineering task. However, such guides are limited in

the literature. In this work, a software development pipeline

based on DevOps for improved efficiency of software

development teams in tertiary institutions like Abubakar Tafawa

Balewa University Bauchi (ATBU) is proposed. Cloud-based

tools such as Git, Docker, Kubernete were leveraged upon for

the implementation of the pipeline in line with the principles of

DevOps. Procedures of the implementation are provided hoping

this can serve as a guide to software development practitioners

who are yet to embrace DevOps. Results indicate that the

proposed model or pipeline outperformed the existing practice

in the areas of collaboration, automated testing and quality

checks, and scalability.

Key words: Software, DevOps, Software Development,

Software Model.

1. INTRODUCTION

Unprecedented developments in computer related technologies

have forced organizations to embrace automation or

computerization of their business processes. The enabler of this

great shift is software [1] which is a set of coded instructions that

direct computer to perform a task.

Today, it is hard to come across an organization that do not

depend on software for its internal operations. The mode of

acquiring software by organizations are two. (i) outsourcing

from external software development company. (ii) In-house

development where ICT staff of the organization are mandated

to develop the software. The latter is the practice in most

Nigerian Universities including Abubakar Tafawa Balewa

University (ATBU). Of course, there are institutions that

outsource their software externally disregarding the threat

which external outsourcing poses. While new technologies and

software development methodologies have emerged in recent

times, software development teams in Nigerian universities do

not seems to align with such trend. One new innovation that seek

to improve efficiency of software development teams is DevOps

[2], [3].

DevOps is a set of practices and tools that integrate processes

involve in development and deployment of software thereby

increasing efficiency and facilitate speedy delivery of quality

software (Atlassian, 2024). The emphasis of DevOps is on

collaboration, cross-team communication and technology

automation.

Several studies [4], [5], [6], [7] have reported the adoption of

DevOps by organizations and their positive response regarding

its usage. However, the focus of those studies has not been on

educational institutions where there exist a unit saddled with

responsibilities of developing or managing the institution’s

software and other ICT needs. Studies or even blogs that

comprehensively presents how DevOps related tools and

methods are used together, in bid to simplify DevOps adoption

and usage do not exist in the literature. This perhaps could be the

reason why some team of software developers have not yet

embraced DevOps despite the fact that it perfectly fit well into

their activities. In this work, a software development pipeline

based on DevOps is proposed. The pipeline is more like a model

that can be adopted by software development teams for better

efficiency and productivity.

1.1 Motivation

There exist significant number of research papers encouraging

the adoption of DevOps in organizations that are concerned with

software development. However, there is little effort in detailing

how various tools can be integrated or put together in order to

achieve full realization of DevOps principles. This gap

coincides with our desire to provide technical solution to the

way in which software development team of our institution

Software Development Pipeline Based on DevOps for

Software Development Teams in Tertiary Institutions

Isma’il Aliyu
1
, Umar Faruk Muhammad

2
, Badamasi Imam Ya’u

3

1,2,3
Department of Computer Science, Abubakar Tafawa Balewa University Bauchi, Nigeria

{
1
ialiyu,

2
mufaruk.ug,

3
biyau}@atbu.edu.ng

Received Date : October 12, 2024 Accepted Date: November 16, 2024 Published Date: December 06, 2024

ISSN 2278-3091

Volume 13, No.6, November - December 2024

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse021362024.pdf

https://doi.org/10.30534/ijatcse/2024/021362024

http://www.warse.org/IJATCSE/static/pdf/file/ijatcse021362024.pdf
https://doi.org/10.30534/ijatcse/2024/021362024

Isma’il Aliyu et al., International Journal of Advanced Trends in Computer Science and Engineering, 13(6), November - December 2024, 210 - 219

211

(ATBU) develop and deploy software for university community

use. The way in which the in-house software development team

of ATBU effected changes in software used for UG registration,

as a result of upward review of Undergraduate registration fees

in 2021/2022 session was not carried out seamlessly as it

created confusion among students as a result of errors that

manifested. Upon enquiry on the development methodology the

team uses. We noted the use of traditional development

methods. For example, lack of collaboration and testing;

whenever a developer (Senior or Junior) completed his assigned

task, he or she submits the code on a flash drive for review,

testing and deployment. This is a huge downfall to the modern

collaboration in Software Development. Motivated by the

above, we propose a development model based on global best

practices that can be adopted not only by ATBU teams but other

institutions in order to improve efficiency and productivity.

Following the changes to the students’ registration software in

line with fees review, it was insinuated that the ATBU’s

management resolved to engage the services of an external

software company. If the move eventually succeeds, it is huge

indictment signifying incompetence which will ultimately strip

the in-house team of its roles. Whichever way the university

management decided to go, this study is still relevant as there

are many institutions that depend on their in-house team for their

software needs. Even the ones that engage external software

companies, they still return to their in-house teams in the end

when the contract period elapse or breaks halfway.

Rather than engaging external software companies, we advocate

that universities or tertiary institutions should empower their

in-house teams, encourage them to adopt global trends and

embrace new technological innovations. The beneficiary is the

university because cost will be saved and the confidentiality of

its data or records is guaranteed. This work is in line with this

advocacy. Our contributions are summarized as follow follows:

i) Software development pipeline based on DevOps that

is suitable for adoption by teams saddled with

responsibilities of developing and managing software

in tertiary institutions is proposed and implemented.

ii) Procedures of integrating software development tools

to achieve full realization of DevOps principles are

outlined.

iii) The dangers of engaging private software companies to

manage universities’ records are outlined and the need

to empower in-house teams is strongly advocated.

This paper is structured as follows. Section 2 briefly outline the

dangers of software outsourcing in university system. The basic

concept of DevOps together with related tools are explained in

section 3. Related works are presented in Section 4. The

methodology is presented in section 5 where the existing

development process and the propose pipeline are described.

Section 6 presents how the proposed pipeline is implemented.

The procedures for implementation were supported with

appropriate screen shots in order to guide readers. Evaluation

and results are presented in sections 7 and 8 respectively, while

section 9 concludes the paper.

2. SOFTWARE OUTSOURCING & UNIVERSITY

SYSTEM

Outsourcing refers to engaging or contracting a third-party

professional to execute a project or specific task [8]. It is one of

the options through which a university can acquire software for

its needs. In the context of university system, one advantage of

software outsourcing is that individuals with technical expertise

and vast experience can be involved. However, the

disadvantages or rather threats associated with it cannot be

overlooked.

The major threat is data breach. University is an institution

where academic records are very vital for its existence. At any

time, University can be requested by other organizations to

provide academic status or records of its graduates. Students’

data (semester results, transcripts etc) and other academic

records are supposed to be kept on university’s dedicated server

with high degree of confidentially. Leaving such data under the

control of private company who is out to make profit will

definitely have catastrophic effect on the university if anything

goes wrong. Data breach or leak is a common phenomenon on

cyber space. For instance, “the social media giant Meta was

fined $276 million over a data leak that affected 533 million

Facebook users and resulted in their phone numbers, location,

and other personal data being exposed” [8]. Cases of data

breach involving giant tech companies are reported by [9].

Another disadvantage is high cost. The cost involved in hiring

or procuring an entity to render its services to university is

usually higher than the amount to be spent on staff to do the job

in house. Private software companies who are out to make

profits usually charge exorbitantly. If fact they charge certain

percentage per head (i.e per student) that uses the application.

At the end of the day the money they walk away with is huge.

3. DEVOPS

The term DevOps a combination of words "Development" and

“Operations” and is described as "a movement and a philosophy

that emphasizes collaboration, communication, and automation

in the software development process". In the traditional

software development process, the development team is

responsible for creating the software, while the operations team

deploys and maintain it. This separation can lead to silos and

conflicts between the two teams, as well as a lack of alignment

and coordination in the overall process. DevOps aims to break

down these silos and promote collaboration and communication

between the development and operations teams. Thus, DevOps

is concerned with improving collaboration and communication

between the two traditionally distinct teams.

In order to provide comprehensive definition, [10] explored the

components that are central to the definitions of DevOps

reported in the literature. Their exploration covered 6 leading

academic databases and came up with definition of DevOps as

“a development methodology aimed at bridging the gap

between Development (Dev) and Operations (Ops),

emphasizing communication and collaboration, continuous

integration, quality assurance and delivery with automated

deployment utilizing a set of development practices”. For

further discussions on the concepts and principles, we refer

reader to [11], [12], [13], [14].

Isma’il Aliyu et al., International Journal of Advanced Trends in Computer Science and Engineering, 13(6), November - December 2024, 210 - 219

212

DevOps seeks to automate as many processes as possible, from

the initial code development to the deployment and testing of

the software. Automation is crucial for reducing errors,

improving efficiency, and enabling rapid, iterative

development.

The benefits of DevOps include improved collaboration and

communication, increased efficiency and productivity, reduced

risk and errors. Of course, implementation or adoption of

DevOps is not without challenges. We refer reader to [15], [16]

who reported challenges and mitigating strategies of using

DevOps during software development. [6], [11], [12], [17] have

also reported challenges associated with using or adopting

DevOps. In addition to the benefits mentioned above, studies

like [18], [19] reports DevOps has potential to promote or

enhance software quality.

3.1 DevOps Tools

DevOps involves a lot of prominent tools that are used in

different phases of development process. Some of these tools

included:

Git: Git is a distributed Version Control System (VCS) that

track changes in source code during software development. It

allows multiple individuals to work on a project simultaneously,

coordinating their work and managing code changes efficiently

[20].

Docker: Docker is a tool that allow deployment of applications

in containers so that the applications can work in different

environments efficiently without much configuration or

management [21]. A container is a lightweight and standard unit

of application and all its dependencies packaged together.

Docker Engine is a core runtime that manages the lifecycle of

containers. It handles the build process, and manages the storage

and networking aspects of containers. Docker works well with

tools such as VSCode, CircleCI, and Git [21]. According to [22]

who analyses docker performance, costs of rebuilding cloud

development platform can be reduced when traditional virtual

machine is replaced with docker container. [23] equally

evaluated performance of docker containers and virtual

machines.

Kubernetes: Kubernetes is a container orchestration platform or

tool that is used to manage containerized applications.

Kubernetes is a platform for running and managing containers

from many container runtimes. Kubernetes supports numerous

container runtimes including Docker [24]. Containers provides

a way to bundle and run applications. Kubernetes is needed to

manage the containers running applications in a production

environment and ensure that there is no downtime [25]. [26]

presents good discussions on both docker and Kubernetes. He

referred to Kubernetes as “cluster manager for docker

containers”.

Jenkins: Jenkins is the leading open-source automation server

which allow developers to build, test and deploy their software.

Jenkins helps automate part of software development that has to

do with building, testing, and deploying thereby felicitating

continuous integration (CI) and continuous Delivery (CD). It

supports several version control tools including Git, AccuRev,

CVS, Apache Subversion, Mercurial etc.

4. RELATED WORKS

This paper primarily focuses on two things; one, DevOps

adoption by IT teams in organizations particularly tertiary. Two,

using DevOps principles and associated tools to better software

development process. The literature review is conducted in line

with these two concerns. While thiswork is advocating for

DevOps adoption, it equally takes a step further and present how

DevOps related tools can be used together. The steps were

clearly stated and supported with appropriate screen shots in

order for practitioners to easily lay hands on. [4] conducted

what they called "exploratory interview‐based study" on the

adoption of DevOps in 6 organizations in Netherlands, and

observed that organizations are positive about their experience

although some minor problems were encountered in the cause of

the adoption. [7] also conduct exploratory study and present

description of how DevOps is implemented in practice. They

used web application and service development in 5 small and

medium size companies as the context of their empirical

investigation. They stated the type or nature of software

applications those companies build, the build output, and the

tools they use. However, their study did not state how the tools

can be put together – this is very important for new practitioner

who wants guide on implementing or adopting DevOps. [5]

detail real scenarios of DevOps adoption. They proposed model

(i.e., a workflow for DevOps adoption) and evaluated it on

Brazilian Government institution. They provide evidence

that collaboration is the core DevOps concern, contrasting with

opinion in some quarters that automation and tooling can be

enough to achieve DevOps. [27] studied the impact of DevOps

implementation on teamwork quality. [28] conducted

exploratory study to help practitioners and researchers to better

understand the organizational structure and characteristics of

teams adopting DevOps. The study involves 31 multinational

software intensive companies. [29] present an approach of

integrating standard-based security activities into the DevOps

pipelines for Industrial Control Systems and highlight their

automation potentials. [30] present a DevOps implementation

framework for large scale agile financial organizations. [31],

[32] proposed readiness models aimed at assisting practitioners

in software industries to evaluate and improve their

implementation of DevOps practices. [33] conducted

evidence-based study aimed at exploring guidelines for

sustainable DevOps implementation. [34] present a guide to

implementing DevOps in small organizations.

In all the papers mentioned above, none focus on software teams

that have to do with education sector. The work that is most

similar to ours is that of [34]. However, the authors did not

provide in details the steps of integrating the cloud tools to

achieve the major principles of automation and collaboration.

5. METHODOLOGY

The methodology adopted is in line with the principles of

DevOps. Before explaining the proposed pipeline, the existing

development process is briefly explained.

Isma’il Aliyu et al., International Journal of Advanced Trends in Computer Science and Engineering, 13(6), November - December 2024, 210 - 219

213

5.1 The Existing Development Process

The software development process in most Nigerian universities

including our case study (ATBU) is discovered to follow a

traditional and linear approach with clearly defined phases and

roles. The process begins with identification of software

requirements which the university Management gives. The

requirements are then translated into functional specifications

by the software development team. Tasks are shared among

both senior and junior developers who use their workstations to

write codes. The most senior developer on the project then

collates all the given tasks via a flash drive and rebuild, test and

deploy the master application for manual exploratory test of the

software functionality, after which the application is deployed to

production. Figure 1 summaries the current development

process.

5.2 Challenges of the Existing Development Process

The existing process is faced with myriads of challenges that

have to do with collaboration, automation and scalability. These

are stated below.

 Lack of centralized version control: Developers face

challenges in coordinating their work. It is difficult to

track changes in the project’s code.

 Limited code review and feedback mechanisms: No robust

code review process. This can result in delays in code

reviews, lack of consistency in review feedback, and

difficulties in ensuring code quality and adherence to

coding standards.

 Manual and error-prone build processes: The absence of

an automated build system like Jenkins. This makes it

hard to reproduce builds reliably, leading to difficulties

in troubleshooting and identifying issues.

 Lack of automated testing: Automated testing framework

is not integrated. Testing are performed manually or

inconsistently.

 Manual scaling processes: No auto-scaling capabilities

provided by tools like Kubernetes, scaling applications

manually becomes time-consuming and error-prone.

To address the above challenges, appropriate tools and methods

have to be used.

5.3 The Proposed System

The proposed pipeline is shown in figure 2, and it addresses the

challenges associated with the existing development method.

The pipeline incorporates appropriate tools and practices, such

as adopting Git and GitHub for version control and

collaboration, integrating Jenkins for automated building and

testing, and leveraging Kubernetes for auto-scaling and load

balancing. The process begins with setting up a remote

repository to house the application’s code. The programmers

involved in the project can then configure their machines and

push the code they write to the remote repository.

Figure 1: Current Development and Operation Process

Isma’il Aliyu et al., International Journal of Advanced Trends in Computer Science and Engineering, 13(6), November - December 2024, 210 - 219

214

Figure 2: The proposed pipeline. In this figure, all the developers can work on the same project hosted on remote repository

6. IMPLEMENTATION

In this section, procedures for implementation of the pipeline

are presented with the hope this will serve as a useful guide to

any developer who wishes to either or partially embrace

DevOps tools and principles. The summary of the

implementation steps are shown in figure3. It important to note

that what is obtainable at the end of the process is the

application’s image that undergoes all the necessary quality

test and checks. In this work, Git is used as version control

system (VCS).

6.1 Developer’s Check list

The following are the checklist required for implementation of

the pipeline proposed in this work.

 Computer system

 Cloud based DevOps tools – used to achieve

collaboration, and automation; Github Repository,

Docker, Jenkins, Kubernetes

 Application development framework eg,

CodeIgniter4.

Figure 3: summary of the pipeline implementation process

In line with the principles of DevOps, the implementation is

segmented with respect to the principles of collaboration,

automation, and continuous integration.

6.2 Collaboration

The collaboration aspect of the pipeline involves using

Version Control System to enable multiple developers work

on the project. This is achieved using GitHub platform. The

steps for the collaboration segments are as follows

Isma’il Aliyu et al., International Journal of Advanced Trends in Computer Science and Engineering, 13(6), November - December 2024, 210 - 219

215

Step 1: Create a GitHub account, create a repository that

serves as the codebase of the project. Once GitHub account is

created, features that enable creation and manipulation of

repositories can be accessed. In this work, repository name

“Project-atbu” was created as shown in Figure 4. Of course,

many branches can be created for a particular repository. Two

branches are created for this work, these are Development and

Staging. Subsequently, other branches can be created which

may include bugfixes etc.

Figure 4: GitHub interface showing how branches can be created

under Project-atbu repo

Step 2: Setup Git on local machine: After creating the git

repository, next is for the individuals involve in the project to

set up git terminal and clone the remote git repository on their

local machines. Download the latest version of git and install.

Open the git terminal in order to access git account and

subsequently use repositories under the account. Note that

correct username and password of the git account must be

supplied.

Step 3: Push code to the repository: After setting up Git and

GitHub next is for senior developer to push the initial

codebase to the main branch, while other developers are to

push the development branch. This should be done after they

clone the project to their respective machines. The following

steps explains further

 Open the terminal and navigate to the project folder

 Run the command “git clone

https://github.com/RUWERH/Project-atbu.git” to

clone the remote project to the local machine.

 Copy all the codebase to the new folder created

 Run the command “git add” to stage the entire

codebase and be ready.

 Run the command “git status” to see the folders and

file in the stage domain.

 Run the command “git commit –m “Initial code

commit” to commit the files.

 Run the command “git push origin main/master” to

push the entire codebase (or changes) to the

repository on Github platform.

Step 4: Code review and merging pull request: Whenever a

developer commits or pushes codes to the development

branch, it will be as a pull request, which the senior developer

will go through to ensure the code does not conflict with the

key components of the project before merging it to the main

branch. This process is known as Code Review or Pull Request

Review.

6.3 Automation

The essence of automation aspect of the pipeline is to subject

the application’s code to test and quality checks by automated

tools available, before final deployment of the application for

public consumption. This is achieved using docker and

Jenkins. The senior developer is the one to proceed with this

stage.

First, docker has to be installed. Its executable file for

windows is available on the internet for download. After

installing docker, open power shell and type the command

“docker --version” to confirm the version installed.

Step 1: Setup Jenkins

A Docker file name “Dockerfile” is used to create the Jenkins

Container. In the process, some Docker commands needs to be

run on the Jenkins machines as part of the pipeline to deploy

the application to staging Environment and Run a number of

tests on it. Below are the steps

i. Create a text file “Dockerfile” in the project folder with

the content shown in figure 5

Figure 5: Dockerfile containing the commands that install

Jenkins

ii. Build the application image: Open PowerShell and

navigate to the project folder where the Docker file

is located and run the command “docker image

build –it atbu-project” to build the application

image.

iii. After Building the image, it can be used to create

the Jenkins container using this command “docker

run -d -p 49009:8080 -p 50000:50000 -v

/var/run/docker.sock:/var/run/docker.sock -- name

jenkins-atbu atbu-project”

iv. Check if the container is created and running using the

command “docker ps”, it also gives details about

the container.

v. Open web browser of choice and navigate to the IP

address of the machine with the port as provided

while creating the container. It will display the

initial page of Jenkins and request that an initial

admin password should be inserted to proceed, the

initial passwords can be gotten by checking the

Isma’il Aliyu et al., International Journal of Advanced Trends in Computer Science and Engineering, 13(6), November - December 2024, 210 - 219

216

logs of the container using “docker logs

containerID” command.

vi. After correct input of default admin password, another

window or interface will pop up requesting to

create a new admin user or proceed with the default

one. Next is another window or interface that

requests for installation of plugins. Click install

suggested plugins and continue.

vii. If all the above steps are carried out correctly, the

Jenkins dashboard will be displayed

Step 2: Install Docker on Jenkins Machine

i. Open PowerShell and run the command “docker exec

-it -u root jenkins-atbu bash” to access the

Jenkins container.

ii. Run “yum install -y yum-utils” to install yum utils on

the container

iii. Run these two commands to install docker

“yum-config-manager --add-repo

https://download.docker.com/linux/centos/dock

er-ce.repo ”

“yum install -y docker-ce docker-ce-cli

containerd.io”

iv. Check and verify if it installed “docker –version”

v. Change the permission of the volume using “chmod

666 /var/run/docker.sock”

vi. Then Exit.

Step 3: Setup Jenkins with Remote Repository

Below are the steps to set up Jenkins Pipeline with the remote

repository:

i. On the Jenkins landing page, navigate to the “New item”

button and click.

ii. Type the name of the Pipeline you want to create and

select the pipeline tab option as shown in figure 6

below

Figure 6: Jenkin dashboard

iii. Configuration window will open after clicking Pipeline.

Click General tab by the left side of the window.

Type the Project Description. Select or tick the check

box for “GitHub Project”. Type the url of git

repository housing the project codes. In our case, the

url of our git repository is

“https://github.com/RUWERH/Project-atbu/”.

Under Build Triggers, select or tick the checkbox

for “GitHub hook trigger for GITScm polling” – this

will trigger the pipeline whenever a new pull request

is merged.

iv. On the same configuration window, click Pipeline tab by

the left side of the window. Select “Pipeline script

from SCM” which will look for Jenkins pipeline

script on the Source Code Management tool in use.

Select Git and provide the Repository URL. NOTE:

if the repository is private, it credentials need to be

provided using the Jenkins Credentials feature for the

secret. Type the name of the branch that will be built

in the pipeline, and provide the name of the script file

residing in the repository.

v. Click Apply and save. The Pipeline is ready to build the

project

Step 4: Creating Pipeline script and Test Scripts

Jenkins pipeline script is constructed for this project which has

10 stages namely:

i. Build: This stage builds the project and installs the

necessary plugins and dependencies to run the

application some of which include: composer, php

artisan, database configurations etc.

ii. Unit Test: This stage performs a unit test on the

application written by the developers of the Quality

Assurance Engineer, in this case, an artisan is used to

run the test.

iii. Code Coverage: This stage runs a coverage test on the

application since the application is running PHP,

PHPUnit supports code coverage tests so it’s used to

achieve that.

iv. Static Code Analysis Larastan: In this stage Perform a

code analysis on the application using Larastan,

before this will work Larastan needs to be installed.

v. Static Code Analysis phpcs: This Stage also performs

code analysis on the application using phpcs, before

this will work PHP CodeSniffer needs to be installed.

vi. Docker Build: This stage runs the Docker command to

build the projected image using Dockerfile included

in the Repository and name it “album-project”.

vii. Docker Push: This stage also runs the Docker command

to push the build image to the Docker hub using the

specified username and password provided and send

IT.

viii. Deploy to Staging: This stage Deploys the containerized

application to the staging environment where it can

be accessed and tested.

ix. Acceptance test CURL: This stage performs an

acceptance test base on the test cases provided in

“acceptance_test.sh”, it will change the permission

and run the script on the container.

x. Acceptance Test Code Exception: This stage also

performs an acceptance test with code exception,

before it can be achieved a PHP co-deception needs

to be installed on the project, and also

“RegisterTest.php” test file needs to be created, after

it's completed then it will stop the container.

https://download.docker.com/linux/centos/docker-ce.repo
https://download.docker.com/linux/centos/docker-ce.repo

Isma’il Aliyu et al., International Journal of Advanced Trends in Computer Science and Engineering, 13(6), November - December 2024, 210 - 219

217

The successful integration of Git, Jenkins, and Docker resulted

in a seamless CI/CD pipeline. Developers could confidently

push their code changes to the Git repository, knowing that

automated builds, tests, and deployments would be triggered.

The pipeline ensured that the application's code was

continuously integrated, tested, and delivered to the staging or

production environment with minimal manual intervention.

Step 5: Pipeline Execution

When the senior developer finishes code review and merged

the code to the main branch. The Pipeline is triggered and all

the stages are carried out, if one failed the rest wouldn’t

proceed and hence it will be unsuccessful. To see the entire

pipeline execution process, navigate to Console Output page

as shown in Figure 7

Figure 7: console output of the pipeline execution

The summary of the process is as follows.

 Clone the project and install all the necessary

dependencies. Perform unit test.

 Execute the tests to ascertain code or branch coverage.

 Perform static code analysis.

 Build image of the application using Docker file in the

repository.

 Push the image to docker hub.

 Deploy the build application to a staging environment.

Execute the test script provided and stop the

container.

To verify, navigate to the Docker hub. The application’s image

push by the pipeline will be available as shown in Figure 8.

The application’s image can be deployed to a Kubernetes

cluster having multiple nodes that will ensure the scalability of

the application.

Figure 8: showing the image of the application pushed by the

pipeline

7. EVALUATION

To evaluate the proposed pipeline, software is developed

based on the steps outlined in implementation section. This

will give room for comparison with the existing development

model based on some metrics: collaboration, development

speed, automation, code quality.

For the sake of evaluation, any software with significant

number of functional requirements can be developed. In our

case we development student registration system using

CodeIgniter4, php framework development of web

application. The project code was stored on github and each

member of the team clone the project to his/her local machine

and proceed with coding the tasks assigned to him. Eventually

the application’s image was obtained after passing through the

stages outlined.

8. RESULTS & DISCUSSION

In order to ascertain the superiority or otherwise of the

pipeline proposed in this work, 4 metrics shown in table 1 were

used.

Table 1: Remarks on the metrics used to access the

performance of the proposed pipeline against the existing

process

Metrics Remarks

Collaboration Ability of many individuals to work

simultaneously on the same project, and

track their performances.

Automation Continuous integration of code and

other components, automatically build

application upon code pull request, little

or minimal human intervention in during

deployment.

Scalability &

Resource

utilization

Efficient management of resources,

ensuring optimal performance during

peak loads and reducing resource

wastage during low loads.

Quality &

stability

Quality checks such as testing, bug

fixing to ensure stability of the

application.

Isma’il Aliyu et al., International Journal of Advanced Trends in Computer Science and Engineering, 13(6), November - December 2024, 210 - 219

218

The summary of results indicating the performance of the

proposed model against the existing process is shown in table

2 below.

Table2: Summary of the results showing the proposed

pipeline outperformed the existing development model.

Metrics Existing Development

model

Proposed

Model

Collaboration Poor Excellent

Automation Poor Excellent

Scalability Poor Very Good

Quality Fair Very Good

In all the metrics used, it is clear that the proposed pipeline is

exceptionally better compared with the existing model. This

represents significant shift for better software development

practices.

8.1 Comparison with Pre-DevOps Practices

It is actually difficult if not impossible to justify the metrics

stated in table 1 with respect to software development where

DevOps is not incorporated. Overall, the DevOps pipeline

proposed in this work demonstrated significant improvement

over the existing model. With respect to the software

development method proposed in this work, the following are

handy benefits that can be derived:

 Individual efforts in building the application codes can

be measured.

 No need of manual collation of codes from the

programmers involved in the project.

 No need of manual testing.

 Little human intervention during deployment.

9. CONCLUSION

In this work, software development model based on DevOps is

presented. This is in line with our collective resolve to offer

solution for better software development process to software

development teams in Nigerian tertiary institutions. Cloud

based tools such as git, docker were used for the

implementation. The steps to integrate these tools together are

described, and it was shown how docker image of the

application can be obtained as the end product of the pipeline.

The overall aim is to realize full DevOps utilization and

adoption. The results obtained shows the proposed pipeline

outperformed the existing development model signifying that

the pipeline's adoption will significantly improve

collaboration, efficiency and productivity of software

development teams in producing quality software.

Having proposed the pipeline, next is to conduct an empirical

and exploratory study on DevOps adoption in some selected

Nigerian Tertiary institutions in order to access their

implementation strategies and challenges if any. Perhaps this

requires conducting interviews across the institutions that

might be selected for the study. We leave that as future work.

ACKNOWLEDGMENTS

We thank the reviewers for their valuable input and

suggestions.

This work is supported by Tertiary Education Trust Fund

(tetfund) through Institution Based Research (IBR) year 2023

intervention for Abubakar Tafawa Balewa University. We

remain grateful to tetfund for its various supports to Nigerian

tertiary institutions. Indeed, the initiative is making positive

impact.

REFERENCES

[1] A. Fuggetta, “Open source Software - An Evaluation,”

Journal of Systems and Software, vol. 66, no. 1, pp.

77–90, 2003

[2] P. Debois, “DevOps: A Software Revolution in the

Making,” Journal of Information Technology

Management, vol. 24, no. 8, pp. 3–39, 2011

[3] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano,

“DevOps,” IEEE Softw, vol. 33, no. 3, pp. 94–100, 2016

[4] F. M. Erich, C. Amrit, and M. Daneva, “A Qualitative

Study of DevOps Usage in Practice,” Journal of

Software: Evolution and Process, vol. 29, no. 6, 2017

[5] L. W. Pinheiro, G. Pinto, and R. Bonifacio, “Adopting

DevOps in the Real World: A Theory, a Model, and a

Case Study,” Journal of System and Software, vol. 157,

2019.

[6] L. Riungu-Kalliosaari, S. Mäkinen, L. E. Lwakatare, J.

Tiihonen, and T. Männistö, “DevOps Adoption Benefits

and Challenges in Practice: A Case Study,” in In

proceedings of 17th International Conference, PROFES,

Trondheim, Norway, 2016, pp. 590–597.

[7] L. E. Lwakatare et al., “DevOps in Practice: A Multiple

Case study of Five Companies,” Journal of Information

and Software Technology, vol. 114, pp. 217–230, 2019,

doi: https://doi.org/10.1016/j.infsof.2019.06.010.

[8] F. Yolcu, “Pros and Cons of Hiring Software

Development Company,”

https://www.datrick.com/pros-and-cons-of-hiring-a-soft

ware-development-company/ Accessed on 05/02/2024.

[9] M. Hill and D. SwinHoe, “15 Biggest Data breaches of

the 21st Century,”

https://www.csoonline.com/article/534628/the-biggest-d

ata-breaches-of-the-21st-century.html. Accessed on

05/02/2024.

[10] R. Jabbari, N. Bin Ali, K. Petersen, and B. Tanveer,

“What is DevOps? A Systematic Mapping Study on

Definitions and Practices,” in In proceeding of the

scientific Workshop of XP2016, 2016, pp. 1–11.

[11] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles,

“A survey of DevOps Concepts and Challenges,” ACM

Computing Surveys (CSUR) 52(6), 1-35 , vol. 52, no. 6,

pp. 1–35, 2019.

[12] G. Bou Ghantous and A. Gill, “DevOps: Concepts,

Practices, Tools, Benefits and Challenges,” in In

proceedings of Pacific Asia Conference on Information

Systems (PACIS), 2017.

Isma’il Aliyu et al., International Journal of Advanced Trends in Computer Science and Engineering, 13(6), November - December 2024, 210 - 219

219

[13] M. Gall and F. Pigni, “Taking DevOps Mainstream: A

Critical Review and Conceptual Framework,” European

Journal of Information Systems, vol. 31, no. 5, pp.

548–567, 2022.

[14] R. W. Macarthy and J. M. Bass, “An Empirical

Taxonomy of DevOps in Practice,” in 46th Euromicro

Conference on Software Engineering and Advanced

Applications (SEAA), 2020, pp. 221–228.

[15] D. B. Sindhu, “The challenges and Mitigation Strategies

of Using DevOps during Software Development,”

International Journal of Creative Research Thoughts

(IJCRT), 2021.

[16] M. T. Hossain, M. Sarker, G. Uddin, and A. Iqbal, “A

Mixed Method Study of DevOps Challenges,” Journal of

Information and Software Technology, vol. 161, 2023.

[17] M. Shoaib Khan, A. K. Khan, F. Khan, M. Adnan Khan,

and T. K. Whangbo, “Critical Challenges to Adopt

DevOps Culture in Software Organizations: A Systematic

Review,” IEEE Access, pp. 14339–14349, 2022.

[18] P. Perera, R. Silva, and I. Perera, “Improve Software

Quality through practicing DevOps,” in In Proceedings of

17th International Conference on Advances in ICT for

Emerging Regions (ICTer), 2017, pp. 1–6.

[19] A. Mishra and Z. Otaiwi, “DevOps and software quality:

A Systematic Mapping,” Comput Sci Rev, vol. 38, 2020.

[20] Git, “Learn About the version control system, Git, and

how it works with GitHub,”

https://docs.github.com/en/get-started/using-git/about-git

 Retrieved on 13-02-2024 .

[21] Docker, “Docker: Accelerated Container Application

Development,” https://www.docker.com. Retrieved

13-02-2024.

[22] R. B. Bashari, H. John Batti, and M. Ahmadi, “An

Introduction to Docker and Analysis of its Performance,”

International Journal of Computer Science and Network

Security (IJCSNS), vol. 17, no. 3, pp. 228–235, 2017.

[23] A. M. Potdar, D. G. Narayan, S. Kengond, and M. Moin

Mulla, “Performance Evaluation of Docker Container and

Virtual Machine,” in 3rd International Conference on

Computing and Network Communications, 2020, pp.

1419–1428.

[24] J. Campbell, “Kubernetes Vs Docker,”

https://atlassian.com/microservices/microservices-archite

cture/Kubernetes-vs-docker Accessed on 13-02-2024.

[25] Eshwari H M, Rekha B S, and G. N. Srinivasan, “Hybrid

Cloud Technologies: Dockers, Containers and

Kubernetes,” International Research Journal of

Engineering and Technology (IRJET) , vol. 7, no. 6, pp.

7628–7634, 2020

[26] D. Berstein, “Containers and cloud: from lxc to docker to

kubernetes,” IEEE cloud computing, vol. 1, no. 3, pp.

81–84, 2014.D. Berstein, “Containers and cloud: from lxc

to docker to kubernetes,” IEEE cloud computing, vol. 1,

no. 3, pp. 81–84, 2014.

[27] A. Hermawan and L. M. Parningoton, “The Effect of

DevOps Implementation on Teamwork Quality in

Software Development,” Journal of Information Systems

Engineering and Business Intelligence, vol. 7, no. 1, p.

84, 2021.

[28] D. Lopez-Fernandez, J. Diaz, J. Garcia, J. Perez, and A.

Gonzalez-Prieto, “DevOps team Structure:

Characterization and Implication,” IEEE Transactions on

Software Engineering, vol. 48, no. 10, pp. 3716–3736,

2021.

[29] F. Moyon, R. Soares, M. Pinto-Albuquerque, D. Mendez,

and K. Beckers, “Integration of Security standards in

DevOps Pipelines: An Industrial case study,” in In

Proceedings of 21st International Conference, PROFES,

Turin, Italy, 2020, pp. 434–452.

[30] A. D. Nagarajan and S. J. Overbeek, “A DevOps

Implementation Framework for Large Agile-based

Financial Organizations,” in OTM Confederated

International Conferences on the Move to meaningful

Internet Systems, 2018, pp. 172–2018.

[31] S. Rafi, W. Yu, M. A. Akbar, S. Mahmood, A. Alsanad,

and A. Gumael, “Readiness Model for DevOps

Implementation in Software Organizations,” Jornal of

Software: Evolution and Process, vol. 33, no. 3, 2020.

[32] N. M. Noorani, A. T. Zamani, M. Alenezi, M. Shameem,

and P. Singh, “Factor Prioritization for Effectively

Implementing DevOps in Software Development

Organizations: A SWOT-AHP Approach,” Axiom MDP,

vol. 11, p. 498, 2022.

[33] M. Zohaib, A. Alsanad, and A. Alhogail, “Prioritizing

DevOps Implementation Guidelines for Sustainable

Software Projects,” IEEE Access, vol. 12, pp.

71109–71130, 2024.

[34] M. Munoz and M. N. Rodriguez, “A Guidance to

Implement or Reinforce a DevOps Approach in

Organizations: A Case study.” Journal of Software:

Evolution and Process, vol. 36, no. 3, p. e2342, 2024

