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ABSTRACT  
  
 In the modern digital world, there is an accumulation of data for every day. Really, the researchers are 
bewildered by the massive influx of data .To manage all these massive data is an open challenge for all the 
researchers in frequent pattern mining. This   paper gives an account of the brief history of earlier works of frequent 
patterns with a detailed description of the core algorithms, highlighting the significant contributions of the different 
algorithms putforth by different authors. A comprehensive survey of most influential algorithms of literature has 
been explained and compared with them in the horizontal and vertical data layouts. It covers the main aspects of 
earlier works of Frequent Pattern Mining, which include a) pros/cons of the existing algorithms b) performance of 
the prior algorithms and memory space and c) Visualization of the existing algorithms. 
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1. INTRODUCTION  

 
Over a couple of decades, the modern computing technology has significantly influenced our day-to-day 

practical lives and has the direct consequences in Business Data Processing and Scientific Computing. Modern 
Information and communication technology is capable of collecting and generating large amounts of data that need 
to be analyzed to become useful or profitable. As hardware costs go down, data owners constantly seek the 
betterment of usage of data mining tools to extract useful knowledge and patterns from the data. In fact, these 
amounts quickly become too large for immediate human understanding, leading to a situation in which “We are 
drowning in data, but starved for Knowledge”. 

The goal in data mining is to analyze these large amounts of data and discover patterns, rules, and trends 
that are useful for decision support. It is also called as Knowledge Discovery in Databases (KDD).It was first coined 
by Gregory Piatetsky-Shapiro in 1989 to describe the process of finding interesting, interpreted, useful and novel 
data [26]. The Berry and Linoff in 2000 defined the data mining as the process of exploration and analysis, by 
automatic or semi-automatic means, of large quantities of data in order to discover meaningful patterns and rules. 
Data mining is an effective and efficient tool for discovery. By mining, the hidden patterns are seen behind the data 
more accurately, more systematically and more efficiently. However, it is the data miner’s responsibility to 
distinguish the gold from the dust. Data mining is the process of posing various queries and extracting useful 
information, patterns and trends often previously unknown from large quantities of data possibly stored in databases. 
There are two tasks of data mining: Descriptive mining and Predictive mining. Descriptive mining focuses on 
finding human – interpretable patterns describing the data. Prediction involves using some variables or fields in the 
database to predict unknown or future values of other variables of interest. 
 
1.1   FREQUENT PATTERN MINING (FPM) 

 
       An active research area in data mining is the efficient discovery of frequent patterns from the large 
databases. Frequent pattern mining is a core research topic in data mining for many past years. Frequent pattern 
mining was first proposed by Agrawal et. al. in the year 1993 for Market Basket Analysis in the form of association 
rule mining. Frequent itemsets play an essential role in many data mining tasks that try to find interesting patterns 
from databases, such as association rules, correlations, sequences, episodes, classifiers, clusters and many more of 
which the mining of association rules is one of the most popular problems.[1,2] The original motivation for 
searching association rules came from the need to analyze so called supermarket transaction data, that is, to examine 
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customer behavior in terms of the purchased products. Frequent patterns are itemsets or substructures that exist in a 
data set with frequency no less than a user specified threshold.  

The main objective of FPM is to find the frequently occurring items in a large database. Frequent Patterns 
are itemsets, subsequences or substructures appearing in a dataset with frequency. They can be classified as  a) 
Candidate generation algorithms  b) Pattern growth algorithms. Of particularly no order, this could be categorized 
into several forms and they are as follows; a) Data Structures b)Traversal Strategy i.e Breadth First Strategy (BFS) 
or Depth first strategy(DFS) [21].Mining frequent patterns is to discover the groups of items appearing always 
together in excess of a user specified threshold. A transaction database consists of a set of transactions. A transaction 
is a set of items purchased by a customer at the same time. A transaction t contains an itemset X if every item in X is 
in t. A transaction database is a collection of sets of items (transactions). A set of items is called an itemset. The 
number of items in an itemset is called the length of an itemset. An itemset of length k is called a k-itemset and a 
frequent itemset of length k a frequent k-itemset [6,12]. A frequent pattern or a frequent itemset is an itemset whose 
support is no less than a certain user-specified minimum support threshold.  
The following table 1 supports evidence for generating frequent itemsets ; it is necessary to calculate from the 
following formula such as    2n -1 
 

Table 1: Generation of Frequent Pattern Mining 
 

Items Frequent  Patterns Description 
5 (25 -1 ) = 31 If there are only 5 items ,   31 frequent patterns are generated 

10 1023 If there are only 10 items ,  1023 frequent patterns are  generated 

100 1.2676 * 1030 If there are only 100 items , 1.2676 *  1030 frequent patterns  are generated 
 

 
1.2 ASSOCIATION RULE MINING (ARM) 
Association rule mining searches for interesting relationships among items in a given dataset. The discovery of 
interesting association relationships among huge amounts of business transaction records can help in many 
business decision making processes such as catalog design, cross-marketing and loss-leader analysis. ARM must be 
emphasized to find out the association rules that satisfy the predefined minimum support and confidence from a 
given database. The support for an itemset is defined as the ratio of the total number of transactions which contain 
the itemset to the total number of transactions in the database [5,8,23]. The support count for an itemset is the total 
number of transactions which contain the itemset.  
Support and confidence are two key measures for association rule mining.  
                        Support (A=>B) = P (AUB) 

                                                    Confidence (A=>B) = P (B/A) 

 The typical example of association rule mining is Market Basket Analysis. This process analyzes customer buying 
habits by finding associations between the different items that customers place in their “shopping baskets”. 

1.2.1  TASKS OF ASSOCIATION RULE MINING 
 

The task of ARM is to find all strong association rules that satisfy a minimum support threshold (min sup) and a 
minimum confidence threshold (min conf).  
Mining association rules consists of two phases.  

 In the first phase, all frequent itemsets that satisfy the minimum support are found.  
 In the second phase, strong association rules are generated from the frequent itemsets found in the first 

phase.  
The performance for large databases is most influenced by the combinatorial explosion of the number of possible 
frequent itemsets that must be considered and also by the number of database scans that have to be performed. 
The number of possible association rule mining (ARs), given a number of products or items d, is too large, # rules 
AR(d) = 3d - 2 d+1 +1. The table 2 gives supporting evidence for the rules of mining sets, for instance, the random 
variables have been chosen as an example; 
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Table 2: Rules for Association Rule Mining  
 

# Items # Rules Explanation 
5 180  (35 – 25+1 +1) If there are only 5 items in the transaction database, it needs 180 

rules  to be generated.  
10 57002 If there are only 10 items in the transaction database, it needs 57002 

rules  to be generated.   
100 5. 1537752 * 1047  If there are only 100 items in the transaction database, it needs 

 5. 1537752 * 10 47 rules  to be generated 
 
When the number of items increases, the rules of association mining also increase sharply. Current databases pose 
the challenges to store the large amount of data, proliferation, ubiquity and increasing power of computer 
technology, large database size or datasets, and their complexities, but there is a limitation for storing capacity. 
Furthermore, there is always hype when a promising new technology appears. Therefore, the new technology causes 
certain implications in drilling the unwanted data in order to store the necessary data. It is necessary to filter them in 
some way before trying to analyze their usefulness.  
 
2. LITERATURE SURVEY ON FREQUENT PATTERN MINING ALGORITHMS 

 
       Any investigator should be aware of the already existing works. It helps him to identify the key issues 

in the current state of the knowledge. A good literature is traditional and original at the same time. The English 
critic, T.S. Eliot putsforth his view that “The historical sense involves a perception not only of the pastness of the 
past, but of its present”[9]. It helps the researcher to gain the background knowledge of the research topic, to 
identify the concepts relating to it, to identify the relevant methodology and to learn and identify the data sources 
and their structure of the reports. Many literatures have been dedicated to this research field and tremendous 
progress has been made in this direction. With over a decade of substantial and fruitful research, it is time to perform 
an overview of this flourishing field and examine what more to be done in order to turn this technology a 
cornerstone approach in data mining applications [18] .Enormous existing algorithms have been developed in regard 
to scalability, time and space requirement for handling massive collection of databases. Numerous algorithms focus 
their attention on performance i.e. Runtime execution and memory perceptions. 

The brief history of the research algorithms of the Frequent Pattern Mining in Horizontal and Vertical Data 
Layouts has been discussed in this section. The following table 3 provides the key information on the literature 
survey.  

Table -3. Comparative Analysis of the different existing algorithms 
 

S.No. First Author’s 
Name Algorithms Data Structure/ 

Layout 
Search 

Direction 
Year of 

Publications 

1 Agrawal APRIORI Hash tree (Horizontal) BFS 1993 

2 Shenoy VIPER Vertical BFS 2000 

3 Zaki ECLAT Vertical DFS 2000 

4 Han FP-Growth Prefix tree (Horizontal) DFS 2000 
5 Burdick MAFIA Vertical BFS 2001 

6 YabuXu PP-Mine Prefix tree  
(Horizontal) 

DFS 2002 

7 El-Hajj COFI Prefix tree (Horizontal) DFS 2003 
8 Zaki DIFFSET Vertical BFS 2003 
9 Song TM Vertical DFS 2006 

10 Show-Jane Yen TFP Prefix tree (Horizontal) Hybrid 2009 

11 Show-Jane Yen SSR Horizontal DFS 2012 
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The data structures used play an important role in the performance of FIM algorithms. The various data 
structures used by FIM algorithms can be categorized as either candidate generation or pattern growth method. 
The majority of classic algorithms are candidate generation, where candidate itemsets are constructed and then 
validated. Pattern growth techniques, however, eliminate the need for candidate generation by constructing 
complex hyper structures that contain representations of the itemsets within the dataset. 

The very first algorithm was AIS (Agrawal, Imielinski, and Swami) algorithm. It was proposed to 
address the problem of association rule mining. This is a multi-pass algorithm in which candidate itemsets are 
generated while scanning the database by extending known-frequent itemsets with items from each transaction. 
The main problem of the AIS algorithm is that it generates too many candidates, there is no clear specification 
of data structures for maintaining frequent and candidate item sets , consumes more  memory space and  multi-
passes over the whole database.   

Agrawal and his colleagues modified the algorithm and renamed it as Apriori in which a prior 
knowledge about frequent itemset was used. The Apriori algorithm is one of the classical algorithms in the 
association rule mining. It uses simple steps to discover frequent itemsets. An interesting downward closure 
property, called Apriori, among frequent k itemsets: A k-itemset is frequent only if all of its sub-itemsets are 
frequent. This implies that frequent itemsets can be mined by first scanning the database to find the frequent 1-
itemsets, then using the frequent 1-itemsets to generate candidate frequent 2-itemsets and check against the 
database to obtain the frequent 2-itemsets. This process iterates until no more frequent k- itemsets can be 
generated for some k. This is the essence of the Apriori algorithm .The prior knowledge is that if an itemset is 
not frequent, then all of its supersets can never be frequent [2]. The main characteristics of this algorithm are 
Iterative level wise search, Breadth –First search, downward closure property. 

There are two bottlenecks of the Apriori algorithm such as (1) generating a huge number of candidate 
sets and (2) repeatedly multiple scanning of the database and checking the candidates by pattern matching. 
Based on Apriori algorithm, many new algorithms were designed with some modifications or improvements 
such as AprioriTid (1994) algorithm which uses an encoding scheme for calculating the support of candidate 
itemsets after the first pass. It saves much time and occupies minimal amount of space. 

Apriori Hybrid (1994), SetM (Set Oriented Mining of association rules) (1993), DHP (Direct Hashing 
and Pruning, 2001) by Park, Partition algorithm, Sampling algorithm, CARMA (Continuous Association Rule 
Mining algorithm, 1995) by Hidber (compute large itemsets online), DIC (1997) algorithm (prefix tree 
datastructure)-these algorithms are the further improvement of Apriori algorithm and reduce the number of 
database scans. These algorithms swallow time for calculating the supports for a large number of candidate 
itemsets for every pass. Pincer-Search algorithm (1998) by Lin et.al reduces the number of scans by traversing 
through top down search as well as bottom-up manner at the same time. Max Miner (1998) by Bayardo is an 
efficient algorithm for pruning based on look aheads to quickly narrow the search for finding maximal 
elements. This algorithm uses set enumeration tree to discover all frequent itemsets and utilizes breadth-first 
traversal of the search space. 

Shenoy  (2000) proposed an algorithm called VIPER (Vertical Itemset Partitioning for Efficient Rule-
extraction); this vertical mining algorithm stores the data in compressed bit-vectors called “snakes” and 
integrates a number of novel optimizations for efficient snake generation, DAG based on snake intersection, 
counting and storage which perform in VIPER. A multipass algorithm outperforms the horizontal mining 
algorithm called Apriori. VIPER uses the vertical tid-vector (VTV) format for representating an item’s 
occurrence in the tuples of the database [25].This algorithm also introduces techniques to minimize the number 
and size of Snakes required and also deletes all Snakes created in previous scans that are no longer required for 
future computation.Zaki introduced a different approach called as Eclat (2000) of intersection of transaction 
ids (TID’s) in vertical database representation for finding frequent patterns by a depth-first search [38]. Depth 
Project (2000) by Ramesh finds long itemsets, using a depth first search of a lexicographic tree of itemsets, and 
uses a counting method based on transaction projections of bitmaps to improve performance. 

Han introduced an efficient algorithm called FP-Growth (2000 & 2004) which constructs a frequent 
pattern tree structure called FP-Tree [18, 19, 20]. FP-Tree frequent pattern mining is another milestone in the 
development of association rule mining, which breaks the main bottlenecks of the Apriori. The frequent 
itemsets are generated with only two passes over the database and without any candidate generation process. 
FP-tree is an extended prefix-tree structure storing crucial, quantitative information about frequent patterns. 
Only frequent length-1 items will have nodes in the tree, and the tree nodes are arranged in such a way that 
more frequently occurring nodes will have better chances of sharing nodes than less frequently occurring ones. 
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The efficiency of FP-Tree algorithm accounts for three reasons. First the FP-Tree is a compressed 
representation of the original database because only those frequent items are used to construct the tree; the 
other irrelevant information is pruned. Secondly this algorithm only scans the database twice. Thirdly, FP-Tree 
uses a divide and conquer method that considerably reduced the size of the subsequent conditional FP-Tree. 
The major drawbacks of FPgrowth algorithm [Sotiris Kotsiantis 2006] are as follows: Though FP-Trees have 
the reduction in size, the recursive constructing times of sub-trees could be more in number ; it results in not 
fitting the main memory. During the interactive mining process, users may change the threshold of support 
according to the rules[30]. However  , for FP-Tree the change of support may lead to repetition of the whole 
mining process. Any incorporation of new datasets in the existing database leads to the repetition of whole 
process, and poses another limitation in incremental mining process. The main problem in FP-tree is that the 
construction of the frequent pattern tree is a time consuming activity. Further, FP-tree based approaches do not 
offer flexibility and reusability of computation during mining process. 

PAPG [Primitive Association Pattern Generation, 2001] by Yen et. al. constructs an association graph 
and scans the database once for recording the related information. It traverses the association graph for 
generating the frequent itemsets. It takes a lot of execution time, memory space for performing intersections 
and records the related information. MAFIA (2001) by Burdick et. al. uses vertical bit-vectors for fast itemset 
counting .Mafia uses a number of pruning methodologies to remove non-maximal itemsets such as;  

i) look-ahead pruning,  
ii) to check if a new set is subsumed by an existing maximal set and,  
iii) if t(X) subset t(Y).  

This algorithm mines a superset of the MFI, and requires a post-pruning step to eliminate non-
maximal patterns [4]. The most time-consuming step involves the conversion of database into vertical bit-
vectors format. PP-Mine (Xu et. al., 2002) finds all the frequent itemsets through a coded prefix-path (PP-tree) 
which has a node-link-free tree structure[33]. It constructs a large number of sub-header tables recursively. It 
takes a lot of time to search from the sub-header-tables when push-right and push-down operations occur 
PatriciaMine (Pietracaprina et. al., 2003) employs a compressed PatriciaMine trie (rooted and labelled tree) to 
store the data sets. This algorithm is a modification of a regular trie in which maximal chains of nodes that 
have a common count (support), are coalesced into a single node that inherits the count and stores the items in 
the same sequence. A trie consists of maximal chains connected to a single edge where chain is the directed 
path of all inner nodes having only one child. It consumes less memory if the trie contains many chains. 
Otherwise, it needs more memory, because the labels are represented by vectors. To address the issues which 
are faced in FP-Growth algorithm, Grahne developed a FP-Growth* in the year 2003.It uses an additional 
array-based structure to reduce the number of tree traversals required during analysis. This array-based 
structure saves on general traversal times a FP-Trees.  

Later on, Zaki (2003) introduced a novel vertical data representation called Diffset that only keeps 
track of differences in the tids of a candidate pattern from its generating frequent patterns. This algorithm 
drastically cuts down the size of memory required to store intermediate results and intersection operations can 
be performed faster.  It outperforms better than Viper and Apriori algorithm [22]. DynGrowth (2003) 
algorithm proposed by Gyorodi with modification of the original structures of FP-Growth, replaces the single 
linked list with a doubly linked list for linking the tree nodes to the header and adding a master-table to the 
same header. COFI-Co-Occurrence Frequent Item Tree algorithm introduced by El-Hajj (2003) is based on the 
core idea of the FP-Growth. It constructs tree for each frequent item, and generates candidate itemsets and 
counts their supports from the sub-trees. It avoids recursively generating many sub-trees which are faced in 
FP-Growth [10] . 

 An efficient algorithm as PRICES (2004) was proposed by Chuan Wang for association rule mining. 
This algorithm scans the database only once and logical operations are used for that purpose. Chuan proved 
that this algorithm would perform much better than the traditional algorithm. A different approach for 
generating large frequent candidate items algorithm is called as Matrix algorithm by Yuan et al (2005). The 
algorithm generates a matrix and the value must be 1 or 0 by passing over the cruel database only once, and 
then the frequent candidate sets are obtained from the resulting matrix. Finally association rules are mined 
from the frequent candidate sets.  

GenMax (2005) by Gouda and Zaki uses diffset, progressive focusing to perform maximality checking 
of itemsets .This algorithm is based on backward search for finding maximal frequent itemsets [13]. In the year 
2006, DCI-Closed algorithm was proposed by Lucchese et. al. with the bitmap representation of the data set. 
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For reducing the redundant computations, the author used the previous computed intersections; the basic 
operations such as closures, support counts can be performed and duplicate detections are intersections of 
bitwise tid lists. It outperforms the rest of the algorithms such as Closet+ and FP-Close algorithms. 

In the year 2006, Song et al. introduced Transaction Mapping(TM) algorithm which deals with a 
novel approach that maps and compresses the transaction id list of each itemset into an interval list using a 
transaction tree and counts the support of each itemset by intersecting these interval lists [29]. The frequent 
itemsets are found in a depth–first order along the lexicographic tree which employs vertical database 
representation. Nittaya (2007) devised a different approach for executing frequent pattern mining 
implementation in Haskell language with a functional paradigm in a conciseness manner. Calders proposed an 
algorithm called XMiner in the year 2007 with new measures for itemsets and association rules, to be used in 
incomplete databases. It is also used to frequent itemsets in databases with missing values [6]. H-Mine (2004) 
by Jian Pei explores a hyper-structure mining of frequent patterns. It uses array-based and trie-based data 
structures to deal with sparse and dense data set respectively [17]. 
 Borgelt proposed an algorithm called Relim (Recursive Elimination) and SAM (Split and Merge) 
algorithm(2009) which computes a conditional database recursively and finally eliminates the split item from 
the original (conditional) database. Relim employs depth –first/divide and conquer scheme. SAM algorithm is 
an improved version of the Relim algorithm, both of which distinguish themselves from other algorithms for 
frequent item set mining by their simple processing scheme and data structure[5] .TFP (mining frequent 
patterns by Traversing Frequent Pattern tree) algorithm introduced by Yen  2009 constructs an FP-tree without 
a header table and item-links and applies merging techniques on the tree after generating all the frequent 
itemsets for a specific item.TFP can dramatically condense the kernel memory space and reduce the search 
space without losing any frequent patterns. The drawback of TFP is time-consuming for sub-tree merging and 
needs to search for all the children of this merged node to find out which children need to be merged [34]. 

Ke-Chung Lin proposed IFP-growth (improved FP-growth) algorithm to improve the performance of 
FP-growth in the year 2011. There are three major features of IFP-growth. First, it employs an address-table 
structure to lower the complexity of forming the entire FP-tree. Second, it uses a new structure called FP-tree+ 
to reduce the need for building conditional FP-trees recursively. Third, by using address-table and FP-tree+ , 
the proposed  algorithm has less memory requirement and better performance in comparison with FP-tree 
based algorithms. He also proved his algorithm needs only little memory space during the mining process and 
also suitable for high performance applications. 

Show-Jane Yen(2012) introduced an SSR algorithm which combines the advantages of FP-Growth 
and Apriori algorithm .It generates a small set of candidates in batch from the sub-tree and results can be 
presented with the comparative analysis of search time and storage space. She proved her algorithm reduced 
the search time and storage space in an efficient manner when compared with the existing algorithms PPMine, 
COFI and TFP algorithms [36, 37]. Worth to mention here, the two bottlenecks in the SSR algorithm are as 
follows: 

 A lot of time has been consumed for creating item-prefix pattern base 
 A small set of candidates has been generated every time. 

 
Hsiao-Wei Hu (2013) discussed a different approach of frequent pattern mining in Cloud-Based 

Environment. Cloud-shaped symbol as an abstraction for the complex infrastructure it contains in system 
diagrams. Cloud computing entrusts remote services with a user's data, software and computation. They 
discussed the key factors such as a) how to reduce CPU time (2) how to reduce data transmissions rate and (3) 
how to improve data privacy (security). They also suggested the way of reducing the fare of frequent pattern 
mining both cost and time in cloud environment [15]. 

Gwangbum Pyun  proposed a new algorithm , LP-tree (Linear Prefix – Tree) ; it is composed of array 
forms and minimizes pointers between nodes in the year 2014.This algorithm requires  minimum information 
required in mining process and linearly accesses corresponding nodes. This results in less usage of memory for 
building trees  and needs less time for traverse in a linear structure[15]. He proved his experimental results that 
his approach outperforms previous algorithms in terms of the runtime, memory and scalability. 
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3. VISUALIZATION OF EXECUTION TIMES AND MEMORY USAGE OF THE EXISTING  
ALGORITHMS: 
 
 The following table 4 and Fig. 5 show a clear idea about the results of the different authors and their 
execution times for mining the frequent itemsets from large databases. This analysis   gives a greater scope for 
the authors to find frequent itemsets in large databases.  
  
3.1 PERFORMANCE EMPHASIS ON EXECUTION TIMES FOR THE DIFFERENT ALGORITHMS 
It has pictorial representation of different algorithms for frequent pattern mining. It contains the detailed 
information about threshold value, average transaction size, execution times of the different algorithms and the 
year of publication of the algorithms.  
 

Table 4: Execution times of different Horizontal Data Layout Algorithms 
 

Algorithms 
 

        Average 
Transaction Size 

Threshold 
 

Execution 
Time (s) 

 

 
Year 

Apriori 10 1.5 5.3 1993 

SETM 5 1 19 1993 

Apriori TID 20 1.5 100 1994 

Apriori Hybrid 10 0.75 7.5 1994 

FPGROWTH 20 3 20.936 2000 

PP-Mine 10 1.18 11.437 2002 

COFI 20 3.11 12.563 2003 

DynGrowth 30 5 8.23 2003 

PRICES 10 5 150 2004 

TFP 20 3 2.797 2006 

SSR 10 1 1.766 2012 
 
Figure1 depicts the graphical representation of the runtime execution of different algorithms in 

horizontal data layout. The X-axis represents algorithms and y-axis represents the execution times of the 
corresponding algorithms. 

 
Figure 1: Performance Execution Graph for the different horizontal layout Algorithms with runtime. 
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Table 5: Visualization of Execution times of the Existing Vertical Data Layout Algorithms- Performance 

Emphasis 
 

Algorithms Average Transaction Size Threshold Execution 
Time (%s) Year 

MAXMINER 30 1.2 8 
1998 

 
`VIPER 10 1.5 100 

2000 

ECLAT 40 1.4 90 
2000 

MAFIA 10 0.14 9 
2001 

DECLAT 40 1.4 15 
2001 

CHARM 30 1 12 
2002 

DIFFSET 20 0.1 31 
2003 

GENMAX 40 1.5 40 
2005 

TM 25 2 1.109 
2006 

 

 
 
Performance Execution Graph for the different Vertical Layout of Algorithms with runtime. 
 

The Table 5 and Figure 2 show the execution times of the different algorithms in vertical data layout. The 
X-axis represents algorithms and Y-axis represents the memory usage of each algorithm. 

 
 

Figure 2. Graphical Representation of Execution Times of the Existing Algorithms. 
 
 

 

0
10
20
30
40
50
60
70
80
90

100

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Algorithms

Execution Times of the Existing Algorithms - Vertical



A.Meenakshi,  International Journal of  Advances in Computer Science and Technology, 4(4), April  2015, 48-58 

56 
 

3.2 Memory Usage of the Existing Algorithms 
 

The following table 6 and Fig. 3 show a clear idea about the results of the different authors and their 
memory usage of their algorithms for mining the frequent itemsets from large databases. 

 
 

Table 6: Memory Usage of the Existing Algorithms 
 

Algorithms Average Transaction 
Size Threshold Memory Size (MB) Year 

FPGROWTH 20 3 75 
2000 

PP-Mine 10 3.11 60 
2002 

TFP 20 3 15 

2006 

SSR 10 1 0.5 
2012 

 
 

Figure 3  Visualization of Memory Space of Existing Algorithms for Vertical Layout. 
 
 

 
 
 
CONCLUSION 
 

Most of the previously proposed methods adopted Apriori like candidate-generation, frequent pattern-tree 
approach, test approaches, prolific and/or long patterns. The discovered patterns suffer from the serious challenges 
such as generalized share-prefix items, hypes/uncertainties in incorporating new algorithms, low support 
thresholds/large data sets leading to repeated scans, and a large number of frequent itemsets in recursive sub-trees 
work either in horizontal or vertical layouts. In this paper, a brief discussion about the existing algorithms of 
frequent pattern mining in both data layouts such as horizontal and vertical is attempted . Also a comparative 
analysis is given based on the performance of each algorithm and memory space occupied by the different 
algorithms is presented in a graphical manner. 
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