
 Noshab Gul, International Journal of Advances in Computer Science and Technology, 4(8), August 2015, 141 - 144

141

ABSTRACT

Efficient parallel computing techniques can make the
solution of computationally challenging optimization
problems traceable. Optimization problems from varied
disciplines can be solved more efficiently through parallel and
distributed computing. Optimization of Ultimate Pit Limit
(UPL) determination is an important problem of mining
engineering. We used a parallel and distributed computing
architecture based on Python Remote Objects and Python
Optimization Modelling Objects (PyRO-PyOMO), for UPL
determination problem. The results show that exploiting
parallelism help in achieving 70 % speedup in computation
time on various mining datasets. We find that the
programming effort associated with efficient parallelization
of optimal ultimate pit limit determination using
PyRO-PyOMO architecture is highly non-trivial. A similar
parallel computing model can be used for the various
mathematical models and optimization methods used to solve
other optimization problems as well.

Key words : Parallel computing, optimization, mining,
Python Remote Objects (PyRO).

1. INTRODUCTION

Mining is about extraction of minerals from the surface of
earth, economically and safely. Open pit mining is one of the
surface mining methods, where a big excavation is made to
extract the minerals [1]. Open pit mine is an inverted stepped
cone like structure. Normally, the valuable minerals known as
ore are surrounded by a non-valuable host rock known as
waste. Some portion of the waste is also removed in order to
access the ore and make the open pit stable.

Determination of the optimum UPL of the mine is a
fundamental problem in open pit design. To maximize the
difference between total extraction cost of the ore/waste and
the extracted ore, the determination of the optimal pit contour
is important. For evaluation of the economic potential of the
mineral deposit the necessary information is provided by the
determination of optimal pit contour [1].

An open pit is designed in such a way that the profits are
maximized, resulting excavation is stable and health, safety

and environmental standards are ensured [2]. This will result
in an efficient design for extraction of minerals in the form of
defining optimal UPL. Optimal UPL determination problem
can be solved using mathematical modelling and
optimization techniques. Mathematical modelling
formulation of UPL determination is represented as follows,
using the notions where:

V = Set of all blocks that can be mined.
A = Set of pairs (i, j) of blocks such that block j is a
neighboring block to i that must be removed before block i
can be mined.
ci = Cost of mining and processing block i.
ri = Revenue obtained from block i.
pi = Profit obtained by mining and processing block i

(i.e., pi = ri − ci).

Mathematical optimization model for UPL determination, i.e.
maximizing the total profit, is therefore given by [3]:

subject to

Heavy mathematical calculations and large data sets are
involved in optimal UPL determination problems. This
results in long computational time using a single computer.
Therefore, these problems are computationally challenging
and efficient parallel and distributed computing techniques
can make its solution traceable. Parallel or distributed
computing is feasible to solve this problem by reducing the
time needed to obtain the solution. Because, computational
performance can be boosted substantially by splitting the
workload between cores and (or) processors.

Various open pit optimization algorithms have been
reviewed. Many researchers have solved this problem by
applying their own optimization techniques. Existing
optimization are also applied to solve UPL problem. However
instead of all the previous research, scholars are still in search
of superior models, algorithms, and efficient computational
strategies.

Using Parallel and Distributed Computing Paradigm for Optimization
of Ultimate Pit Limit Determination

Noshab Gul, Hammad Ali Zai
Department of Computer Systems Engineering, University of Engineering and Technology Peshawar, Pakistan

cse.noshab@gmail.com

 ISSN 2320 - 2602
Volume 4 No.8, August 2015

International Journal of Advances in Computer Science and Technology
Available Online at http://www.warse.org/IJACST/static/pdf/file/ijacst01482015.pdf

 Noshab Gul, International Journal of Advances in Computer Science and Technology, 4(8), August 2015, 141 - 144

142

2. PARALLEL COMPUTING PARADIGM FOR
ULTIMATE PIT LIMIT DETERMINATION

A parallel computing based software architectures is proposed
for optimal ultimate pit limit determination. The proposed
architecture is based on PyRO-PyOMO. Flowchart showing
the methodology adopted in undertaking this research
endeavour, presented in Figure 1.

General mathematical models for optimal UPL determination
are developed in an open source Python based software
package i.e. Common Optimization Python Repository
(COOPR). PyOMO is a part of COOPR package. PyOMO’s
modelling objects are embedded within python with a rich set
of supporting libraries. PyOMO is used to define abstract
models for optimal UPL determination, create concrete
instances of UPL mathematical models and solve those
instances with standard solvers.

COOPR provides an interface that supports parallel solver
execution and distributed optimization. Multiple UPL models
are solved concurrently in parallel on a single machine, over a
cluster and over NEOS (Network enabled optimization
server). NEOS is used as it provides an interface to solve UPL
models on remote resources.

2.1 PyRO- PyOMO Based Software
COOPR supports distributed computing via one of its
components and Python package named PyRO. COOPR
includes a flexible framework for applying optimizers to
analyze PyOMO models [4].

Figure 1: Flowsheet of PyRO-PyOMO architecture

Cooper includes two components that manage the execution
of optimization solvers. Solver performs optimization while
solver manager i.e. PyRO, supports parallel execution of
solvers. This architecture support parallel and distributed
execution of multiple UPL models

Through solver parallelization this algorithm significantly
reduces solution time for problem containing millions of
blocks. This software model works through two ways:

1. Creating and using a client and multiple solvers in
parallel on a single, multi-core compute server

2. Distributed solves under PyRO, over clusters or
remote NEOS resources

3. RESULTS AND DISSCUSSION

MineLib datasets are used to generate mathematical models
of multiple scenarios and instances. MineLib 2011 includes a
library of publicly available test problem instances for UPL
problem. The data comes from real-world mining projects
and simulated data [5]. Abstract and Concrete modelling
techniques are used to model and solve optimal UPL
determination problem in python. These abstract and concrete
models are defined through PyOMO. These problem
instances are solved through multiple open source solvers like
GLPK and CBC etc. Initially the problem was solved using
sequential solution strategy, on a local multi-core machine.
Comparison of computational time of using CBC solver on
local and remote machine i.e. NEOS server is presented in
Table 1, 2 and 3. Similarly graphs of these results are
presented in Figures 2 - 5.

Table 1: Comparison of Computational Time and Process Time
Ratio of CBC Solver Running Locally and Remotely On NEOS

Server

S. #

Dataset Details Computational Time (Seconds)

Name of
Dataset

Sequential /
Local

Remote /
Distributed

Process
Time Ratio

1 newman1 1.38 1.87 0.74

2 sm2 70.16 1.79 39

3 zuck_small 119.33 3.00 40

4 Kd 234.37 2.33 101

5 Marvin 214.87 2.89 74

6 p4hd 5,621 25.50 220

7 w23 6,945 86.38 80

8 zuck_large 10,290 77.57 133

9 zuck_medium 12,766 104.47 122

 Average 4,029 34 90

 Noshab Gul, International Journal of Advances in Computer Science and Technology, 4(8), August 2015, 141 - 144

143

Figure 2: Graph of Process Time Ratio between CBC Sequential

and CBC NEOS Server

Table 2: Comparison of Computational Time and Process Time
Ratios of Using CBC Solver and Sequential and Parallel Models,
Solving Multiple Instances of UPL Problem

S. # Dataset Details
Computational Time of 3 Instances (Seconds)

Sequential /
Local

Remote /
Distributed

Process
Time Ratio

1 newman1 3.49 1.69 2.06

2 sm2 284 123 2.31

3 zuck_small 302 162 1.86

4 Kd 628 323 1.95

5 Marvin 844 346 2.44

6 p4hd 6,658 3,512 1.90

7 w23 16,216 9,227 1.76

8 zuck_large 21,108 9,218 2.29

9 zuck_medium 27,432 13,567 2.02

 Average 8,164 4,053 2.07

Table 3: Log of Computational Time of Using CBC Solver and
Sequential and Parallel Model, Solving Multiple Instances of UPL
Problem

S. # Name Log (PyRO – Multiple Instances)

1 newman1 2.06

2 sm2 2.31

3 zuck_small 1.86

4 Kd 1.95

5 Marvin 2.44

6 p4hd 1.90

7 w23 1.76

8 zuck_large 2.29

9 zuck_medium 2.02

 Average 2.07

Figure 3: Graph of Log of Computational Time of Running Multiple

Instances

Figure 4: Graph of Log of Computational Time of 8 MineLib
Datasets Excluding Newman1 and Running Multiple Instances

Figure 5: Graph of Process Time Ratio of Sequential and Parallel

Software Models

These results indicate very clearly that distributed computing
is helpful in solving such problems on remote powerful
machines, more efficiently. Using 9 MineLib data set for
solving optimal determination of UPL problem on local

 Noshab Gul, International Journal of Advances in Computer Science and Technology, 4(8), August 2015, 141 - 144

144

machine using cbc solver, is on average 90 times more time
consuming as compared to solve them on remote machine i.e.
NEOS in our case using cbc solver. Variation in
computational time fluctuates considerably between 1.38 to
12,677.

These results indicate that Pyro-Pyomo based parallel
computing model for solving optimal UPL determination
problem are on average 2.07 times computationally more
efficient as compared to the sequential solution of multiple
instance.

4. CONCLUSIONS AND RECOMMENDATIONS

Computationally challenging ultimate pit limit determination
problem can be made traceable through parallel computing
and programming. Efficient parallel computing and
programming techniques enables the efficient use of
hardware resources of multi-core processors and high
performance graphical processing units (GPUs). Therefore, a
parallel computing software model was developed for
mathematical modeling and optimization of UPL problem.

The proposed system is based on fundamental concepts of
parallel and distributed computing, that enable the execution
of solver processes on distinct cores of single work station,
across multiple workstations and provide a flexible
mechanism for communication among them. Major
contributions of this research endeavor are:
 Python based parallel and distributed programming system

have shown an improvement in computational time for
solving ultimate pit limit determination problem relating
open pit mine planning and design optimization.

 Compared to other parallel and distributed programming
systems, the proposed systems are integrated with the
dynamically-typed scripting python language and are
relatively simple in implementation and usage.

 It has the ability to be used as a prototyping tool for new
mathematical modeling and optimization models.

 Execution models of parallel programming if managed
properly can give much better results, as for as time
complexity reduction is concerned in mine planning and
design optimization problems.

The strands of work initiated and presented, can be extended
and a future investigation is proposed in the following
domains:
 This work is based on the implementation of software

architecture which provides high level parallelism.
However, low level parallelism (task level parallelism)
can be incorporated using other efficient open source
mathematical modeling and optimization tool kits like
SCIP.

REFERENCES
1. Laurich, R.. Planning and design of surface mines. B.

kennedy ed. Surface Mining, Chapter 5.2. Port City
Press, Baltimore. Pp 465-469. 1990.

2. Peter Kwagyan Achireko. Application of Modified
conditional simulation and artificial neural networks
to open pit optimization. Chapter 1 Thesis, 1-2. 1998.

3. Henry Amankwah. Mathematical Optimization
Models for Open-Pit Mining. PhD Thesis. Linköping
University Sweden. 2011.

4. Daniel Espinoza. Marcos Goycoolea. Eduardo Moreno.
Alexandra Newman. MineLib: a library of open pit
mining problems. Ann Oper Res. 206:93–114 DOI
10.1007/s10479-012-1258-3. 2013.

5. Alexandra M. Newman, Enrique Rubio, Rodrigo Caro,
Andres Weintraub, Kelly Eurek. A review of
operations research in mine planning. DOI
10.1287/inte 1090.0492 INFORMS. 2010.

