
ISSN 2320 – 2602
International Journal of Advances in Computer Science and Technology (IJACST), Vol. 3 No.2, Pages : 19 – 22 (2014)
Special Issue of ICCSIE 2014 - Held during February 16, 2014,Bangalore, India

19

Time Reduction Approach within Service Oriented Architecture(SOA)
Framework Provide Status Report of The Service To Client

Ranaditya Haldar
CSIR-Central Mechanical Engineering

Research Institute
West Bengal,India
Durgapur-713209
+91-9051368379

sunshine.rana@gmail.com

 Sandip Rakshit
Kaziranga University
NH-37,jorhat-785006

Assam,India
+91-9830781273

rakshitsandip@yahoo.com

ABSTRACT

In recent times , the use of Service Oriented Architecture (SOA)
is becoming increasingly popular as the reliable architectural
system, for developing a dynamic enterprise system, for ensuring
the high quality of service aspect such as availability, reliability,
security etc.In this paper we explore the issue of service
availability for getting services within an SOA framework from
the client side. We propose an algorithm within an SOA
framework to ensure uninterrupted service availability, that is if
any fault occurs during the period of processing of the service
request. By providing a STATUS report, service requester can be
automatically aware of the current status of the service. For our
work, to establish the proposed algorithm, we are considering
different processes as Semantic analyzer, Segregator, Send,
Dynamic service composer, and one repository named Work
details repository. These processes and one repository together
are responsible for generating STATUS signal. And based on the
status signal, service requester can control and make a decision
the next step, according to his or her requirement.

KEYWORDS

Service oriented architecture (SOA),Dynamic service composer,
Work details repository, Quality of service (QoS).

1. INTRODUCTION
Service-Oriented Architectures (SOA) provides a flexible and
dynamic platform to implement open environments and
distributed enterprise system. Its dynamism and loose coupling
allow for automated service publication and discovery at run-
time. In an SOA, services are self-described [1]. It means that
along with each service there is a service description which
defines its features. These descriptions are kept in a component
called “service discovery” or “service registry”. Service
requesters, depending on specific requirements, find a service in
the service
Registry then binds to the service for execution. Due to the
increasing need of high quality services in SOA, it is desirable to
consider different Quality of Service (QoS) aspects of this
architecture as security, availability, reliability, fault tolerance,
etc. especially to develop critical dependable systems. In these
systems, the occurrence of any fault is undesirable.

In this paper we find out a problem when a service requester
initiates request within an SOA framework to get a service, it is
impossible for a service requester to know which servers are
responsible for providing that service and if the fault occur,
during the time of processing the request, it is difficult for a
service requester to know the status of the request.

2. DEFINITION

There are various definitions exists about service with different
viewpoints [2, 3, 4]. We summarize characteristics of a service as
follows: service is an action or operation directed by a service
actor (a provider or requestor). Service is a marketing service in
the sense of applying the marketing process: service
advertisement, service discovery, and service engagement.
Service is developed, deployed and invoked within a certain
technical environment (e.g. Operating systems and component
standards). Service communicates with the environment through
its own interfaces, which encapsulate with clear specifications of
what the service requires and provides. Service resides on IP (e.g
Internet –Protocol) capable devices; it can be remotely accessed
and invoked via Web-accessible terminals. A service can be used
for application composition and service composition. Application
composition is an abstract process of composing service
descriptions. The composed application only becomes concrete at
run time [5]. Composed applications do not provide interfaces for
other services. In this sense, a composed application is volatile
and cannot be deployed over the Internet, which means the
composition information between elementary services will be
lost after the application executes. In contrast, a service
composition has the same process as the application composition,
but the composed service provides interfaces for other services
and applications, which can be deployed over the Internet. The
composite service will be stored and registered with the
composition information (i.e. Service dependency) between
elementary services for further service composition. The person
who manages the service composition is called service composer.
Service dependency is beyond traditional poor service
description, and directed by various sources, such as data,
resource, procedure control, utilizing techniques, etc.
Dependency-aware service management stresses on a complete
service description. Elementary service is a service that does not
have a service dependency with other services. In contrast,
composite service is compossed of elementary services, which
has at least a kind of service dependency with other services.

ISSN 2320 – 2602
International Journal of Advances in Computer Science and Technology (IJACST), Vol. 3 No.2, Pages : 19 – 22 (2014)
Special Issue of ICCSIE 2014 - Held during February 16, 2014,Bangalore, India

20

3. SOA FRAMEWORK TIME REDUCTION
 APPROACH

3.1 PROPOSED WORK
We are considering a SOA framework with only 3

levels shown in Figure 1. 1st level of this model consists Client,
2nd level consists L1_server and 3rd level consists multiple
number of servers named L2_server #1, L2_server #2, L2_server
#3.

In our work, we are trying to ensure that if fault occurs,
during the time of processing service requester’s request within
SOA framework, then requester receives the present status of
that request, by which client can make a further decision.

Figure 1. Considering SOA framework

3.2 JOBS OF DIFFERENT LAYERS

3.2.1 JOB OF SERVICE REQUESTER

1. Service Requester will initiate the request and wait for
 the reply.

3.2.2 JOBS OF L1_SERVER
1. Receives the request from Client and segregates the
 request.
2. Sends the segregated request to corresponding

 L2_servers.
3. Composes all reply, which comes from L2_servers and
 send as a service to client.

3.2.3 JOBS OF L2_SERVER
 1. Accepts the request from L1_server.
 2. Processes the request.
 3. Send the reply to L1_server.

3.3 PROCESSES AND RESOURCES NEED TO
 PERFORM THE JOB

(a) For job no 1 of L1_server(Receive the request from
client and segregates the request)

 Required processes are
Semantic analyzer: This process helps to analyze the composite
request semantically, comes from service requester.

Segregator:- Based on the output of semantic analyzer and with
the help of “Work_details_repository” segregator process
segregates the composite request, in the form of piece meal of
request.

Required resource is
Work_details_repository:- This repository keeps record about
which L2_server processes what type of request. Diagrammatic
view of processes and resources for job no 1 of L1_server has
shown in Figure 2.

 Request Semantically analyzed request

 Figure 2. Diagrammatic view of processes and resource

(b) For job no ii of L1_server “(Sends the segregated
request to L2_servers)”

Required Processes is
Send process: Send process will send each segregated request to
the corresponding L2_server.

Required resource is
Work_details_repository:- This repository keeps record about
which L2_server processes what kind of request. Diagrammatic
view of processes and resources for job no 2 of L1_server has
shown in Figure 3.

 Segregated request

 request sent to L2_server

 Figure 3. Diagrammatic view of process and resource

(a) For job no 3 of L1_server “(Composes all reply,
which comes from L2_servers and send as a service
to client)”

Required Processes are
Dynamic service composer:- The task of this process is to
dynamically compose all reply, which are coming from different
L2_servers.

Service
Requester

L1_server
L2_ server #1

L2_ server #2

L2_ server #3

Semantic
analyzer

Segregator

work_details_
repository

Send Process

work_details_repo
sitory

ISSN 2320 – 2602
International Journal of Advances in Computer Science and Technology (IJACST), Vol. 3 No.2, Pages : 19 – 22 (2014)
Special Issue of ICCSIE 2014 - Held during February 16, 2014,Bangalore, India

21

Send Process:- Send process will send the composed reply to
client as a service. Diagrammatic view of this process for job 3
of L1_server has shown in Figure 4.

 Reply from L2_server#1

 Reply from L2 server#2

 Reply from L2 server#3 Reply sent to requester

 Figure 4. Diagrammatic view of processes

(d) For job no 1 of L2_server“(Accepts the request from
L1_server)”
Required Process:
No process is required.

(e) For job no 2 of L2_server “(Processes the request)” No
process is required.

f) For job no 3 of L2_server“(Sends the reply to L1_server)”
Required process is
Send Process:- Send process will send the reply of a request, to
L1_server. Diagrammatic view of this process for job 3 of
L2_server has shown in Figure 5.

 Reply of request

 Sent request to L1_server

 Figure 5. Diagrammatic view of processes

4. PROPOSED ALGORITHM
Begin
1. Client sends the request to L1_server.
2. L1_server segregates the request.
3. L1_server searches “work_details_repository” to find

corresponding L2_server for processing segregated
requests.

4. L1_server searches “time_repository” for
corresponding L2_server which has already identified
by searching “work_details_repository” to find out the
time requires to process the request.

5. If L1_server finds out the time duration for L2_server
likes T1 for L2_server#1, T2 for L2_server#2,T3 for
L2_server#3 and these hold T1>T2>T3 then L1_server
assigns T3 time duration with each segregated request
and send them to corresponding 3rd level L2_server.

6. Monitoring mechanism of L2_server will accept the
request, and read corresponding attached time duration
of each request,

7. Request will enter into the job queue of the system, for
 allocation to the processor of L2_server.

8. Reply of the corresponding request goes from 3rd level
 servers(L2_server) to L1_server through monitoring
 mechanism.

 9. IF (monitoring mechanism finds out that reply of a
particular request is not sent to L1_server within the
time duration of that request)

9.1. Monitoring mechanism of that particular 3rd

level
 server(L2_server) will create a high priority

 process which initiates a STATUS signal
consists
 current state of that process

9.2. STATUS signal will sent to L1_server and
L1_server will further forward this signal to
Client.

9.3. Client will make the decision whether to wait for

 the service or reject the service.

10. END IF

11. ELSE
12. After receiving all reply from all L2_servers, L1_server will
compose the service and send to Client.

End

5. LIMITATIONS OF OUR PROPOSED
 APPROACH

i). Network Failure:
If any network failure is occurred in any Levels of server,
according to our proposed method client does not get any
information of initiated service.

ii). Monitoring mechanism fails to work:
If monitoring mechanism in any 3rd level servers(L2_server) does
not work according to our proposed work, then service requester
does not receive any message from that corresponding L2_server.

Dynamic
service

composer Send
process

Send process

ISSN 2320 – 2602
International Journal of Advances in Computer Science and Technology (IJACST), Vol. 3 No.2, Pages : 19 – 22 (2014)
Special Issue of ICCSIE 2014 - Held during February 16, 2014,Bangalore, India

22

iii). Server crashes at 3rd level(L2_server):
If single server or multiple servers crash at 3rd level(L2_server),
according to our proposed approach service requester will be
unaware about the current state of the service.

6. CONCLUSION
Service-oriented architectures can support applications

with sensitive, personally identifiable information. In such cases
a new challenge is to enhance application functionality and
flexibility with business-process management. Business
processes in heterogeneous, open environments raise new
requirements for proper service availability. In this work, we
suggested a quality enhancement method as a time reduction
approach to be encapsulated inside web service running for SOA
framework. This proposed algorithm is totally based on our
proposed SOA framework and to be implemented by web service
related technologies like Web Service Description Language,
Simple Object Access Protocol etc.

Future work will be based on robustness of the this
proposed algorithm. Our approach is likely to be a solution for
service availability that fits well into existing solutions of
business-process-management systems.

REFERENCES

[1] Baresi L., Heckel R., Thöne S. and Varró D.: Style- Based

Modeling and Refinement of Service-Oriented Architectures: A Graph
Transformation-Based Approach, Journal of Software and System
Modeling, vol. 5, 187-207, (2006)

[2] "OSGi Service Platform Specifications Release 4," http :
//osgi.org/osgi_technology/download_specs.as p? section =2#Release4,
4 May, 2007.

[3] J. Zhou and E. Niemela, "Beyond developmentoriented software
engineering: Service-OrientedSoftware Engineering (SOSE)," in
Service- Oriented Software System Engineering: Challenges and
Practices, Z. Stojanovic and A. Dahanayake,
Eds. Hershey, USA: IDEA Group Publishing,2005, pp. 27-47.

[4] M. Fowler, "Inversion of Control Containers and the Dependency
Injection pattern," http://martinfowler.com/articles
/injection.html#ConstructorVersusSetterInjection, 4 May, 2007.
[5] Dependency Management in a Service-Oriented Component Model,"

Proceeding of the 6th International Workshop on Component-Based
Software Engineering - (CBSE), Portland, USA, 2003.

