
ISSN 2320 – 2602
International Journal of Advances in Computer Science and Technology (IJACST), Vol. 3 No.2, Pages : 12 – 18 (2014)
Special Issue of ICCSIE 2014 - Held during February 16, 2014,Bangalore, India

12

Abstract : Relational Database Management Systems
(RDMBS) are a predominant technology used for storing
and retrieving structured data in web and business
applications since 1980. However, relational databases
have started losing its importance due to strict schema
reliance and costly infrastructure. It has conjointly led to
the problem in upgrade relationships between objects.
Another important issue of failure is the brobdingnagian
growth of BigData. A new database model called NoSQL,
plays a vital role in BigData analytics. In this paper one of
the NoSQL graph database’s particularly Neo4j have been
explored. Neo4j, is a reliable graph database which can be
scalable to any application. It handles billions of nodes
and relationships in a connected structure. Querying in
Neo4j is administrated through graph traversals and
aggregate operations. Another technique called
Multidimenstional indexing was incorporated to speed up
query process. Multidimenstional indexing search and
insert algorithms have been analyzed and a new Skip list
indexing is steered. Multiple skip lists with replication
factor of three was incorporated that gave a Skip graph
like structure. Analysis have been made and found that
Skip list resulted in better performance compared to
Multidimenstional indexing.

Key words : Neo4j graph, Multidimensional
Indexing, Skip List.

INTRODUCTION
Background
Graph database is the most shared data structures

which have the potential to graciously represent data
[1]. Neo4j is an open source commercially supported
graph database implemented in Java. It has been
designed to be a reliable database which offer a disk
based, completely optimized for storing graph
structures with high performance and scalability. It
stores information in the form of nodes in a graph
where each node represents records of data. Each of
these records have properties. A node can have single
property later which can grow to millions. Nodes share
these properties with other nodes. At certain point it

needs to distribute the information into multiple nodes
that is organized with explicit relationships. These
relationships can cluster the nodes to a richly
interconnected structure of a table. Each of these
relationships could also have properties. All the
properties and relationships of each node should be
clearly listed before cluster process. This clustering
process groups nodes into sets, where each set is
assigned the most appropriate label. Labels help during
graph traversal for query processing.

Motivation

Fig. 1: Neo4j Graph Database Structure

Neo4j graph database which is illustrated in Figure 1

has the flexibility to manage graphs and its connected
index. Query process identifies the order of nodes it has
to identify for the query response. It navigates the trail
of traversal in the graph. Building an index could boost
performance potency during query traversal. An Index
helps to map from node relationships to node properties
or vice versa. Index lookup the simplest path to be
navigated for quick query response. The database is
queried through Cypher Query Language. Cypher
query traversal navigates from starting node to related
nodes finding quick responses with the assistance of
multidimenstional index.

An Efficient Index based Query handling model for Neo4j
Anita Brigit Mathew1, S. D. Madhu Kumar2

1NIT Calicut, India, anita_brigit@rediffmail.com

2NIT Calicut, India, madhu@nitc.ac.in

ISSN 2320 – 2602
International Journal of Advances in Computer Science and Technology (IJACST), Vol. 3 No.2, Pages : 12 – 18 (2014)
Special Issue of ICCSIE 2014 - Held during February 16, 2014,Bangalore, India

13

Multidimenstional index helps to traverse nodes in an
exceedingly consecutive manner until the most accurate
node was obtained for the query input. It gave a
structured procedure for the unstructured set of nodes.
It was found to provide a better response compared to
random access procedure on unstructured data.
However with associate explosive growth of social
data, it has become more demanding to access data at a
faster phase. Extreme growth of billions of nodes in
social networking, web graphs and knowledge based
networks would thus make Multidimenstional index
query response performance degradation. Hence it was
very much required to develop a much more faster
query response index structure. Therefore Skiplist
indexing in Skip graph was considered with a
replication factor of three.

Neo4j is absolutely powerful when you need to solve
issues that demand recurrent probing throughout the
network [2]. Compared to traditional databases, during
search it does not repeatedly evoke for row column
information. In distinction the traditional databases
require separate query for each step of search. Here
Neo4j graph database is looked into with the available
lookup tables of relationships and properties. Study on
the Multidimenstional index structure model[3] have
been made, its drawbacks and limitations are clearly
listed in Section 3. Search and insert algorithms,
implementation details and snapshots taken of the
present model would be clearly illustrated in Section 4
of this paper. A new Neo4j graph database model with
skip list index structure for search and insert operations
is recommended with specific illustration algorithms in
Section 5. The new model permits faster performance
throughout query process. Section 6 talks concerning
how analysis is made based on the comparison between
search and insert algorithms modeled. Finally Section 7
discuss about the conclusion. Some preliminary ideas
for the study of Neo4j graph database is discussed in
Section 2.

PRELIMINARY CONCEPTS
Definition 1. Graph A graph G with n vertices and m

edges consists of a vertex set V (G) = {v1 , v2 . . . vn }
and an edge set E(G) = {e1 , e2 . . . em }, where each
edge consists of two distinct vertices called the end
points of the edge [4].

Definition 2. Subgraph A subgraph of a graph G is a
graph H such that V (H) ⊆ ⊆ V (G) and E(H) E(G)
[4].

Definition 3. Path Given a Graph G[V, E], two
vertices v1, v2 ∈ ∈ V (G) are adjacent when (v1, v2)

E(G). A path in an undirected graph is a sequence of
vertices P =(v1 , v2 , . . . , vn) ∈ V n for some positive
integer n such that vi is adjacent to vi+1 for 1 ≤ i ≤ n
and vi = vj whenever i = j [4].

Neo4j MULTIDIMENSTIONAL INDEX
STRUCTURE

Neo4j exclusively deals with optimized graph
structure data, consisting of nodes with meta data
information and edge links between nodes [2]. This
graph model consists of multidimenstional index
technique for query processing. This index framework
interacts with the back end storage service that has the
base tables stored and provides an economical data
retrieval interface for faster query processing
applications. The main tables of Neo4j constitute
specifically Node, Relation and Property as illustrated
in Figure 2. Nodes are entities, where each entity has its
own property and specify relation with other nodes.
Each node is labeled, this label helps to cluster nodes
by role of every node and property. Relationships
connect entities and structure the node domain model.
Properties of each node clearly establish the attributes
related to that node and the meta data the node process.

Fig. 2: Table format of Neo4j

Pros of Neo4j are:

 Neo4j database is a highly agile and blazing
fast in performance compared to other graph
data models of NoSQL databases.

 Developers phrase Neo4j as relationship based,
disk based, fully transactional and
documentation persistent storage engine [5].

 This powerful data model is good in cases
involving deep searching through the networks
with the help of multidimenstional indexing.

 It is the most popular graph database for
networked operations and runs faster than
relational databases.

Cons of Neo4j are:
 Searching for a particular data node with a

particular attribute is difficult because it has to
traverse through multiple tables.

 Implementing a project requires fore thought,
good design work and better planning.

ISSN 2320 – 2602
International Journal of Advances in Computer Science and Technology (IJACST), Vol. 3 No.2, Pages : 12 – 18 (2014)
Special Issue of ICCSIE 2014 - Held during February 16, 2014,Bangalore, India

14

 IMPLEMENTATION DETAILS OF Neo4J
MULTIDIMENSTIONAL INDEX
 To implement we first collected data from a near by
Multi-speciality hospital. The data was taken for a
period of time starting from 1st May 2001 to 29th
November 2013. It was collected for the department of
paediatrics for age group starting from new born
infants till 16 years of both male and female sex. Other
departments like neonatology, pediatric surgery,
microbiology and pathology was also referred and all
related data to pediatrics was collected along with
details of doctors referred. Nodes represented the
associated properties like patient records, departments
referred and doctors consulted. Edges represented the
relationships and the corresponding properties. Java
language is used to program and structure the nodes,
properties and relation in the form of tables. Neo4j
database uses a key-value store of each node, keys
indicate hospital number for each patient and value
indicate the name of the patient. This unique key is
considered as a primary key to relate the property table
 and relation table of the corresponding node.

1 CREATE

(nname : key, mapp, mapr)
creation of new pa-
tient node

2 CREATE (n) − [r
: BELON GS T O]− > (m)

patient n belongs to
doctor m, r relation

3 START n = node(key) Start from node with
specified key value.

4 START n = node :
nodeIndexName (key
 =value)

Query the index with
node auto index
(Multidimenstional
Index).

5 MATCH (n) − − > (m)

Maps the patient n
with doctor m

6 ORDER BY n.property

Sort the result

7 RETURN DISTINCT n

Return unique rows

Table 1: Some Cypher Commands Used

Cypher Query Language
 The node or nodes to be fetched is queried using
Cypher query language version 1.9 in Neo4j. Cypher
language starts with START command and terminates
when a RETURN command is fetched. START binds
terms using sample lookup directly using known key
and index property. Cypher uses MATCH command to
find replicated nodes. Lookup helps to traverse nodes
match relationships specified on the edge label of the
graph. Table 1 lists some of the frequently used

commands to built the Neo4j medical record database
for pediatrics department.
 The pediatrics record database is created using the
following steps,

1. Create new graph database service with
Embedded Graph Database command

2. Begin new Transaction Service
3. Create node list N
4. For each node v_i where i in 1 to N do
5. Assign unique key to v_ i.flag
6. Set Property list P
7. Insert each v_i flag and P list to Index Table
8. Set Relation list R
9. Create v_i using createRelationship()
10. Insert each v_i flag and R list to Index Table
11. Insert v_i into Embedded Graph Database
12. Transaction finish

 Consider a query: “pediatric patients posted for
surgery on 2nd November 2013”. Such a query is likely
to traverse the record network graph starting from the
key associated with 2nd November 2013 node. If one
node found then next node (data item) is being fetched.
This is a spatially continuous process till all
relationships, properties related to the particular node
obtained. This semantic locality exposed by graph
traversal is based on breadth first search technique used
in Neo4j [6]. Inorder to enhance this process Neo4j has
suggested simple key-value stores, where an order
function on a key serves as a hint to arrange data in an
exceedingly table or index. This table or index
arrangement of nodes suggested by Neo4j is called
Multidimenstional Index. Algorithm for
Multidimenstional insert and search index is elaborated
within the next subsection.

Insert and Search in Neo4j Multidimenstional
Index

Algorithm 1: Insert in Multidimenstional index
strcuture
Input: Insert value to GraphDatabase Factory
1. Is GraphDatabase Factory empty
2. then Set GraphDatabase configuration settings as
node_key_index, node_property, node_property_value
for each node and set relation key_index, rel_prop,
rel_prop value for each relationship.
3. Initially assign node_property, node _index_value,
node_property_value, rel_prop and rel_prop_value as

.
4. Set node_auto_index and relation_auto_index as
true.
5. if Transaction graphDB = empty
6. then node = graphDB_createnode.

ISSN 2320 – 2602
International Journal of Advances in Computer Science and Technology (IJACST), Vol. 3 No.2, Pages : 12 – 18 (2014)
Special Issue of ICCSIE 2014 - Held during February 16, 2014,Bangalore, India

15

7. node.setProperty (node_property, node_property_
value)
8. while(index_counter! =)
9. Set node, node_property, node_property_value index
structure.
10. while(node _index <= index_ size)
11. then Set node, node_index_value, relation_key_
index, rel_prop, rel_prop_value index structure.
12. Increement node_ index
13. end while
14. Increement index_counter
15. end while
16. else Increement Transaction graphDB counter
17. return index, counter
 Algorithm 1 illustrates how insert operations are
carried out in Neo4j graph database. First it talks
concerning insert procedure. In the insert phase it
checks for whether the GraphDatabaseFactory is empty
or not, if the answer results in a true statement then it
will set the node, property and relation tables and link
with distinctive flag which is the key to retrieve all the
tables. Initially node is created using create command.
Node is then assigned properties it process with other
nodes related to it. Note that the property of node have
to be clearly justified with correct semantics of property
structure. The node Vi can be related to other nodes of
the node list V. Hence relationships of node should be
framed using relationships syntax table structure. One
node can have more than one relation. Each relation can
have different properties, therefore each of these
properties should also be indexed in table.
 If the GraphDatabaseFactory is not empty, then
increment the counter till reach the end of N node list
and insert the new node by setting the above menstioned
scenario of node, property and relationship. This new
node can share properties of existing nodes then map
function can be used by MATCH function in Neo4j and
an share the property flag value. Similarly this can be
carried out for relations also.

Algorithm 2: Search in Multidimenstional Index
Structure
Input: Search node_value
1. while(node_ value! = node)
2. while(autoNode_ index <= index counter)
3. if autoNode _index=node _value
4. then get node auto_index and node_ property
5. get relation_auto_index and relation_property
6. return node_auto_index, relation_auto_index
7. else next autoNode_ index
8. end while
9. end while
10. check if node_value = node

11. then goto step5
 Algorithm 2 talks in case of search operation the
node index is checked with the inputed node value.
Once the required node is found, then the corresponding
node’s property and relation index is checked through
and the required data is retrieved using Cypher Query
Language.

START n = node f lag
MATCH n − [: BELON G T O] − − > dr X
WITH n, count(dr X) as patientcount
RETURN n, patientcount

Fig. 3: Example of Medical Record Graph

Example in Figure 3 illustrates the relationship
between patient P1 , doctor’s X and Y and department
of pathology and microbiology. Here the number of
nodes N= 5. Node1 is a patient P1 with key= 616780,
this node belongs to (have relationship consults) with
two nodes namely node2(doctor X) and node3 (doctor
Y). Node3 also have relationship (referred to) with
node4(pathology) and node5(microbiology). Illustration
details at each node indicates the property associated
with that node. Edges are labeled with relationships
between nodes.
Implementation Snapshots

Figure 4 shows how index is constructed in Neo4j
2.0.0. First node index is created. Then as second
process for each node f lag key, property and
relationship index is built. Property and relationship
tables are connected with unique flag key acting as
primary key. Figure 5 gives a diagramatic network view
in Neo4j 2.0.0.
 Here each node v_i where i range from 1 to V is
labelled
with integer attribute. Each edge is labelled with string
attribute. When node v_i created immediately the index
for
property and relationships is asked for and set at the
console
 panel. Neoclipse panel helps to update the node
relations
 and properties as the network size increases with new
patient
 members, doctors and staff.

ISSN 2320 – 2602
International Journal of Advances in Computer Science and Technology (IJACST), Vol. 3 No.2, Pages : 12 – 18 (2014)
Special Issue of ICCSIE 2014 - Held during February 16, 2014,Bangalore, India

16

Fig. 4: Index Creation in Neo4j

Fig. 5: Graph Network Obtained in Neo4j 2.0.0.

LIMITATIONS OF MULTIDIMENSTIONAL
FRAMEWORK
 Graph databases, such as the industry leading Neo4j,
provide extremely quick access to the types of complex
data found in social and science-medicine network
systems. Even though they have the ability to push the
limits of memory usage in order to meet the
performance needs of customers. There are few
limitations in its structured frame work. With the use of
multidimenstional index structure the performance of
Neo4j in query processing is not striking. Some of the
issues undergone are illustrated below.

1. When a query is posted it has to get the node
and f lag key.

2. With the f lag key it has to search the property
and relationship table index to get details.

3. Traversal from one table to another takes more
time complexity.

If there was an efficient methodology to retrieve query
with better time complexity than multiple tables was
appreciable. Hence Skip lists was suggested and a skip
graph was modelled. Analysis was made and it was
found that Skip lists performed better responses
compared to multidimenstional index structure.

SKIP LIST INDEX
 Skip List is an interesting data structure that provide
the full functionality of a balanced tree where resources
are stored in separate nodes [7]. These are designed to
be used in search operations in peer-to-peer networks.
They also provide the power to perform queries based

on key ordering. This organization makes random
selections in arranging the entries in such a way that
search and update times are only O(1ogn) on the
average.

Algorithm 3 : Search for node with searchKey
Input: Given query to search for record name(node)
1. Start from the initial header pointer
2. if (v_i.key = searchKey)
3. then return (v_i, lookup)
4. Assign lookup to join pointer
5. if (v_i.key < searchKey)
6. then while level ≥ 0
7. do
8. if ((v_i.neighbor[R][level].key ≤ searchKey)
9. then return (v_i, lookup)
10. Assign lookup to v.neighbor[R][level]
11. break
12. else level ← level − 1
13. else while level ≥ 0
14. do
15. if ((v_i.neighbor[L][level]).key ≥ searchKey)
16. then return (v_i, lookup)
17. Assign lookup to v_i.neighbor[L][level]
18. break
19. else level ← level − 1
20. if (level < 0)
21. then return (v i, lookup)
22. Set lookup to join pointer

The Algorithm 3 illustrates how modified Skip List
search datastructure works in Neo4j graph database.
The input to search is given as a pediatric patient
record name. This record name has an unique key value
attribute to denote the node data holds. Hence this key
value stored as flag in node structure v_i of graph
G(V,E) is taken as input to search in the node skip list.
This flag is compared with search input. Search starts
from header pointer, it checks whether flag(v_i) equals
the searchKey input then its lookup is returned. This
returned value is assigned to join pointer. If the
comparison result was no, then the traversal takes back
to all levels till it reach the level0. The node v_i’s
successor and predecessor is denoted by
v_i.neighbor[R][] and v_i.neighbor[L][] respectively.
If the comparison results true, then the result from
comparison is captured by lookup. There after lookup
is assigned to join pointer. This comparison takes
continues till the appropriate record name (search
input) found. Similarly the same flag is used as input to
property and relationship skip list. Finally the result is
captured by join pointer. Analysis of the algorithm is
carried out and found the search operation in a skip list

ISSN 2320 – 2602
International Journal of Advances in Computer Science and Technology (IJACST), Vol. 3 No.2, Pages : 12 – 18 (2014)
Special Issue of ICCSIE 2014 - Held during February 16, 2014,Bangalore, India

17

takes O(logn) time for computation. Next insert
operation in Neo4j using SkipList is investigated.

Algorithm 4 : Insert for node with searchKey
Input: New node u to be inserted with key flag
1 Set header_pointer ← level
2 v_i ← header_pointer
3 Call Search for node with searchkey
4 u1 ← join_pinter
5 if v i < u < v i + 1 and level ≥ 0
6 while true do
7 Insert u in list at level l starting from v i
8 Scan backwards at level l to find v_i’s such
9 that no node process same flag
10 if no such v_i’s exists then exit
11 else v_i ← v_i+1
12 l ← l + 1
 The Algorithm 4 illustrates insert operation in Neo4j
graph database using skip list. Suppose a new node say
’u’ have to be inserted to G(V,E) structure of Neo4j
then,

1. Node u starts the search from v_i taken as
header pointer. Node v_i is chosen by taking
the topmost level’s first node in the list. Here i
ranges from 1 to V of the node list.

2. Skip list search Algorithm 3 is called and
neighbouring node is obtained. This obtained
result is compared at Step 5 of Algorithm 4 and
node u is inserted.

3. After insertion it checks whether any other node
process same flag if the result is true, then a
pointer is addressed to the location. If the result
is false, then level gets incremented.

 Analysis of the algorithm was carried out and found
the insert operation using skip list took around O(log n)
time for computation.

ANALYSIS
 The search operation in a Neo4j graph database
using skip list with V nodes that is v_i where i range
from 1 to V takes O(log n) completion time for search
and insert of a given node in its average case, and O(n)
completion time for search and insert of a given node in
its worst case .
Proof. Let ∑ denote the number of nodes in the skip
list S, and u be the destination node to be searched from
V nodes. From which position should the start begin is
an issue. A search for a destination node begins from a
randomly selected pinnacle node v_i within the Skip list
S. It takes horizontal steps till the node is larger than or
adequate to the destination node. From the above
mentioned Skip List Algorithm 3 of search operation,
we saw if the node is adequate to the destination, then it

has been found. If the node is larger than the
destination, or the search reaches the termination of list,
the procedure is recurrent and moves to succeeding
lower list. The number of steps expected in each one of
the linked list is at the most 1/v of V. This could be
seen clearly by tracing the search path backwards from
the destination till reaching a node that seems within the
next higher list or reaching the start of the list. Hence to
conclude the overall expected cost of search is O(logn).
 Similarly in case of insert operation each 2h -th node,
where h = 1, . . . ceil (log n) , includes a reference to
2h nodes ahead. For instance each 2nd node has a link
to 2 nodes ahead; every 8th node has a link to 8 nodes
ahead, etc. The header node is not smaller than the
largest node on the list. If the Skip List contained 32
nodes and considering search and insert operation in it.
Operating down from the highest level, initially we
encountered node 16 and have cut the search in half 1/v
of total nodes ∑ of V. We continued to search again,
one level down in either the left or right half of the
linked list, again reducing the remaining search in half.
We continue this procedure till the destination node u
obtained or not. This is quite similar to binary search in
an array and is perhaps the effective way to perceive
why the utmost range of nodes visited in the linked list
is in O(logn) for search and then insert[4].
 For most of the queries, the algorithm suggested runs
in O(log n) time as average case time computation. In
case when all the nodes are level one at search and
insert operations then the time computation of Skip lists
is O(n). This has been considered as the worst case time
of computation.
 For finding all node attributes namely property and
relationship in an interval, we can modify search by
assigning a join coordinator. This coordinator is
capable of processing query process simultaneously and
perform a encapsulation operation on responses this
will only take O(logn) + O(logn)+O(logn) = 3 ×
O(logn) time which is again constant times O(logn). Let
the constant be denoted as k hence it will take O(klogn)
as average case and O(kn) as worst case when all node
attributes like property and relationship are at level one
of Skip list.
 Similar to search operation the insert operation in
Neo4j graph database using Skip List can perform
within a time computation of 0(klogn) as average case
and O(kn) as worst case.
 Analysis of the Multidimensional index can be
categorized based on the following parameters.
Input Data: Input here is a node key value attribute
which is checked with the node table. The node table
gives the key to the node to be searched. This acts a
unique key to property and relationship table.

ISSN 2320 – 2602
International Journal of Advances in Computer Science and Technology (IJACST), Vol. 3 No.2, Pages : 12 – 18 (2014)
Special Issue of ICCSIE 2014 - Held during February 16, 2014,Bangalore, India

18

Number of Dimensions: The number dimensions here
depends on the three tables namely Node, Property and
Relation. The number of attributes of Node, Property
and Relation are 3, 6, 9 respectively. Based on these
three tables the entire pediatric patient record is placed
in Neo4j. Each of these three tables have three replicas
linked with pointer key attributes in order to provide
fast recovery during failure. Hence we can conclude the
time taken is
(3 × V + 3 × 6 × V + 3 × 9 × V)3 = O(3 × m × V)3
which is approximately O(mV)3 where m is the cross
product of vectors from node, property and relationship
tables with 3, 6 and 9 columns respectively. ’V’ denotes
the total of nodes.
Mapping of Results with Dimensions: Map function
uses join pointer’s that cluster each node its
corresponding property and relationships. Here
encapsulation operation is performed and all the null
values are removed. This will take O(n1 × n2) to join
all the table attributes to obtain the resultant query.
Where n1 × n2 denotes the table vector size.
Analysis Test Phase: Here total computation time of
the multidimensional index structure for Neo4j is
computed. This process is a encapsulation of
Dimension and Map operations. Hence it was found it
took a time computation of 0(m × V)3 + 0(n1 × n2)
approximately as worst case.
 Similar to search operation, the insert operation in
Neo4j graph database using Multidimenstional index
can perform within a time complexity of
0(m × V)3 + 0(n1 × n2) where the value of ’V’ gets
incremented by one.

CONCLUSION
 Neo4j graph database plays a significant role in
modeling the web graph administration by google,
social networking sites like Facebook to map friendship
relationships, likes etc. and protein-protein interaction
networks. In this paper we have conferred a
multidimensional index structure for pediatric record
placement in Neo4j graph database. Search and Insert
algorithms were analyzed based on Multidimenstional
index structure and found the time of computation was
0(m × V)3 + 0(n1 × n2) as worst case. Hence a new re
placement model called Skip list index structure was
steered. Skip list resulted in O(logn) time of
computation for search and insert operations in average
case. This is clearly illustrated in the Analysis section.
It was also found it took a worst case computation of
O(n) when all node attributes were at level one of Skip
list. As the popularity of NoSQL database applications
increases, making the BigData to be efficiently
expressed and retrieved using a graphical data structure

makes it more user friendly. As part of future work this
setup could be tested for distributed network
environment with large cluster in each of them. This
helps to evaluate the scalability feature of query
performance.

REFERENCES

[1] I. Robinson, J. Webber, and E. Eifrem, Graph
Databases. O’Reilly Media, 2013.
[2] N. Developers, “Neo4j,” Graph NoSQL Database
[online], 2012.
[3] J. Partner, Neo4j in Action. O’Reilly Media, 2013.
[4] D. B. West et al., Introduction to graph theory, vol.
2. Prentice hall Englewood Cliffs, 2001.
[5] G. Vaish, Getting Started with Nosql. Packt
Publishing, 2013.
[6] M. Pollack, O. Gierke, T. Risberg, J. Brisbin, and
M. Hunger, Spring Data. O’Reilly, 2012.
[7] P. Boldi and S. Vigna, “Compressed perfect
embedded skip lists for quick inverted-index lookups,”
in String Processing and Information Retrieval, pp. 25–
28, Springer, 2005.

