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    Abstract - A new phase of the information society – The 
Internet of things in which the web will not only link computers but 
potentially every object created by mankind. An emerging category 
of devices at the edge of the Internet are consumer centric mobile 
sensing and computing devices, such as  smart phones, music 
players, and in-vehicle sensing devices. These devices will fuel the 
evolution of the Internet of Things as they feed sensor data to the 
Internet at a societal scale. In this paper, we will examine a category 
of applications that we term mobile crowdsensing, where individuals 
with sensing and computing devices collectively share information 
to measure and map phenomena of common interest. . We have 
implemented our Context-Aware Real-time Open Mobile Miner 
(CAROMM) to facilitate data collection from mobile users for 
crowdsensing applications. We will present a brief overview of 
mobile crowdsensing, its applications, research challenges, and 
evaluate CARROM frame work. 
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1. INTRODUCTION 
             The integration of sensing and embedded 

everyday computing devices at the edge of the Internet will 
result in the evolution of an embedded Internet or the 
Internet of Things. 

             An emerging category of edge devices that are 
fueling this evolution are consumer centric mobile sensing 
and computing devices. These include devices such as smart 
phones (iPhone, Google Nexus), music players (iPods), 
sensor embedded gaming systems (Wii, XboX Kinect), and 
in-vehicle sensing devices (GPS, OBD-II). They have 
become extremely popular recently and are potentially 
important sources of sensor data. They are typically equipped 
with various sensing facility and wireless capabilities and are 
connected to the Internet. As an example, a sample list of 
mobile devices and their corresponding sensing capabilities 
are provided in Table I. 

We observe from Table I that these mobile devices 
can be used to measure various individual and community 
phenomena. Individual phenomena are those pertaining to a 
particular device  owner, such as movement patterns (e.g. 
running, walking, climbing stairs), modes of transportation 
(e.g. biking, driving, taking a bus, riding the subway), and 
activities (e.g. using an ATM, visiting a specific store, 
having a conversation, listening to music , and making 
coffee). Community phenomena are those pertaining to the  

 
 

 
aggregate of surroundings and not limited to particular 
individuals. These include pollution (air/noise) levels in a 
neighborhood, real- time traffic patterns, and pot holes on 
roads, road closures, and transit timings. Such large scale, 
community phenomena monitoring is possible when a 
community of individuals share the sensor data they collect 
towards a common goal, usually with certain processing 
involved. 
              Type of community sensing is popularly 

called participatory sensing or opportunistic sensing. 
Participatory sensing is defined as the kind of 
sensing where individuals are actively involved in 
contributing sensor data (e.g. taking a picture, 
reporting a road closure). On the other hand, 
opportunistic sensing is where the sensing is more 
autonomous and user involvement is minimal (e.g. 
continuous location sampling). We consider that, in 
terms of the level of user involvement, community sensing 
spans a wide spectrum, with participatory sensing and 
opportunistic sensing at the two ends of the spectrum. We 
therefore coin the term mobile crowdsensing (MCS) to refer 
to a broad range of community sensing paradigms. Fig 1 
shows us the different outputs of sensor apps used on phone 
which include temperature, humidity, pressure, carbon 
monoxide, etc. The rest of this paper is organized as follows. 
Section 2 discusses mobile crowdsensing applications. 
Section 3 discusses Research challenges. Section 4 explains 
on the move mining for mobile crowdsensing which 
explains CAROMM frame work. 

    Fig 1:  Mobile showing output of 
different sensors 
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                                                         Table I: Sensors on various mobile sensing devices 

Device Inertial Compass GPS Microphone Camera Proximity Light 
iPhone               

Nexus S               
Nokia 6210              
iPod Touch            

Garmin ForeRunner 410           
 

 
2. MOBILE CROWDSENSING APPLICATIONS    
                              In this section, we will briefly discuss 
existing mobile crowdsensing applications, we classify MCS 
applications into three different categories based on the type 
of phenomenon being measured or mapped as discussed in 
MCS: Current state and future challenges [1]. These include 
(i) Environmental, (ii) Infrastructure, and (iii) Social 
Applications. 

                  In environmental MCS applications, the 
phenomena being measured are those of the natural 
environment. Examples of such applications include 
measuring pollution levels in a city, water levels in creeks, 
and monitoring wildlife habitats. Such applications enable 
the mapping of various large scale environmental phenomena 
by involving the common man. An example prototype 
deployment for pollution monitoring is Common Sense [2]. 
Common Sense uses specialized handheld air quality sensing 
devices that communicate with mobile phones (using 
Bluetooth) to measure various air pollutants (e.g.  CO2, 
NOx).  Another example is Creek Watch developed by IBM 
Almaden Research Center. It monitors water levels and 
quality in creeks by aggregating reports from individuals, 
such as pictures taken at various locations along the creek, or 
text messages about the amount of trash.   
                 Another important category is infrastructure 
applications that involve the measurement of large 
scale phenomena related to public infrastructure. 
Examples  include  measuring  traffic  congestion, road 
conditions, parking availability, outages of public 
works (e.g. malfunctioning fire hydrants, broken 
traffic lights), and real-time transit tracking. Early MCS 
deployments measured traffic congestion levels in cities, 
examples of which include MIT’s CarTel [3]. CarTel utilizes 
specialized devices installed in cars to measure the locations 
and speeds of the cars and transmit the measured values using 
public Wi-Fi hotspots to a central server. Another MCS 
example is ParkNet [4], an application that detects available 
parking spots in cities using ultrasonic sensing devices 
installed on cars combined with smart phones. 

         Finally, another category is social applications. As 
an example, individuals can share their exercise data (e.g. 
how much time one exercises in a day) and compare their 
exercise levels with the rest of the community. They can use 
this comparison to help improve their daily exercise 
routines. Example deployments include BikeNet [5]. In 
BikeNet, individual’s measure location and bike route 

quality (e.g. CO2 c on t en t  on route, bumpiness of ride) 
and aggregate the data to obtain “most” bike able routes.   

 
3. RESEARCH CHALLENGES  
  Localized Analytics 

      Fig 2 depicts Research challenges as functional 
components. Mobile devices are equipped with various 
kinds of sensors such as GPS, accelerometer, microphone 
and camera. The OS allows applications to access the 
sensors and extract raw sensing data from them. However, 
depending on the nature of the raw data and the needs of 
applications, the physical readings from sensors may not be 
suitable for the direct consumption of applications.  Many 
times, some local analytics perform certain primitive 
processing on the raw data on the device. They produce some 
intermediate results which are sent to the backend for further 
processing and consumption.           The main challenge in 
local analytics is finding heuristics and designing algorithms 
to achieve the desired function. 
Resource Limitations: Energy, Bandwidth, and 
Computation 

                 Resource constraints in traditional sensor 
networks have been well studied. However, MCS 
applications introduce many new aspects for this challenge 

                  First, the set of devices that are collecting 
sensor data are highly dynamic in availability and 
capabilities. Due to this highly dynamic nature, modeling 
and predicting the energy, bandwidth requirements to 
accomplish a particular task becomes much more difficult 
than in traditional sensor networks. Second, when there are 
a large number of available devices with diverse sensing 
capabilities, identifying and scheduling sensing and 
communication jobs among  them under resource 
constraints  becomes more difficult as well. 

                 Different types of data can be used for the same 
purpose, but with different quality and resource consumption 
trade- offs. How to leverage their differences to improve the 
quality while minimizing resource consumption is a new 
problem. For example, location data can be provided using 
GPS, WiFi, and GSM, with decreasing levels of accuracy. 
Compared to WiFi and GSM, continuous GPS location 
sampling drains the battery much more quickly. 
 The existence of multiple concurrent applications that 
require data of different types also complicates resource 
allocation. A mobile device can be sampling various sensors 
(e.g. GPS, accelerometer, air quality) on behalf of different 
applications. 
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Fig 2: Typical functioning of MCS applications. Raw sensing data is collected on devices and local analytics process it to produce consumable data for 
applications. After privacy preservation, the data is sent to the backend and aggregate analytics will further process it for different applications. 

 
Privacy 

                  An important aspect of MCS applications 
is that they potentially collect sensitive sensor data 
pertaining to individuals. For example, GPS sensor 
readings can be utilized to infer private information 
about the individual, such as the routes they take in 
daily commutes, their home and work locations, and 
so on.  On the other hand, these GPS sensor 
measurements (from daily commutes) shared within 
a larger community can be used to obtain traffic 
congestion levels in a given city. Thus, it is important 
to preserve the privacy of an individual, but at the 
same time enable MCS applications. 

  Aggregate Analytics 
              The local analytics running on mobile 
devices give data about the local area to applications. 
For many applications, they may also need to run 
aggregate analytics at the backend. These analytics 
detect pat- terns in the sensor data from large number 
of mobile devices. These patterns occur in certain 
spatial scope and within some temporal duration; 
they signify the features and characteristics of the 
physical or social environment that are interested by 
the user. 
             For example in public works maintenance. 
Citizens can report problems in public facilities, such 
as broken water pipes, dysfunctional traffic lights. By 
looking  at the  counts  of  complaints,  the  
maintenance personnel can infer to a certain degree 
the scope  and severity  of  the  incident,  and use  that 
information  to help prioritize and schedule their 
repair resources. 
 
4. CONTEXT-AWARE REAL-TIME OPEN MOBILE 

MINER (CAROMM) 
                  Personal sensing combined with social   

networks has given rise to ‘mobile social networks’ where  
 

 
sensed user context information is shared with the user’s 
social network. To the best of our knowledge, using social 
networks/media themselves as a source of information for 
community sensing is an emerging focus in this area. To this 
regard, we propose a framework for mobile crowdsensing, 
Context- Aware Real- time  Open Mobile Miner (CAROMM) 
used in On the move mining [6] ,  to  facilitate  sensor data  
collection  from  mobile  users  and  correlate  this  real- time 
information with social media  data from both Twitter  
(http://twitter.com/) and Facebook (http://facebook.com). 

                          An integral part of a mobile crowdsensing 
framework such as CAROMM is sensing and sending of 
information. There are several key factors that need to be 
considered and addressed in order for mobile crowdsensing to 
be effective. Firstly, it is imperative that the data collection 
process from mobile device is cost- efficient for both the device 
performing the sensing, as well as the networks that need to 
scale for large volumes of users sending sensed data. 
Secondly, mobile crowdsensing needs to have infrastructure to 
receive, manage and analyze large volumes of real-time data 
streams using the pay-per-use cloud computing platforms. 
Thirdly, sensing using mobile devices requires participation 
from the user and  willingness to allow collection  of sensor 
data,  and  hence  use  preferences  and privacy-preserving 
operations  for mobile crowdsensing need to  considered. In 
this context, there need to be incentives in place to facilitate 
such large-scale mobile crowdsensing. For example, an 
incentive of reduced data transfer costs for supporting citizen 
surveillance operations and so on need to be considered.  The 
focus of this s e c t i o n  is on the data collection dimension 
as i t  i s  th e fir st  s tep  for  mobi le crowdsensing. We 
propose and develop a mobile data mining driven approach for 
highly scalable and cost-efficient data collection for mobile 
crowdsensing. We implement our proposed CAROMM 
system to leverage cloud technologies to enable collation and 
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Fig 3 :  The CAROMM Framework 

 
processing of huge amounts of real-time data generated by 
mobile phone sensors, as well as correlation of information 
feeds from social media to specifically support real-time 
queries pertaining to locations of interest. The CAROMM 
system forms the basis for evaluating the feasibility and 
validity of mobile analytics as an effective mechanism for 
supporting large-scale mobile crowdsensing. 

 Caromm Framework 
              Nowadays, everyone carries a mobile device with 
them. Most of these mobile devices come with increasingly 
sophisticated list of sensors that are able to capture various 
context information per tain ing  to th e user  and  their  
environment. Prevalence and wide uptake of social media 
such as Facebook (http://www.facebook.com/) and Twitter 
(http://twitter.com/) and photo sharing sites such as Flickr 
(http://www.flickr.com/) have shown that users are willing 
to share information. Mobile crowdsensing aims to leverage 
these phenomena with a view to del iver ing  r ea l -time 
sensory information to a range of applications such as 
location-based service delivery; location- based social 
networking and citizen surveillance. 

We propose and develop our CAROMM system to support 
the scenario where people use a mobile application to upload 
sensory data to the cloud. The sensory data could have mixed 
input such as multimedia/videos, twitter/social media 
streams, text, activities, location, temperature, time, device 
orientation, speed, and movement of the device. An 
application on  the cloud  processes  this  mixed  data  to  
operate  as  a  real-time location information service. Thus, 
CAROMM supports the provision of collated information to 
users who request for real-time information about specific 
locations of interest. The real-time information delivered 
includes aggregation of sensor feeds from mobile users in 
that location pertaining to physical phenomena  such  as  
light  levels,  temperature,  estimates  of crowd  intensity,  as  
well  videos/photos (and  the  context  in which those photos 
were taken such as day, night), and recent social media posts. 

In this section, we present an overview of the Context 
Aware Real-time Open Mobile Miner (CAROMM) 
framework for enabling mobile crowdsensing applications.  
CAROMM has several features: (i) capture different types of 
stream data from mobile devices, (ii) process, manage and 
analyze this data along with the relevant contextual 

information associated with them (e.g. associate 
light-intensity levels with pictures/videos, and social media 
information pertaining to locations of interest), and (iii) 
facilitate real-time queries from mobile users on the collected 
(and analyzed) data. 

Fig 3 shows the Context Aware Real-time Open Mobile 
Miner (CAROMM) framework. The framework consists of 
three main modules- a Data Collection Client and a 
Querying Client residing on the mobile devices, and a Data 
Processing Module residing on the cloud. The  Data 
collection Module captures  sensory  data,  performs  local  
continuous  real-time stream mining on the data and  uploads 
analyzed information to the Data Processing  Module in the 
cloud where further analysis,  management,  and fusion of the 
incoming multiple streams  needs  to  be  performed. To 
intelligently send only analyzed information from each 
device, we use resource-aware clustering on the sensory data 
to identify significant changes in the situation. The Querying 
Client on mobile devices sends user queries to the Data 
Processing Module and receives and display the results 
obtained.  The Data Processing Module consists of Social 
Media Data Collection and Query Processing.  This module 
aggregates information obtained from all sources (mobile 
devices and social media) to provide contextual information 
in response to the user queries obtained from the Querying 
Client.  The focus of this s e c t i o n  is on leveraging mobile 
data mining for mobile crowdsensing.  

Caromm Data Collection Module 
A. Data Collection Module Architecture 

Here we describe the architecture of the data collection 
module within the CAROMM framework. The data collection 
module of CAROMM addresses the challenges in collecting, 
processing/analyzing and uploading data sensed from 
user environments. Fig 4 depicts the architecture of Data 
collection module. The da ta  collection module has five 
main  compon ents , namely, Interface Controller, Data 
Analysis-Cluster engine, Data Collection Manager, Cloud 
Upload Manager, and Sensor and Media Manager.  The 
data collection module runs on the mobile device interfacing 
with sensors available on the device. The proposed approach 
does not require any additional hardware sensors other than 
sensors available on the mobile device.   Interface Controller: 
This component is the graphical user component presented to 
the user. Data Analysis-Cluster Engine: The data 
an a lysis-cluster engine is the core component of the 
  

 
Fig 4: CAROMM-Data Collection Module Architecture 
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proposed data collection module. It handles all processing and 
analysis of data. The analysis engine performs continual 
mining over the sensed data.  For continual data mining, we 
use the generic open source toolkit for mobile data mining 
(OMM) [7]. We have used the Light Weight Cluster (LWC) 
algorithm as shown in Fig 5, implemented in O M M    toolkit 
t o  perform clustering over sensed data. 
Data  Collection  Manager:  The  data  collection  manager 
acts  as  a  coordinator between the  components  of  the  data 
collection module. It instantiates the various sensors on the 
phone using the sensor manager. It forwards sensed data to 
the analysis engine for on-the-move mining and clustered 
datasets from the analysis engine to the cloud  manager for 
further processing. Cloud  Storage  Manager:  The  cloud  
storage manager is responsible for uploading data to the cloud 
using the mobile device’s network connection. Sensor and 
Media Manager: The sensor manager is responsible for 
interfacing with the device’s sensors. It periodically queries  
the  device’s  sensors  for  data  and  passes  it  to  the data 
collection  manager. The algorithms implemented in the 
proposed data collection module are presented in pseudo code 
format Fig 6. 

 

 
Fig 5: LWC Algorithm [8] 

 

,  
Fig 6 :  Data Collection Module Algorithms 

 
B.  Cost Models for Mobile Data Stream Mining 

               Here we deve l op  co s t  mode l s  for  t wo   data    
collection approaches for mobile crowdsensing: 

1)  Model 1:  all processing in the cloud:  In this mode, the 
mobile devices sense context data periodically and upload to 
the cloud. No processing is done on the device. 

2)  Model  2:  local  mobile  data  analytics  on-board   the 
device:  In  this  mode,  each  mobile  device  performs  
continuous sensing and local data stream mining on the 
collected sensor data and only mined data is  uploaded to the 
cloud. This aims to reduce costs related to energy usage and 
data transmission. 

                    We develop two cost models: a data transmission 
cost model and an energy usage cost model. These cost 
models aim to compare the cost related to the above two data 
collection approaches. Therefore, in these models we do not 
consider the cost associated with mining social media data. 
Social media data is only mined on the cloud. 

Data Transmission Cost Model:  We evaluate the cost of 
Data transmission in terms of consumed bandwidth for 

any time period t. The cost of data transfer is directly 
proportional to the amount of data transferred between the 
mobile device (M) and the cloud (C). 

Costdt  ∝ total data transferred from M to C   (1) 
 
Therefore, the data transmission cost Costdt  can be  

represented as follows: 
 
Costdt  = x * total data transferred from M to C   (2) 
 
where x is a constant. 
•   Model 1: All processing in the cloud: amount of data 

transferred total data transferred from M to C is high as all 
sensed data is uploaded. 

•   Model 2: Local processing on the mobile should result 
in lower total data transferred from M to C, and hence, lower 
data transmission cost. 

Let, Costdtraw be the data transmission cost for 
Model 1 (i.e., using raw data), and Costdtclust    be the 
data transmission cost for Model 2, (i.e., using on-device 
clustering). Then, assuming that for similar devices the 
constant x is same in the case of both raw and clustering 
approaches, the savings on the data transmission cost for 
mobile data mining can be evaluated as 

 
                      Bandwidth Gain = Costdtraw 
                                      Costdtclust 

 

      (total data transferred from M to C)raw 
=     

(total data transferred from M to C)clust                    (3) 

 
Energy Usage Cost Model:  We model the cost of energy 
usage in terms of battery drain for any time period t. Cost

 incurred due to energy drain is composed of drain due  to  sensing, drain due to processing/mining in the device and        
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drain due to data transfer. 
  

Costed = CostedS   + CostedP r + CostedDt (4) 
 
\  

CostedS represents energy drain due to sensing. It is 
directly proportional to the frequency of sensing. Energy 
expended due to sensing is the same in both modes of 
operation and can therefore be discounted. 
 

CostedS  ∝ freq. of sensing                                 (5)
  

 
                  CostedS  =  a * freq. of sensing                                (6) 

 
where a is a constant. 
Using the same bandwidth, larger amount of data transfer 
requires more time and hence results in more energy drain.  
Similarly, more frequent data transfer requires more energy.     
These relationships can be expressed as follows: 

 
         CostedDt  ∝ total data transferred from M to C                    (7) 

 
       CostedDt  ∝ num. of data transfers from M to C                 (8) 

 
        CostedDt  = y * total data transferred from M to C                 (9) 

 
                                 * num. of data transfers from M to C 
 

where y is a constant. From 4, 6 and 9, the energy drain cost  
can be represented as follows: 
 

       Costed = a * freq. of sensing + CostedPr 
          +y * total data transferred from M to C                             (10) 

             * num. of data transfers from M to C 

 
• Model 1: All processing on the cloud: In this mode, 

there is no processing on the mobile, therefore, CostedP r 
∗ 0. Therefore, the energy drain cost consists of only the 
data transfer cost and the sensing cost. In this instance, the 
cost can be represented as: 

 
Cost-rawed =  a * freq. of sensing 

        +y * total data transferred from M to C                               (11) 
             * num. of data transfers from M to C 
 
•   Model 2: Local processing on the mobile. In this case, 
energy drain cost due to mobile data mining CostedP r 
becomes significant. Typically, energy drain due to  pro- 
cessing  is  directly proportional to  the amount of  data 
being processed. Energy drain may also be affected by the 
clustering algorithm used, however, we do not  consider 
this in these cost models. 
 
Cost-clustedPr  ∝  total size of data accumulated on M                 (12) 
Cost-clustedPr  =  z *  total size of data accumulated on M          (13) 
 
where z  is a constant.   From 10 and 13, the energy         

drain cost for clustering can be computed as: 
 
     Cost-clusted = a* freq. of sensing  

           +z * total size of data accumulated on M          (14) 
                    +y * total data transferred from M to C 

                             * num. of data transfers from M to C 
The total size of data accumulated on M depends on the 

freq. of sensing and caching mechanisms used.  This 
variable may not vary much in the two models. Similarly, for 
fair comparison, freq. of sensing would be the same in the 
two models. Therefore, significant reduction of total size of 
data accumulated on M and num. of data transfers from M 
to C in any given time period t will result in reduction of 
energy drain cost. Performing mobile data mining aims to 
reduce these variables. 

For energy usage evaluation of the CAROMM data 
collection model, we use the ratio of energy usage cost for 
raw approach versus the clustering approach. This is 
evaluated as:  

 
      Energy Gain = Cost-rawed                                          (15) 

                                      Cost-clusted 

 

In addition to the cost models, we also develop data 
accuracy model for evaluating CAROMM data collection 
model. Let sf be the sensing frequency and uf   be the data 
upload frequency. With raw approach, all sensed data are 
uploaded, i.e., sf = uf . If sf is high enough, it results in 
high accuracy as sensing and upload of data are real-time. 
However, this results in higher data transmission cost 
Cost-rawdt

   and higher energy usage cost Cost-rawe d .    
For  the  same  sf ,  the  role  of mobile  data  mining is  to  
reduce the  upload frequency  uf such that there is no 
significant reduction in accuracy. In the raw approach, if uf 
is reduced significantly, it will decrease Costdt   and Costed       
, but it may also reduce the data accuracy as the uploaded 
data is no longer current. This is especially applicable in 
cases of frequent changes in sensed data.  With the use of 
clustering, the uf is affected only by changes in the sensed 
values, and therefore, may result in higher accuracy as all 
major changes are detected and reflected. 
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