
Dayananda P et al., International Journal of Multidisciplinary in Cryptology and
Information Security, 1 (2), November - December 2012, 13-16

 13
 @2012, IJMCIS All Rights Reserved

 Leverage the BinRank’s performance using HubRank

and Parallel Computing

Abstract: Over the past decade, the amount of data
generated and posted on the web has increased
exponentially. High processing speeds, quick retrievals and
efficient handling of data are of upmost importance.
Searching on the web using a keyword and retrieving the
relevant document has become an important and yet
interesting task, these are the two major issues which
should not be comprised. The issue addressed in this paper
is would like to provide an approach which intends to
provide an approximation to BinRank by integrating it with
Hubrank and parallelize i.e execute the activities
simultaneously to reduce query execution time and also
increase the relevance of the results.

Keywords: BinRank, HubRank, ObjectRank.

INTRODUCTION

 Dynamic authority –based keyword search algorithms
like ObjectRank and Personalized PageRank (PPR),
improves semantic link information to provide high recall
searches in the web. Most of their algorithms perform
iterative computation over the full graph. If the graph is too
large, then such computation at query time becomes more
complex and it is not feasible for computation. Then the
concept of BinRank came into picture. BinRank is a system
that approximates ObjectRank results by using a hybrid
approach, in which a number of relatively small subsets of
data graph are materialized. Any query was answered only
by running ObjectRank on one of the subgraphs. This made
BinRank achieve subsecond query execution time. The
HubRank system presents a viable way to dynamically
Personalize PageRank[1] at query time on ER graphs by
utilizing clever hubset selection strategies and early
termination bounds. HubRank is highly scalable for small
graphs when compared to ObjectRank. Also since BinRank
construction is precomputed offline, we plan to parallelize
Bin construction activity and execute HubRank[4] on the
subgraph that BinRank generates.

RELATED WORK

There are many existing ranking mechanisms. In this
section we discuss some of the various ranking schemes.
PageRank is a popular and simple algorithm used by
Google’s web search. It works as follows: it starts with a

random Web surfer who starts at a random Web page and
follows outgoing links with uniform probability. The
biggest advantage of pageRank is its simplicity. But the
disadvantage is that it returns only the documents that
contain the keyword and the documents which may be
more relevant to the search but does not contain the
keyword are ignored. Dynamic versions of the PageRank
algorithm like Personalized PageRank (PPR) for Web
graph datasets, it is a modification of PageRank that
performs search personalized on a base set that contains
web pages that a user is interested in. But Personalized
PageRank suffers from scalability.

 The ObjectRank system applies the random walk model,
the effectiveness of which is proven by Google's PageRank,
to keyword search in databases modeled as labeled graphs.
The system ranks the database. Objects with respect to the
user-provided keywords. ObjectRank extends personalized
PageRank(PPR) to perform keyword search in databases.
ObjectRank uses a query term posting list as a set of
random walk starting points and conducts the walk on the
instance graph of the database. ObjectRank has
successfully been applied to databases that have social
networking components, such as bibliographic data and
collaborative product design. ObjectRank suffers from the
same scalability issues as personalized PageRank, as it
requires multiple iterations over all nodes and links of the
entire database graph. The original ObjectRank system has
two modes: online and offline. The online mode runs the
ranking algorithm once the query is received, which takes
too long on large graphs. In the offline mode, ObjectRank
precomputes top-k results for a query workload in advance.
This precomputation is very expensive and requires a lot of
storage space for precomputed results.

 HubRank is a search system based on ObjectRank that
improves the scalability of ObjectRank by combining the
hub based approaches and monte Carlo approach[2]. It
initially selects a fixed number of hub nodes by using a
greedy hub selection algorithm that utilizes a query
workload in order to minimize the query execution time.

Dayananda P1, Thnga Selvi A2
 1Assistant Professor, Department of Information Science and Engg, MSRIT, Bangalore-54

2 Department of Information Science and Engg, MSRIT, Bangalore-54, selvi2103@gmail.com

 ISSN 2320 2610
 Volume 1, No.2, November - December 2012

 International Journal of Multidisciplinary in Cryptology and Information Security
Available Online at http://warse.org/pdfs/ijmcis02122012.pdf

Dayananda P et al., International Journal of Multidisciplinary in Cryptology and Information Security, 1 (2), November - December 2012, 13-16

 14
 @2012, IJMCIS All Rights Reserved

HubRank is highly scalable for smaller graphs because of
only fewer hubs are considered and early termination.

IMPLEMENTATION

 The implementation procedure comprises of a generic
algorithm[4] and a parallel computing procedure. The
algorithm has two main phases first a pre-computation
phase followed by a query processing phase.

Pre-computation phase
This phase happens in two steps. In the step1, we take as
input the set of keywords in the entire database also called
workload w and output as a set of term bins. Step2 takes
the output of step1 as input and returns the set of
materialized subgraphs MSG as output.

Bin construction

The bin construction algorithm packs terms into bins by
partitioning workload w into a set of Bins composed of
frequently co occurring terms. The algorithm takes a single
parameter maxBinSize which limits the size of a Bin posting
list i.e of all terms in the Bin. During the bin construction the
bin identifies of each terms is inserted into the lucene index as
an additional field. This allows us to identify the
corresponding bin hence the MSG at query time
for a given query.

MSG generation

BinRank uses ObjectRank algorithm to generate
Materialized SubGraph(MSG) for each bin. Since
HubRank algorithm is more scalable compare to
ObjectRank algorithm for smaller graphs. We plan to use
HubRank instead of ObjectRank to generate the MSG
itself. We need to keep the size of the MSG being
constructed as small as possible to achieve higher
efficiency with regards to HubRank. For this purpose we
plan to produce more number of Bins i.e MSG’s , so that
size of each Bin is smaller enough for HubRank algorithm
to process efficiently. Since there are more number of Bins
the query processing time might get delayed. To overcome
this we also parallelize the MSG generation. Since each Bin
and hence its MSG is independent of each other. MSG
generation process is more suitable for parallel computing.
Fig 1 shows the stages in Pre computation phase.

Fig 1: Block diagram of Pre-computation phase

Query processing phase

 For a given keyword query we find the base set q and
the bin identifier. With the above two information we
determine the MSG on which the HubRank is to be applied
to return the TopK results.

 Multi keyword queries are processed by taking each
individual keyword separately. For a union of keyword
query we get the MSG for each individual keyword and run
HubRank separately on each MSG to return the TopK
relevant entries. Since parallel computing is an emerging
technique these days we execute HubRank on each MSG’s
of a multikeyword query by running the HubRank
algorithm on multiple cores simultaneously.
 HubRank is a search system based on ObjectRank that
improved the scalability of ObjectRank by combining the
above two approaches. It first selects a fixed number of hub
nodes by using a greedy hub selection algorithm that utilizes a
query workload in order to minimize the query execution time.

Dayananda P et al., International Journal of Multidisciplinary in Cryptology and Information Security, 1 (2), November - December 2012, 13-16

 15
 @2012, IJMCIS All Rights Reserved

Given a set of hub nodes H, it materializes the fingerprints of
hub nodes in H. At query time, it generates an active subgraph
by expanding the base set with its neighbors. It stops following
a path when it encounters a hub node who’s PPV was
materialized, or the distance from the base set exceeds a fixed
maximum length. The efficiency of query processing and the
quality of query results are very sensitive to the size of H and
the hub selection scheme. The dynamic pruning takes a key
role in outperforming ObjectRank by a noticeable margin. The
below diagram shows stages in query processing phase.

Fig 2: Block diagram of Query processing phase

Parallel computing approach

 The advent of multicore CPUs and manycore GPUs
means that mainstream processor chips are now parallel
systems. The GPU, as a specialized processor, addresses the
demands of real-time high-resolution 3D graphics compute-
intensive tasks. As of 2012 GPUs have evolved into highly
parallel mul ti core systems allowing very efficient
manipulation of large blocks of data. This design is more
effective than general-purpose CPUs for algorithms where
processing of large blocks of data is done in parallel.

 In this context let us understand how we intend to
utilize parallel computing .To achieve our goal we propose
the use of Single Instruction, Multiple Data (SIMD)
architecture, computers have several processors that follow
the same set of instructions, but each processor inputs
different data into those instructions. This can be useful for
analyzing large chunks of data based on the same criteria.
Many complex computational problems don't fit this
model. Coincidently in our algorithm especially the
precomputation phase which requires us to build sub graphs
based on keywords. if the same algorithm is implemented
using the SIMD concept on a parallel computing device,
the speed of precomputation increases by a marked value.

 The Compute Unified Device Architecture(CUDA)
programming model provides a straightforward means of
describing inherently parallel computations, and nvidia’s

tesla gpu architecture delivers high computational
throughput on massively parallel problems.

Fig 3: Block diagram of process flow of CUDA

 As shown in the Fig 3 above, all the processors in the
GPU will execute the same logic but using a different data
instance. For each bin of terms a materialiased subgraph
has to be constructed. For each individual bin, a separate
processor will build a materialised sub graph. Though there
is investment in hardware initially, it will be traded off for
the speed of execution. This parallelizing concept
eventually will decrease the overall time required to
execute the algorithm.

 Let us consider a statistical computation of the
algorithm’s execution time and compare the same with its
parallel computation[6]. If a parallel program is executed
on a computer having p processors, the least possible
execution time will be equal to the sequential time divided
by number of processors
Tp is the parallel execution time, Tp is sequential execution
time and p be the no of processors in the computer, then

 (1)

Dayananda P et al., International Journal of Multidisciplinary in Cryptology and Information Security, 1 (2), November - December 2012, 13-16

 16
 @2012, IJMCIS All Rights Reserved

A measure called speedup value which is ratio of sequential
time and parallel execution time. The maximum speedup
value could be achieved in an ideal multiprocessor system
where there are no communication costs and the workload
of processors is balanced. In such a system, every processor
needs Ts/p time units in order to complete its job so the
speedup value will be as the following:
Let Speedup value be S

 (2)

 This leads to S=P, Previous statistics claim that for a
wikepedia data set, pre computing about a thousand
subgraphs, takes about 12 hours on a single CPU [4].The
same if implemented using parallel computing with SIMD
architecture will ideally take, Ts=12 hours, according to the
formula previously discussed Tp=Ts/p, let us futher
consider the no of processors as 4 then Tp will be
approximately 3 hours to build the same 1000 subgraphs.

 In general, if Ts is the sequential time take for
implementing one subgraph then when done in parallel
using n processors, the total time taken to construct x
subgraphs will be, Considering ideally:

 (3)
Tp is time taken to build 1 subgraph in parallel.

 (4)
 The above formula holds good in ideal conditions only
but According to the Amdahl law, it is very difficult, even
into an ideal parallel system, to obtain a speedup value
equal with the number of processors because each program,
in terms of running time. The total time would become

 (5)

Tt is the total time taken to build subgraphs, α is the
fraction of code which has to executed sequentially and (1-
α) is a part of code which require to build subgraph done
parallel and also considering the internal tradeoff β .

 (6)

Ts will be total time taken to execute the pre computation
phase when done parallely.

CONCLUSION

 In this paper, we proposed an approach to increases the
performance of BinRank using HubRank and parallelize
i.e. execute the creation of bins simultaneously to reduce
query execution time and also increase the relevance of the
results. To further enhance this work by providing the threat
detection system to some extent, by storing the potential illegal
keywords in database and ensure that the search is not on these
words by checking the database before submitting the query for
search.

REFERENCES

[1] D. Fogaras, B. Ra´cz, K. Csaloga´ny, and T. Sarlo ́s,“Towards

Scaling Fully Personalized PageRank: Algorithms, Lower
Bounds, and Experiments,” Internet
Math., vol. 2, no. 3, pp. 333-358, 2005.

[2] K. Avrachenkov, N. Litvak, D. Nemirovsky, and N. Osipova,
“Monte Carlo Methods in PageRank Computation: When
One Iteration Is Sufficient,” SIAM J. Numerical Analysis,
vol. 45, no. 2, pp. 890-904,2007.

[3] A. Balmin, V. Hristidis, and Y.
Papakonstantinou,“ObjectRank: Authority-Based Keyword
Search in Databases,” Proc. Int’l Conf. Very Large Data
Bases (VLDB),2004.

[4] Heasoo Hwang; Balmin, A.; Reinwald, B.; Nijkamp, E.; ,

"BinRank: Scaling Dynamic Authority-Based Search Using
Materialized Subgraphs," Knowledge and Data Engineering,
IEEE Transactions on , vol.22, no.8, pp.1176-1190, Aug.
2010 .

[5] S. Chakrabarti, “Dynamic Personalized PageRank in

Entity-Relation Graphs,” Proc. Int’l World Wide Web
Conf.(WWW), 2007.

[6] Felician ALECU, “performance analysis of parallel

algorithms”, Journal of Applied quantitative methods,
volume-2, issue-1,2007.

[7] V. Hristidis, H. Hwang, and Y. Papakonstantinou,

“Authority-Based Keyword Search in Databases,” ACM
Trans. Database Systems, vol. 33, no. 1, pp. 1-40, 2008.

[8] M.R. Garey and D.S. Johnson, “A 71/60 Theorem for

Bin Packing,” J. Complexity, vol. 1, pp. 65-106, 1985.
[9] H. Hwang, A. Balmin, H. Pirahesh, and B. Reinwald,

“Information Discovery in Loosely Integrated Data,” Proc.
ACM SIGMOD, 2007.

[10] J. Cho and U. Schonfeld, “Rankmass Crawler: A Crawler with

High PageRank Coverage Guarantee,” Proc. Int’l Conf.
Very Large Data Bases (VLDB), 2007.

