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       Leverage the BinRank’s performance using HubRank 

and Parallel Computing 

 
Abstract: Over the past decade, the amount of data 
generated and posted on the web has increased 
exponentially. High processing speeds, quick retrievals and 
efficient handling of data are of upmost importance. 
Searching on the web using a keyword and retrieving the 
relevant document has become an important and yet 
interesting task, these are the two major issues which 
should not be comprised. The issue addressed in this paper 
is would like to provide an approach which intends to 
provide an approximation to BinRank by integrating it with 
Hubrank and parallelize i.e execute the activities 
simultaneously to reduce query execution time and also 
increase the relevance of the results. 
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INTRODUCTION 
 
      Dynamic authority –based keyword search algorithms 
like ObjectRank and Personalized PageRank (PPR), 
improves semantic link information to provide high recall 
searches in the web. Most of their algorithms perform 
iterative computation over the full graph. If the graph is too 
large, then such computation at query time becomes more 
complex and it is not feasible for computation. Then the 
concept of BinRank came into picture. BinRank is a system 
that approximates ObjectRank results by using a hybrid 
approach, in which a number of relatively small subsets of 
data graph are materialized. Any query was answered only 
by running ObjectRank on one of the subgraphs. This made 
BinRank achieve subsecond query execution time. The 
HubRank system presents a viable way to dynamically 
Personalize PageRank[1] at query time on ER graphs by 
utilizing clever hubset selection strategies and early 
termination bounds. HubRank is highly scalable for small 
graphs when compared to ObjectRank. Also since BinRank 
construction is precomputed offline, we plan to parallelize 
Bin construction activity and execute HubRank[4] on the 
subgraph that BinRank generates. 
 
 
RELATED WORK 

There are many existing ranking mechanisms. In this 
section we discuss some of the various ranking schemes. 
PageRank is a popular and simple algorithm used by 
Google’s web search. It works as follows: it starts with a 

random Web surfer who starts at a random Web page and 
follows outgoing links with uniform probability. The 
biggest advantage of pageRank is its simplicity. But the 
disadvantage is that it returns only the documents that 
contain the keyword and the documents which may be 
more relevant to the search but does not contain the 
keyword are ignored. Dynamic versions of the PageRank 
algorithm like Personalized PageRank (PPR) for Web 
graph datasets, it is a modification of PageRank that 
performs search personalized on a base set that contains 
web pages that a user is interested in. But Personalized 
PageRank suffers from scalability. 
 
     The ObjectRank system applies the random walk model, 
the effectiveness of which is proven by Google's PageRank, 
to keyword search in databases modeled as labeled graphs. 
The system ranks the database. Objects with respect to the 
user-provided keywords. ObjectRank extends personalized 
PageRank(PPR) to perform keyword search in databases. 
ObjectRank uses a query term posting list as a set of 
random walk starting points and conducts the walk on the 
instance graph of the database. ObjectRank has 
successfully been applied to databases that have social 
networking components, such as bibliographic data and 
collaborative product design. ObjectRank suffers from the 
same scalability issues as personalized PageRank, as it 
requires multiple iterations over all nodes and links of the 
entire database graph. The original ObjectRank system has 
two modes: online and offline. The online mode runs the 
ranking algorithm once the query is received, which takes 
too long on large graphs. In the offline mode, ObjectRank 
precomputes top-k results for a query workload in advance. 
This precomputation is very expensive and requires a lot of 
storage space for precomputed results. 
 
     HubRank is a search system based on ObjectRank that 
improves the scalability of ObjectRank by combining the 
hub based approaches and monte Carlo approach[2]. It 
initially selects a fixed number of hub nodes by using a 
greedy hub selection algorithm that utilizes a query 
workload in order to minimize the query  execution time. 
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HubRank is highly scalable for smaller graphs because of 
only fewer hubs are considered and early termination. 
 
IMPLEMENTATION 
 
    The implementation procedure comprises of a generic 
algorithm[4] and a parallel computing procedure. The 
algorithm has two main phases first a pre-computation 
phase followed by a query processing phase. 
 
Pre-computation phase  
This phase happens in two steps. In the step1, we take as 
input the set of keywords in the entire database also called 
workload w and output as a set of term bins. Step2 takes 
the output of step1 as input and returns the set of 
materialized subgraphs MSG as output. 
 
Bin construction 
 
The bin construction algorithm packs terms into bins by 
partitioning workload w into a set of Bins composed of 
frequently co occurring terms. The algorithm takes a single 
parameter maxBinSize which limits the size of a Bin posting 
list i.e of all terms in the Bin. During the bin construction the 
bin identifies of each terms is inserted into the lucene index as 
an additional field. This allows us to identify the 
corresponding bin hence the MSG at query time 
for a given query. 
 
MSG generation 
 
BinRank      uses      ObjectRank      algorithm      to      generate  
Materialized SubGraph(MSG) for each bin. Since 
HubRank algorithm is more scalable compare to 
ObjectRank algorithm for smaller graphs. We plan to use 
HubRank instead of ObjectRank to generate the MSG 
itself. We need to keep the size of the MSG being 
constructed as small as possible to achieve higher 
efficiency with regards to HubRank. For this purpose we 
plan to produce more number of Bins i.e MSG’s , so that 
size of each Bin is smaller enough for HubRank algorithm 
to process efficiently. Since there are more number of Bins 
the query processing time might get delayed. To overcome 
this we also parallelize the MSG generation. Since each Bin 
and hence its MSG is independent of each other. MSG 
generation process is more suitable for parallel computing.  
Fig 1 shows the stages in Pre computation phase. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1: Block diagram of Pre-computation phase 
 
 
Query processing phase 
 
     For a given keyword query we find the base set q and 
the bin identifier. With the above two information we 
determine the MSG on which the HubRank is to be applied 
to return the TopK results. 
 
      Multi keyword queries are processed by taking each 
individual keyword separately. For a union of keyword 
query we get the MSG for each individual keyword and run 
HubRank separately on each MSG to return the TopK 
relevant entries. Since parallel computing is an emerging 
technique these days we execute HubRank on each MSG’s 
of a multikeyword query by running the HubRank 
algorithm on multiple cores simultaneously. 
      HubRank is a search system based on ObjectRank that 
improved the scalability of ObjectRank by combining the 
above two approaches. It first selects a fixed number of hub 
nodes by using a greedy hub selection algorithm that utilizes a 
query workload in order to minimize the query execution time. 
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Given a set of hub nodes H, it materializes the fingerprints of 
hub nodes in H. At query time, it generates an active subgraph 
by expanding the base set with its neighbors. It stops following 
a path when it encounters a hub node who’s PPV was 
materialized, or the distance from the base set exceeds a fixed 
maximum length. The efficiency of query processing and the 
quality of query results are very sensitive to the size of H and 
the hub selection scheme. The dynamic pruning takes a key 
role in outperforming ObjectRank by a noticeable margin. The 
below diagram shows stages in query processing phase. 
 
 
 
 
 
 
 
 
 
 
 

Fig 2: Block diagram of Query processing phase 
 
Parallel computing approach 
 
        The advent of multicore CPUs and manycore GPUs 
means that mainstream processor chips are now parallel 
systems. The GPU, as a specialized  processor, addresses the 
demands of real-time high-resolution 3D graphics compute-
intensive tasks. As of 2012 GPUs have evolved into highly 
parallel  mul ti core systems allowing very efficient 
manipulation of large blocks of data. This design is more 
effective than general-purpose  CPUs for  algorithms where 
processing of large blocks of data is done in parallel. 
 
      In this context let us understand how we intend to 
utilize parallel computing .To achieve our goal we propose 
the use of Single Instruction, Multiple Data (SIMD) 
architecture, computers have several processors that follow 
the same set of instructions, but each processor inputs 
different data into those instructions. This can be useful for 
analyzing large chunks of data based on the same criteria. 
Many complex computational problems don't fit this 
model. Coincidently in our algorithm especially the 
precomputation phase which requires us to build sub graphs 
based on keywords. if the same algorithm is implemented 
using the SIMD concept on a parallel computing device, 
the speed of precomputation increases by a marked value. 
 
       The Compute Unified Device Architecture(CUDA) 
programming model provides a straightforward means of 
describing inherently parallel computations, and nvidia’s 

tesla gpu architecture delivers high computational 
throughput on massively parallel problems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3: Block diagram of process flow of CUDA 
 
 
     As shown in the Fig 3 above, all the processors in the 
GPU will execute the same logic but using a different data 
instance. For each bin of terms a materialiased subgraph 
has to be constructed. For each individual bin, a separate 
processor will build a materialised sub graph. Though there 
is investment in hardware initially, it will be traded off for 
the speed of execution. This parallelizing concept 
eventually will decrease the overall time required to 
execute the algorithm. 
 
      Let us consider a statistical computation of the 
algorithm’s execution time and compare the same with its 
parallel computation[6]. If a parallel program is executed 
on a computer having p processors, the least possible 
execution time will be equal to the sequential time divided 
by number of processors  
Tp is the parallel execution time, Tp is sequential execution 
time and p be the no of processors in the computer, then 

 

                 (1) 

    



Dayananda P et al., International Journal of Multidisciplinary in Cryptology and Information Security, 1 (2), November - December  2012, 13-16 

                            16 
  @2012, IJMCIS  All Rights Reserved 

  
 

A measure called speedup value which is ratio of sequential 
time and parallel execution time. The maximum speedup 
value could be achieved in an ideal multiprocessor system 
where there are no communication costs and the workload 
of processors is balanced. In such a system, every processor 
needs Ts/p time units in order to complete its job so the 
speedup value will be as the following:  
Let Speedup value be S  

                                   (2) 

      This leads to S=P, Previous statistics claim that for a 
wikepedia data set, pre computing about a thousand 
subgraphs, takes about 12 hours on a single CPU [4].The 
same if implemented using parallel computing with SIMD 
architecture will ideally take, Ts=12 hours, according to the 
formula previously discussed Tp=Ts/p, let us futher 
consider the no of processors as 4 then Tp will be 
approximately 3 hours to build the same 1000 subgraphs. 
 
     In general, if Ts is the sequential time take for 
implementing one subgraph then when done in parallel 
using n processors, the total time taken to construct x 
subgraphs will be, Considering ideally: 
 

                                 (3) 
Tp is time taken to build 1 subgraph in parallel. 
 

                    (4)  
      The above formula holds good in ideal conditions only 
but According to the Amdahl law, it is very difficult, even 
into an ideal parallel system, to obtain a speedup value 
equal with the number of processors because each program, 
in terms of running time. The total time would become 
 

     (5)  
 
Tt is the total time taken to build subgraphs, α is the 
fraction of code which has to executed sequentially and (1- 
α ) is a part of code which require to build subgraph done 
parallel and also considering the internal tradeoff β . 
 

                                          (6) 
 
Ts will be total time taken to execute the pre computation 
phase when done parallely. 

CONCLUSION 
 
     In this paper, we proposed an approach to increases the 
performance of BinRank using HubRank and parallelize 
i.e. execute the creation of bins simultaneously to reduce 
query execution time and also increase the relevance of the 
results. To further enhance this work by providing the threat 
detection system to some extent, by storing the potential illegal 
keywords in database and ensure that the search is not on these 
words by checking the database before submitting the query for 
search. 
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