
)

1
@ 2012, IJMCIS All Rights Reserved

ABSTRACT

This research proposes a new efficient load balancing
algorithm which applies to the local Domain Name Service
(DNS) server for web based applications and services to
ease the sudden increase in demand for the services. Owing
to the existing load balancing algorithms still experience
server’s resource congestion and slow connection to the
system resulted by sudden bursty demand of services
especially during special events. This is mainly due to the
unbalanced distribution of workload and the insufficient of
physical computing resources in service provision. To
overcome this problem, most web based application service
providers will have to constantly improve the capacity of
their physical computing resources by either adding new
server nodes to the existing server farm or renting cloud
computing resources from cloud computing service provider
to meet the sudden demands of the end users during the peak
period. However, it is not economical to maneuver and
reconfigure huge amount of permanent computing resources
just to satisfy the instantaneous and short period of service
demand. As a result, the need to have a more efficient load
balancing algorithm which can adaptively utilize the
resources available in the farm of computing resources will
be of advantageous. The new algorithm will be able to
directly decrease the operation cost and web services will no
longer be interrupted by sudden high demand of traffic
request. The proposed algorithm is evaluated via computer
simulation and modeling where its performance is verified
against the few selected algorithms of the same nature.
Enhancement on the DNS system for load balancing is
beneficial to most organizations such as government
agencies and service providers running their own local DNS
service, which allow the proposed algorithm to be easily
implemented. Moreover, DNS setup is standard across the
IP networks hence the adoption can be easy achieved with
minimal changes without altering the architecture of the
services provided especially in coding as well as physical set
up of the server farm itself.

Keywords: Computing Resources, Load Balancing, local
DNS, Performance Parameters, Sudden Traffic Web
Application Services.

1. INTRODUCTION
Nowadays, the web application has become a common

instrument in daily life, due to it easy accessibility through

the Internet. However, this trend leads to sudden burst of
request to certain services especially during the peak period

of operation such as towards the datelines, during promotion
period and etc. During these critical periods, millions of
users will be accessing a single Internet service site at the
same time creating instantaneous bursty traffic to the site.

Therefore, some organizations have very little options but to
spend lots of money upgrading their server farm or to
purchase additional computing resources so that the
problems of server traffic congestion and bursty demand can
be resolved. It is not economical to acquire huge amount of
permanent computing resources just to satisfy the
instantaneous and periodical service demand. As a result, an
efficient load balancing approach has been proposed to
enhance the DNS service for handling burst demand in Web
based application services.

Load balancing is used to distribute the load among
overloaded servers to underutilized servers so that all of the
servers in the cluster can be fully utilized. The conventional
Round Robin type DNS load balancing mechanism has a
few disadvantages which do not necessary reducing the
server congestion and burst demand problems under certain
environment, but may increase congestion on specific
servers.

For example, the DNS service does not aware of the real-
time status of each server in the cluster. This means that the
DNS server does not know whether a server in the cluster is
congested or down and will still keep directing the client
requests to a problematic server.

Secondly, DNS service does not take into consideration of
the computing capability of a server in its operating
procedure, regardless of whether the server is overloaded or
underutilized. Lastly, the DNS caching takes days to
propagate and updates due to the DNS servers cache the
records and will not update it until the Time to Live (TTL)
expires. TTL is used to determine the duration a DNS record
will be cached by the DNS server. Therefore, it can take
hours or days for the whole Internet to recognize changes in
the DNS information for a particular domain.

Consequently, enhancements to the current Round Robin
DNS load balancing approach are needed to ease the current
limitations faced by the bursty traffic environment today.
First of all, the request should be distributed not just in

Mei Lu Chin1, Chong Eng Tan2, Mohamad Imran Bandan3
1, 2, 3Faculty of Computer Science & Information Technology,

Universiti Malaysia Sarawak,
94300 Kota Samarahan, Malaysia.

meilu850422.chin@gmail.com1 ,cetan@ieee.org2, bnimran@fit.unimas.my3

Efficient DNS based Load Balancing for Bursty Web Application Traffic

 ISSN
Volume 1, No.1, September – October 2012

International Journal of Science and Applied Information Technology
Available Online at http://warse.org/pdfs/ijmcis01112012.pdf

Mei Lu Chin et al., International Journal of Multidisciplinary in Cryptology and Information Security, 1 (1), September – October 2012, 01-05

2
@ 2012, IJMCIS All Rights Reserved

round robin order but to be distributed intelligently based on
the current server load and its relative performance matrix.

Second, a server status reporting mechanism to report and
update the real-time status of servers in the cluster to the
DNS server is mandatory where a failed server can be
identified and removed from the list of operational servers.
When a new server is added, it can be included immediately
to serve the client requests.

By having such real-time reporting mechanism, any
temporary server can be added to the server farm seamlessly;
computer systems either from the office, lab and etc, can be
borrowed for a certain period of time to ease the sudden
heavy traffic loads to the servers. Once the peak period is
over, the temporary computer systems can return to its
normal operation tasks. Lastly, the DNS caching issue can
be resolved by adopting a local DNS service dedicated to
the server farm.

2. BACKGROUND

Each of the nodes in the server farm has its own system
resources and processing power [1]. Therefore, load
balancing performs an important position in distributed
system to ensure the response time can be minimized and
the performance of each node is improved so that the system
resources are fully utilized.

Consequently, a suitable load balancing algorithm needs to
be adopted in order to achieve better performance in various
aspects. This is because different types of load balancing
algorithms are aimed to achieve different types of outcomes
and objectives [2]. In general there are two categories of
load balancing algorithm, namely system stateless
algorithms and server state based algorithms.

2.1 System Stateless Algorithms

System stateless algorithms do not taking any system state
information, for example system state information or server
load or a combination of them into account in request
distribution. Round Robin DNS (DNS-RR) was the first
distributed homogenous Web-server architecture that
derives from this class [3].The purpose of this algorithm was
to support the fast growing demand of the National Center
for Supercomputing Applications (NCSA) site.

By implementing the DNS-RR, the DNS of the NCSA
domain is required to modify to meet its address mapping.
However, the address caching mechanism resulted the
unbalanced of load distribution under DNS-RR. The reason
is that the DNS can only control a small fraction of the
requests via this mechanism which leads to large number of
end users from a single domain are assigned to the same
Web-server [4][5]. Hence, the loads are distributed
imbalance among the server nodes and this indirectly causes
overload to the server nodes.

Furthermore, DNS-RR ignores the server performance
capacity as well as its availability to serve. The algorithm
will continue sending the requests to the overloaded or fault
servers due to the use of cached address of the server. It also
assumes all of the servers are equally capable in serving
client request which assume as homogenous server
environment. Owing to that, there is a strong need for the
study of a replacement to the DNS-RR scheme.

2.2 Server State Based Algorithms
If the system state conditions of the servers are known, the
unreachable servers which are either overloaded, congestion
or faults can be then excluded from the task distribution [3].
In this category, the DNS policies will combine with a
simple feedback alarm mechanism that applied in the highly
utilized servers to inform the DNS which of the Web-server
is overloaded so that during the overloaded period the
subsequent request is excluded from those unreachable
servers.

In addition, lbmnamed algorithm proposed to use the current
load of the Web-server nodes for scheduling decision. The
server with the lightest load will be selected to receive the
address request but the DNS of lbmnamed is required to set
the TTL value to zero to avoid the address caching at name
servers. However, the setting of TTL value to zero also has
its drawback because nearly all intermediate name servers
are configured in a way do not accept very low TTL values
[3].

Hence, further research is required so that a more efficient
load balancing can be developed to achieve more effective
task distribution and at the same time decreases the waiting
time at the end user end.

3. THE PROPOSED ENHANCED ALGORITHM
In this paper, a new load balancing algorithm is proposed by
introducing a new performance indexing mechanism and a
task distribution scheduler at the local DNS server. The flow
chart of the proposed algorithms is shown in Figure. 1.

The proposed load balancing algorithm is based on a
performance indexing of each node in the server farm in
order to select the most suitable nodes for the next task
distribution. The performance indexing takes into account
the current server load and the server performance metric of
the server itself.

The load metric indicates the current server workload of a
server and the performance metric indicates the performance
capability of a server [2]. The task distribution scheduler at
local DNS server will be updated by performance indexing
algorithm running at each server so that the latest workload
information and performance metric from the nodes can be
used by the task scheduler for the next client request
distribution.

Mei Lu Chin et al., International Journal of Multidisciplinary in Cryptology and Information Security, 1 (1), September – October 2012, 01-05

3
@ 2012, IJMCIS All Rights Reserved

The local DNS server task scheduler will look into the latest
performance metric table when it received service request
from the end users. From there it will determine which
server IP address should be resolved to the client request
based on a good balance in current workload and
performance metric of the each server. Thus, the client
request will be directed to the server which presently has the
best index.

Under this algorithm, each server in the server farm will
have to perform a self-load evaluation from time to time
based on their current workload and computing performance
ability. The information is then reported to the task
distribution scheduler at the local DNS server periodically.

The node will be defined as a fault or dead server when the
local DNS does not receive any report from the nodes within
the specified time frame. Anode is defined as healthy until
the next report is received by the local DNS server in the
next update. As a result, the DNS lookup table for the server
in server farm is completely based on the reports received
from all the servers within the server farm.

Figure 1:The proposed algorithm

Once the server workload is more than or equal to the
defined threshold for server overloaded then the respective
server will be removed from the subsequent client request
distribution. It will only be assigning a new client request
when it has reached a healthy stage or in another mean, the
server workload is less than overload threshold. Of course,
the server after being removed from the list of distribution
will still be serving its existing client request until the entire
service session is completed [2].

The proposed performance indexing algorithm has an
advantage where the client requests are distributed based on
the overall server performance metric which is a more
accurate measurement of the server performance compare to
the conventional one that is based on round robin ordering.
Besides, through the reporting mechanism, the local DNS
server is aware of the current performance status of each
server in server farm.

Moreover, the server farm can be expanded based on the
needs during certain critical or peak period. For example,
the server can be dynamically added to or remove from the
server farm depending on the client request volume and the

overall workload of the entire server farm. Additional server
can be taken from the existing computing resources to act as
server and release back to its normal operation after the
critical period. This helps to minimize unnecessary
investment in upgrading the computing resources just to
accommodate very short period of bursty service demand.

The proposed algorithm can adaptively distribute the task
base on the current server farm status. Besides, the use of a
local DNS server at the service provision domain can
resolve the DNS address caching problem. Therefore, the
right task will be given to the right server for more efficient
task execution.

To further test the performance of proposed algorithms, an
adaptive algorithm is proposed so that it can adaptively base
on the current environment status and numbers of servers in
server farm to distribute the tasks.

4. SIMULATION AND PRELIMINARY RESULTS
Figure 2 shows the simulation model for a simple network
configuration used in our simulation scenario. This network
consists of a local DNS server and a server farm, which can
be expanded based on the load at a certain peak period.

Figure 2: Simulation model

The simulation started with randomly generated load metric
while the performance metric is based on the overall system
score that are collected from the NovaBench for all nodes in
the server farm. NovaBench is a software that tests a
computer system by benchmarking its CPU, RAM, hard
disks read and write, graphics and other system parameters.
The overall system score and system component results will
be compared to the others. All of this information will be
used to update the task scheduler of the local DNS server.

In addition, the client requests and sessions are randomly
generated throughout the simulation. It have been carried
out for the proposed performance indexing mechanism,
conventional Round Robin DNS and server state base
algorithm based on the same client traffic model and also
the same load and performance metric.

Table 1 shows the total task completion time based on
different environment by using of different algorithms and
number of servers. Based on the results, the server farm
which are considered as having more computing resources
will complete the tasks faster. Moreover, the higher the

Mei Lu Chin et al., International Journal of Multidisciplinary in Cryptology and Information Security, 1 (1), September – October 2012, 01-05

4
@ 2012, IJMCIS All Rights Reserved

server performance the faster of tasks completion compare
to low server performance.

Besides, the proposed performance indexing algorithm has
better result compare to other algorithms except for adaptive
algorithm. The reason is the adaptive algorithm used the
combination of performance indexing and server
performance indexing algorithm. Thus, it completed the
entire task slightly faster than them. As a result, all tasks can
be completed in a comparatively shorter time as compared
to the others existing algorithms.

Table 1: Total task completion time based on different
environment

Algorithms Adaptive
Algorithm

Performance
Indexing

Server
Performance

Current
Server Load Round Robin

Number of
Servers

(size)
Total Task Completion Time (unit time)

1 7703.763069 7703.763069 7703.763069 7703.763069 7703.763069

2 3267.042265 3267.034474 3269.173716 3393.899879 3562.241246

3 2061.937763 2062.371891 2063.564588 2126.008958 2226.679269

4 1507.293056 1507.757422 1510.104463 1549.488251 1619.671

5 1183.077901 1183.130711 1185.440747 1212.650209 1264.983687

6 953.1432528 953.1813683 955.8157794 977.3147382 1021.122817

7 797.8009093 797.9445393 800.1960311 816.9912848 853.5580783

8 689.8976226 689.9369911 692.2341753 705.0640319 735.8686731

9 599.3808374 599.4340592 601.5148979 612.0136769 639.5631087

10 489.6709097 490.0086176 491.6346716 519.7695114 560.2296284

Figure 3: Comparison totaltask completion timebased on different

environment

The server farm that contains more servers will be
processing the tasks even faster than server farm which has
fewer servers. This will decrease the sudden traffic and
server overloaded during the peak period. The comparison
of the total task completion time versus number of servers
based on different algorithms is shows in Figure 3.

Table 2 shows the overall average task completion time.
From the table, the performance indexing algorithm can
process the task faster compare to the existing algorithms.

This is because it can distribute the tasks evenly among the
servers based on the environment needs. While for the
adapative algorithms, it will process the task slightly faster
than performance algorithm due to it has ability to adapt the
current environment status and numbers of servers in server
farm.

Table 2: Overall average task completion time

Algorithms Adaptive
Algorithm

Performance
Indexing

Server
Performance

Current
Server Load Round Robin

Overall
Average Task
Completion

Time

1925.300759 1925.456314 1927.344214 1961.696361 2018.768058

Figure 4 : Comparison overall average task completion timebased

on different environment

Figure 4 shows the comparison of overall average task
completion time based on different environment by verified
against the selected few existing algorithms. Round Robin
and current server load algorithm needed longer time to
complete all the task compare to another three proposed
algorithms. Adaptive algorithm processed the tasks shorter
than performance indexing and server performance
algorithm.

5. CONCLUSION

As the conclusion, higher system efficiency can be achieved
by introducing the load balancing scheme which is
optimized based on the right performance parameters that
are taken into account in requests distribution. By looking at
the preliminary result, the proposed algorithm has improved
the load distribution among nodes in local DNS by the
introduction of the performance indexing metric.

ACKNOWLEDGEMENT
Acknowledgement to Universiti Malaysia Sarawak,
UNIMAS and Kementerian Pengajian Tinggi Malaysia in
funding this research project through Fundamental Research
Grant Scheme (FRGS).

Mei Lu Chin et al., International Journal of Multidisciplinary in Cryptology and Information Security, 1 (1), September – October 2012, 01-05

5
@ 2012, IJMCIS All Rights Reserved

REFERENCES
1. Mohammadpour P., Sharifi M. and Paikan A. A Self-

Training Algorithm for Load Balancing in Cluster
Computing, Fourth International Conference on
Networked Computing and Advanced Information
Management, 2008.

2. Mei Lu Chin, Chong Eng Tan and Imran M. Efficient
Load Balancing for Bursty Demand in Web based
Application Services via Domain Name Services,
8thAsia-Pacific Symposium on Information and
Telecomunication Technologies (APSITT), 2010.

3. V. Cardellini, M. Colajanni, and P. S. Yu. Dynamic

Load Balancing on Web-Server Systems, IEEE
Internet Computing, Vol. 3, No. 3, pp. 28-39, May-June
1999.

4. M. Colajanni, P.S. Yu and D.M. Dias. Analysis of task
assignment policies in scalable distributed Web-
server Systems, IEEE Trans. on Parallel and
Distributed Systems, Vol. 9, No. 6, pp. 585-600, June
1998.

5. D.M. Dias, W. Kish, R. Mukherjee and R. Tewari. A
Scalable and Highly Available Web-server, Proc. of
41st IEEE Computer Science Int’l. Conf,
(COMPCON’96), pp. 85-92, Feb. 1996.

