
207

Efficient Half-Storage Generation of Frequency-Ordered

Walsh Functions using XOR and Cyclic Shift

Dmytro Poltoratskyi

State University "Kyiv Aviation Institute", Ukraine

 dpoltoratskyi@ukr.net

Received Date: July 29, 2025 Accepted Date: August 25, 2025 Published Date : September 07, 2025

ABSTRACT

Walsh functions play a critical role in modern digital signal

processing, telecommunications, image compression, error

correction, and hardware-accelerated computations due to

their orthogonality, simplicity, and efficient transform

properties. This paper presents an efficient half-storage

algorithm for the generation of frequency-ordered Walsh

functions using only XOR and cyclic shift operations. Unlike

conventional approaches that store the entire Walsh matrix,

the proposed method requires storing only the first half of the

basis vectors. The second half is derived in constant time by

combining a pre-computed alternating mask with the stored

vectors. This approach significantly reduces memory usage

while maintaining high generation speed, making it

particularly suitable for low-power and memory-constrained

DSP and IoT applications. Theoretical analysis and

experimental results demonstrate the proposed algorithm’s

computational efficiency, scalability, and potential for

hardware implementation.

Key words: Walsh functions, frequency order, half-storage

algorithm, XOR operations, cyclic shift, DSP, IoT, FPGA,

error correction, image compression, Walsh–Hadamard

transform.

1. INTRODUCTION

Walsh functions form an orthogonal binary basis that has

become a cornerstone in digital signal processing (DSP),

telecommunications [1], image compression, coding, and

hardware implementations [2]. Each Walsh function consists

of two amplitude levels, typically or , and can

be efficiently combined to represent or process digital

signals. Their strict orthogonality and simple structure allow

efficient implementations in both software and hardware,

making them highly suitable for electronics and

telecommunication.

A full set of Walsh functions of order can be

represented as an matrix, commonly known as the

Walsh–Hadamard matrix. Direct generation of this matrix

provides instant access to all basis vectors but at a

prohibitive memory cost of .

The classical Walsh–Hadamard construction generates the

full matrix iteratively by expanding from using

Kronecker products or recursive combination of smaller

Hadamard matrices [3]. While conceptually simple, this

approach has two major drawbacks. Every basis vector must

be explicitly stored, even if only a subset is needed. As N

grows, both generation time and storage demands increase

quadratically, making real-time or resource-constrained

applications impractical. Also, the traditional Hadamard-

generation methods do not naturally produce functions in

frequency order, requiring additional reordering or

computational overhead.

To overcome these limitations, we propose a half-storage

approach that generates frequency-ordered Walsh functions

using only XOR and cyclic shift operations. By storing only

the first half of the basis vectors and reconstructing the

second half in constant time, the algorithm provides a

scalable, memory-optimized solution.

2. HALF-STORAGE GENERATION USING XOR AND

CYCLIC SHIFT

The proposed method generates a complete sequence of

orthogonal Walsh functions in sequency order (arranged by

the increasing number of sign transitions) using only two

simple operations: bitwise XOR and cyclic shift. Algorithm

based on three constant functions: , and .

The is the function with zero transitions (constant level)

 (1)

The is the function with one transition (two halves of

opposite sign)

 (2)

The is the function with the maximum number of

transitions (alternating levels at every sample)

 (3)

These three functions form the foundation for generating all

other functions. All functions we can divide in two ranges.

For functions in the range of indices [

] we use

three equations depending from .

If is a power of two, , we apply cyclic shift to the

function

 (4)

 ISSN 2347 - 3983

Volume 13. No.9, September 2025

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter031392025.pdf

https://doi.org/10.30534/ijeter/2025/031392025

208

If is odd we apply XOR between functions and

 (5)

If is even but not power of two we apply XOR between

functions and

 (6)

Where index is using XOR between index

numbers. This iterative process avoids recursion and ensures

that every function in the first half is derived efficiently from

previously computed vectors.

For functions in the range of indices [

] we use

simple equation to access any function in complexity

 (7)

This rule eliminates the need to store the second half of the

basis entirely.

Let’s take an example for , this size covers all

equation. Implementation shown in the table 1.

Table 1: Computation of N = 16

To verify results, we can compare with Hadamard matrix for

 . The matrix shown in the table 2.

Table 2: Classic Hadamard order

The functions generated by the proposed algorithm are fully

consistent with the classical Walsh–Hadamard basis, while

being arranged in increasing sequency (frequency) order.

3. ALGORITHM SCALABILITY

The proposed half-storage algorithm scales naturally and

efficiently with increasing basis size , where .
This scalability comes from its bitwise and recursive

structure, which remains consistent regardless of how large

the basis becomes.

All generation rules — XOR operations and cyclic shifts —

are expressed in terms of bit-level manipulations of the

function indices. These operations do not depend on the

absolute size of . Instead, they rely only on the binary

representation of the index. This means the same rules that

generate a basis for apply identically to ,

 and larger dimensions.

The second half of the basis is derived in constant time for

any using the relation (7), where is always a

bitmask of higher frequency basis function. This guarantees

that access to any function remains , independent of the

size of the basis. The computational complexity of

generating the first half of the basis grows quadratically as

 , which is a one-time initialization cost, which is

shown on Figure 1.

n Result

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

n Hn

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Dmytro Poltoratskyi, International Journal of Emerging Trends in Engineering Research, 13(9), September 2025, 207 – 209

209

Figure 1: Time complexity vs. basis size N

Memory usage is reduced by exactly 50% compared to full-

matrix storage, which is shown on Figure 2.

Figure 2: Memory usage vs. basis size N

Extensive validation up to has confirmed perfect

orthogonality, strict sequency ordering, and full consistency

with canonical Walsh bases. This combination of size-

independent logic, predictable complexity, and constant-time

access makes the algorithm ideally suited for high-resolution

DSP, FPGA and ASIC implementations, and IoT and

embedded systems where memory efficiency and

deterministic execution are critical [4], [5].

4. CONCLUSION

This study introduced a half-storage algorithm for generating

frequency-ordered Walsh functions using only XOR and

cyclic shift operations. By storing only the first half of the

basis and deriving the second half in constant time, the

method achieves a predictable 50% reduction in memory

requirements while preserving full orthogonality and strict

frequency ordering. The algorithm scales efficiently with any

basis size , providing a one-time initialization

cost for the first half and constant-time access for the

second half, making it significantly more efficient than the

classical full-matrix approach.

Theoretical analysis and validation across multiple basis

sizes confirmed the accuracy, scalability, and hardware-

friendliness of the method. These characteristics make the

algorithm particularly well-suited for applications in digital

signal processing, embedded and IoT systems, and FPGA or

ASIC implementations, where memory constraints and

deterministic performance are critical.

Future research will explore further optimization strategies,

such as hash-based indexing for faster function retrieval and

adaptive implementations for dynamic, real-time systems

requiring flexible basis sizes.

REFERENCES

1. H. F. Harmuth. Harmuth, Applications of Walsh

functions in communications, IEEE Trans. on

Communications Technology, Vol. COM-19, pp. 398-

405, 1971.

2. R. A. Scholtz. The Spread Spectrum Concept, in

Multiple Access, N. Abramson, Ed. Piscataway, NJ:

IEEE Press, 1993, ch. 3, pp. 121-123.

3. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B.

P. Flannery. Numerical Recipes in C: The Art of

Scientific Computing, 2nd ed., Cambridge University

Press, 1992, pp. 573-579.

4. D. M. Kodek. Walsh transforms and their hardware

implementations, IEEE Trans. on Computers, vol. C-

26, no. 6, pp. 585-593, Jun. 1977.

5. S. P. Bingulac. On the compatibility of adaptive

controllers, in Proc. 4th Annu. Allerton Conf. Circuits

and Systems Theory, New York, 1994, pp. 8-16.

Dmytro Poltoratskyi, International Journal of Emerging Trends in Engineering Research, 13(9), September 2025, 207 – 209

