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ABSTRACT 

 

Walsh functions play a critical role in modern digital signal 

processing, telecommunications, image compression, error 

correction, and hardware-accelerated computations due to 

their orthogonality, simplicity, and efficient transform 

properties. This paper presents an efficient half-storage 

algorithm for the generation of frequency-ordered Walsh 

functions using only XOR and cyclic shift operations. Unlike 

conventional approaches that store the entire Walsh matrix, 

the proposed method requires storing only the first half of the 

basis vectors. The second half is derived in constant time by 

combining a pre-computed alternating mask with the stored 

vectors. This approach significantly reduces memory usage 

while maintaining high generation speed, making it 

particularly suitable for low-power and memory-constrained 

DSP and IoT applications. Theoretical analysis and 

experimental results demonstrate the proposed algorithm’s 

computational efficiency, scalability, and potential for 

hardware implementation. 
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1. INTRODUCTION 

 

Walsh functions form an orthogonal binary basis that has 

become a cornerstone in digital signal processing (DSP), 

telecommunications [1], image compression, coding, and 

hardware implementations [2]. Each Walsh function consists 

of two amplitude levels, typically         or      , and can 

be efficiently combined to represent or process digital 

signals. Their strict orthogonality and simple structure allow 

efficient implementations in both software and hardware, 

making them highly suitable for electronics and 

telecommunication. 

A full set of Walsh functions of order      can be 

represented as an     matrix, commonly known as the 

Walsh–Hadamard matrix. Direct generation of this matrix 

provides instant access to all basis vectors but at a 

prohibitive memory cost of      . 

The classical Walsh–Hadamard construction generates the 

full matrix iteratively by expanding from    using 

Kronecker products or recursive combination of smaller 

Hadamard matrices [3]. While conceptually simple, this 

approach has two major drawbacks. Every basis vector must 

be explicitly stored, even if only a subset is needed. As N 

grows, both generation time and storage demands increase 

quadratically, making real-time or resource-constrained 

applications impractical. Also, the traditional Hadamard-

generation methods do not naturally produce functions in 

frequency order, requiring additional reordering or 

computational overhead. 

To overcome these limitations, we propose a half-storage 

approach that generates frequency-ordered Walsh functions 

using only XOR and cyclic shift operations. By storing only 

the first half of the basis vectors and reconstructing the 

second half in constant time, the algorithm provides a 

scalable, memory-optimized solution. 

 

2. HALF-STORAGE GENERATION USING XOR AND 

CYCLIC SHIFT 

 

The proposed method generates a complete sequence of 

orthogonal Walsh functions in sequency order (arranged by 

the increasing number of sign transitions) using only two 

simple operations: bitwise XOR and cyclic shift. Algorithm 

based on three constant functions:   ,    and     . 

The    is the function with zero transitions (constant level) 

                     (1) 

The    is the function with one transition (two halves of 

opposite sign) 

                       (2)  

The      is the function with the maximum number of 

transitions (alternating levels at every sample) 

                       (3) 

These three functions form the foundation for generating all 

other functions. All functions we can divide in two ranges. 

For functions in the range of indices   [  
 

 
  ] we use 

three equations depending from  . 

If   is a power of two,     , we apply cyclic shift to the 

function      

        
 

   
   (4) 
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If   is odd we apply XOR between functions    and      

 

            (5) 

If   is even but not power of two we apply XOR between 

functions      and          

                       (6) 

Where index         is using XOR between index 

numbers. This iterative process avoids recursion and ensures 

that every function in the first half is derived efficiently from 

previously computed vectors. 

For functions in the range of indices   [
 

 
    ] we use 

simple equation to access any function in      complexity 

                    (7) 

This rule eliminates the need to store the second half of the 

basis entirely. 

 

Let’s take an example for      , this size covers all 

equation. Implementation shown in the table 1. 
 

Table 1: Computation of N = 16 

 

To verify results, we can compare with Hadamard matrix for 

    . The matrix shown in the table 2. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Classic Hadamard order 

 

The functions generated by the proposed algorithm are fully 

consistent with the classical Walsh–Hadamard basis, while 

being arranged in increasing sequency (frequency) order. 

 
 

3. ALGORITHM SCALABILITY 

 

The proposed half-storage algorithm scales naturally and 

efficiently with increasing basis size     , where     . 
This scalability comes from its bitwise and recursive 

structure, which remains consistent regardless of how large 

the basis becomes. 

All generation rules — XOR operations and cyclic shifts — 

are expressed in terms of bit-level manipulations of the 

function indices. These operations do not depend on the 

absolute size of  . Instead, they rely only on the binary 

representation of the index. This means the same rules that 

generate a basis for     apply identically to       , 

       and larger dimensions. 

The second half of the basis is derived in constant time for 

any   using the relation (7), where     is always a 

bitmask of higher frequency basis function. This guarantees 

that access to any function remains     , independent of the 

size of the basis. The computational complexity of 

generating the first half of the basis grows quadratically as 

     , which is a one-time initialization cost, which is 

shown on Figure 1. 
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Figure 1: Time complexity vs. basis size N 

 

Memory usage is reduced by exactly 50% compared to full-

matrix storage, which is shown on Figure 2. 

 

 
Figure 2: Memory usage vs. basis size N 

Extensive validation up to        has confirmed perfect 

orthogonality, strict sequency ordering, and full consistency 

with canonical Walsh bases. This combination of size-

independent logic, predictable complexity, and constant-time 

access makes the algorithm ideally suited for high-resolution 

DSP, FPGA and ASIC implementations, and IoT and 

embedded systems where memory efficiency and 

deterministic execution are critical [4], [5]. 

 

4. CONCLUSION 

 

This study introduced a half-storage algorithm for generating 

frequency-ordered Walsh functions using only XOR and 

cyclic shift operations. By storing only the first half of the 

basis and deriving the second half in constant time, the 

method achieves a predictable 50% reduction in memory 

requirements while preserving full orthogonality and strict 

frequency ordering. The algorithm scales efficiently with any 

basis size     , providing a one-time       initialization 

cost for the first half and constant-time      access for the 

second half, making it significantly more efficient than the 

classical full-matrix approach. 

Theoretical analysis and validation across multiple basis 

sizes confirmed the accuracy, scalability, and hardware-

friendliness of the method. These characteristics make the 

algorithm particularly well-suited for applications in digital 

signal processing, embedded and IoT systems, and FPGA or 

ASIC implementations, where memory constraints and 

deterministic performance are critical. 

Future research will explore further optimization strategies, 

such as hash-based indexing for faster function retrieval and 

adaptive implementations for dynamic, real-time systems 

requiring flexible basis sizes. 
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