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ABSTRACT 

Accurate network traffic prediction is essential for efficient 

resource allocation and congestion management in 

telecommunications. This study evaluates the performance of 

various Machine Learning (ML) techniques, such as Linear 

Regression (LR), Random Forest (RF), Support Vector 

Machine (SVM), Extreme Gradient Boosting (XGBoost), 

Long Short-Term Memory (LSTM), and Gated Recurrent Unit 

(GRU), for predicting total traffic volume in a Long-Term 

Evolution (LTE) network. A real-world dataset collected from 

an LTE site of a telecom service provider in Kandahar 

Province of Afghanistan was used for model training and 

evaluation. Performance was assessed using RMSE, MAPE, 

and R² metrics. The results demonstrate that Deep Learning 

(DL) models, particularly LSTM, outperform traditional ML 

methods by effectively capturing temporal dependencies in 

traffic patterns. In contrast, traditional models exhibited lower 

predictive accuracy with high error rates. The findings 

highlight the potential of Recurrent Neural Networks (RNNs) 

for time-series forecasting in network traffic prediction, 

providing valuable insights for selecting suitable predictive 

models in similar datasets.  

 

Key words : Machine Learning (ML), Mobile Traffic 

Forecasting, Real-World Dataset, Recurrent Neural Network 

(RNN).  

 

1. INTRODUCTION 

The steady increase in the number of mobile users, mobile 

applications, interconnected devices, and related services is 

driving the growth of mobile data traffic [1]. In recent years, 

both the global mobile user base and data consumption have 

grown significantly. Estimates suggested that by 2023, the 

 
 

total number of mobile devices worldwide could reach tens of 

billions. By the end of 2023, mobile data traffic, excluding 

fixed wireless networks, was expected to reach 130 ExaBytes 

(EB) per month, with a possible increase to 403 EB per month 

by 2029. When including fixed wireless networks, total mobile 

network traffic was projected to reach around 160 EB per 

month by late 2023, rising further to 563 EB per month by 

2029. Additionally, the share of mobile data traffic associated 

with Fifth Generation (5G) networks was predicted to grow 

from 15% in late 2022 to 25% by the end of 2023, with 

forecasts indicating an increase to 76% by 2029 [2]. 

As mobile data traffic continues to grow rapidly, ensuring 

efficient management of network resources becomes 

increasingly challenging. In this context, accurate cellular 

network traffic prediction is crucial for effective network 

management. Predicting traffic patterns offers several 

benefits, such as enabling proactive congestion control, 

enhancing information security, optimizing network planning, 

and ensuring efficient bandwidth allocation. Long-term traffic 

forecasting helps develop detailed models to anticipate future 

demands, allowing for more precise planning and better 

decision-making. 

Similarly, accurate short-term predictions of mobile traffic 

load play a vital role in improving network efficiency by 

enabling proactive adjustments to network resources. By 

anticipating traffic fluctuations, network operators can 

dynamically allocate bandwidth and optimize network 

parameters to maintain stable performance. 

Furthermore, short-term mobile traffic load prediction 

facilitates efficient resource management, congestion 

mitigation, and load distribution among nearby Base Stations 

(BSs) [3]. Notably, forecasting mobile traffic load also helps 

lower overall power consumption in mobile networks by 

allowing BSs to enter sleep mode during periods of low traffic, 
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as demonstrated in [4]. This, in turn, enhances network 

performance, minimizes service disruptions, and improves the 

overall user experience. 

Cellular traffic prediction can be broadly categorized into 

temporal and spatial-temporal prediction. Temporal 

prediction focuses on forecasting traffic flow at a single 

location using only its historical data, considering time-based 

dependencies. This is typically treated as a univariate 

time-series problem. 

In contrast, spatial-temporal prediction incorporates both 

time-based and spatial dependencies, aiming to predict traffic 

patterns across multiple interconnected network elements. For 

instance, in cellular networks, BSs influence each other due to 

user mobility and handovers, making their traffic patterns 

interdependent. Accurately modeling these spatial 

relationships can improve prediction accuracy in dynamic 

network environments [5]. 

Various indicators, such as upload and download traffic 

volume, the number of connected users, and the number of 

radio resource control connections, are commonly used to 

monitor the state of cellular networks. Based on the number of 

target variables being predicted, cellular traffic prediction can 

be classified into univariate and multivariate prediction 

problems [6]. 

Univariate prediction focuses on forecasting a single variable, 

such as traffic volume or the number of connected users. In 

contrast, multivariate prediction involves simultaneously 

predicting multiple network indicators, which often exhibit 

interdependencies. For example, forecasting both the number 

of connected users and traffic volume at a BS is a typical 

multivariate problem, as an increase in connected users 

generally leads to higher traffic volume [7]. 

From the perspective of prediction duration, traffic forecasting 

can be categorized into short-term and medium-to-long-term 

predictions. However, there is no universal criterion for this 

classification, as it depends on factors like time granularity. 

Generally, for time series data with a 5-minute granularity, 

short-term prediction typically ranges from 5 to 60 minutes, 

whereas medium-to-long-term prediction extends beyond 60 

minutes [8]. 

Additionally, based on the number of future time steps being 

predicted, cellular traffic forecasting can be classified as 

single-step or multi-step prediction. Single-step prediction 

focuses on forecasting traffic for the immediate next time step, 

whereas multi-step prediction extends the forecast over 

multiple future time intervals [7]. 

Predicting traffic in cellular networks can be approached using 

different methods, from traditional time-series forecasting to 

advanced Machine Learning (ML) techniques. Statistical 

models, for example, Auto-Regressive Integrated Moving 

Average (ARIMA), are simple and easy to interpret. However, 

they struggle to handle the complex and changing nature of 

mobile network traffic. In contrast, ML models provide better 

accuracy and scalability, making them more suitable for 

dynamic network environments [9]. Overall, traffic prediction 

methods can be grouped into two main categories: (i) 

statistical-based approaches and (ii) ML and Deep Learning 

(DL) models. Deep learning, in particular, has shown great 

potential in dealing with high-dimensional and time-based 

data.   

Although ML techniques improve prediction accuracy, they 

require large amounts of data and strong computing power. 

Additionally, they often depend on hand-crafted features, 

which may not fully capture the complex patterns in cellular 

traffic. Recently, DL has made significant progress and has 

been successfully applied in many fields. As a result, 

researchers have started using DL models for cellular traffic 

prediction. 

Most existing traffic prediction solutions [10], [11], [12] rely 

on DL models because they can process large datasets and 

provide accurate long-term forecasts. Many types of DL 

models have been used in network traffic prediction. For 

example, Long Short-Term Memory (LSTM) networks are 

commonly used for predicting cellular network traffic [13], 

[14], [15]. Gated Recurrent Units (GRU) also has been applied 

for the same purpose as in [16]. Hybrid models combining 

LSTM and Convolutional Neural Networks (CNN) have also 

been explored for better feature extraction [17] with the cost of 

complexity and processing load. Similarly, a mix of GRU 

version and CNN has been applied in [18]. 

In addition to DL models, other ML techniques have been used 

for traffic forecasting. Tree-based models like Extreme 

Gradient Boosting (XGBoost) and Random Forest (RF) are 

effective at handling non-linear data and selecting important 

features. Support Vector Machines (SVM) work well with 

high-dimensional data, whereas Multi-Layer Perceptron 

(MLP) [19] provides a flexible neural network-based 

approach.  

This study presents a comparative performance evaluation of 

these models, analyzing their predictive accuracy, 

computational efficiency, and suitability for mobile network 

traffic forecasting. By systematically assessing their strengths 

and weaknesses, we aim to identify the most effective model 

for optimizing network resource management and ensuring 

reliable traffic predictions based on real-world traffic data. 

2. DATASET DESCRIPTION 

The dataset used in this study was collected from a telecom 

service provider and represents traffic data for a single 

Long-Term Evolution (LTE) site with three cells in Kandahar 
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Province, Afghanistan. The data spans one month, from 

November 1 to November 30, 2024, covering 24 hours per 

day, as shown in Figure 1. 

The dataset includes the following key attributes: Date and 

Time (timestamp of each recorded data entry), Cell ID (unique 

identifier for each of the three cells at the site), Upload Traffic 

Volume (amount of data uploaded by users within the cell), 

Download Traffic Volume (amount of data downloaded by 

users within the cell), and Total Traffic Volume (sum of 

upload and download traffic, representing the overall data 

usage in each cell). 

The dataset comprises a total of 2,160 samples. The upload 

traffic volume has a mean of 177.09 Mbps, a standard 

deviation of 132.81 Mbps, a minimum of 11.39 Mbps, and a 

maximum of 153.84 Mbps. The download traffic volume has a 

mean of 1,408.95 Mbps, a standard deviation of 937.84 Mbps, 

a minimum of 153.84 Mbps, and a maximum of 5,120.32 

Mbps. The total traffic volume, on the other hand, has a mean 

of 1,586.04 Mbps, a standard deviation of 1,037.09 Mbps, a 

minimum of 173.90 Mbps, and a maximum of 5,920.82 Mbps. 

 

Figure 1: Traffic volume analysis for different time 

granularities. (a) Daily total traffic volume per cell for 

November 2024. (b) Hourly total traffic volume per cell on 

November 15, 2024 

 

Figure 2: Traffic Volume Analysis for November 2025. (a) 

Monthly traffic trends from November 1 to November 30, 

showing uplink, downlink, and total traffic volumes. (b) 

Hourly traffic breakdown for November 15, displaying uplink, 

downlink, and total traffic volumes throughout the day. 

In Figure 2, the traffic volume trends for the month of 

November 2025 are illustrated. Subplot (a) shows the uplink, 

downlink, and total traffic volumes from November 1 to 

November 30, while subplot (b) displays the hourly 

breakdown of uplink, downlink, and total traffic volumes for 

November 15. 

This dataset provides essential insights into network usage 

patterns, enabling the analysis of traffic trends and serving as a 

reliable foundation for training machine learning models to 

forecast future network demand. 

To effectively analyze and model the dataset’s attributes, it is 

essential to preprocess the data appropriately. Given that 

traffic volume metrics can vary significantly in scale, applying 

Min-Max normalization ensures that all features contribute 

proportionally to the predictive models. This normalization 

technique scales each feature to a specified range, typically [0, 

1], preserving the relationships among original data values and 

enhancing model performance. The detailed methodology and 

rationale for selecting Min-Max normalization are elaborated 

in the Section x. 

3. ML MODELS 

3.1. Linear Regression (LR) 

LR is a statistical method that estimates how a dependent 

variable responds to changes in independent variables. The 

general form of the LR equation can be as (1): 

 (1) 
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where the  values represent the estimated coefficients for the 

independent variables, while  is the dependent variable. 

Specifically,  represents the predicted house price, and  

corresponds to the various chosen features. LR is selected 

because it offers a clear and interpretable method for 

understanding the relationship between features and the target 

variable. Additionally, it serves as a valuable point of 

comparison for more complex models [20]. 

3.2. Random Forest (RF) 

RF is an ensemble learning algorithm that enhances decision 

trees by introducing randomness for better generalization. It 

constructs multiple trees using a recursive binary split method. 

Each tree is trained on a bootstrapped subset of data and 

selects a random subset of features at each split as illustrated in 

Figure 3. This approach ensures diversity, as different trees 

capture varying data patterns, and aggregation, where 

predictions are combined (e.g., majority voting for 

classification, averaging for regression). By reducing variance 

and improving robustness, RF delivers strong predictive 

performance while mitigating overfitting [21]. 

Mathematically, for regression, the prediction  for an input  

is given in (2) as following: 

 

(2) 

where  is the number of trees in the forest, and  

represents the prediction from the j
th

 tree for input . 

 

Figure 3: A general illustration of RF regression 

3.3. Support Vector Machines (SVM) 

SVM is a supervised learning algorithm widely used for 

predictive modeling in machine learning. While commonly 

associated with classification tasks, SVM is also effective in 

making predictions for both classification and regression 

problems. The core idea behind SVM is to identify a decision 

boundary that optimally separates data points while 

minimizing errors. This enables SVM to make accurate 

predictions based on learned patterns [22]. 

For prediction, SVM constructs a model based on a set of 

training data and finds a function  that can generalize 

well to unseen data. Mathematically, this function can be 

represented in (3) as below: 

 (3) 

where  is the weight vector,  represents the input features, 

and  is the bias term. 

3.4. Extreme Gradient Boosting (XGBoost) 

XGBoost is a powerful ML algorithm based on gradient 

boosting, excelling in both regression and classification tasks. 

It builds an ensemble of decision trees sequentially, where 

each tree corrects the errors (residuals) of the previous one, 

improving overall accuracy. The model follows the iterative 

update formula given in (4) as below: 

 (4) 

where  is the prediction at iteration ,  is the 

prediction from the previous iteration,  is the learning rate, 

and  is the prediction of the 
th

 tree. 

3.5. Long Short-Term Memory (LSTM) 

LSTM is a specialized Recurrent Neural Network (RNN) 

architecture designed for time-series prediction, effectively 

capturing long-term dependencies while mitigating the 

vanishing gradient problem. It consists of four key 

components: the cell state, input gate, output gate, and forget 

gate. The cell state serves as a memory chain that carries 

information across time steps with minimal modifications. The 

forget gate, defined as (5) determines which information 

should be discarded. 

 (5) 

where  is the sigmoid activation function,  is the new input, 

 is the previous hidden state, and  and  represent the 

weight and bias parameters, respectively.  

Equation (5) produces an output ranging between 0 and 1. An 

output of 0 indicates that the value should be completely 

discarded, whereas an output of 1 signifies that the value 

should be retained. In the following step, the information to be 

stored in the cell state is determined. The sigmoid layer, also 

referred to as the input gate layer, selects the values to be 

preserved, while the tanh layer generates a vector of new 

candidate values that can be integrated with the current state. 

The input gate is defined as (6) while (7) represents the new 

candidate values: 
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 (6) 

 (7) 

where  represents the input gate layer, and  denotes the 

vector of new candidate values. The updated cell state can be 

computed by combining (6) and (7), resulting in the following 

expression for : 

 (8) 

The final step involves computing the output. A sigmoid layer 

is applied to determine which parts of the cell state contribute 

to the final output. Subsequently, the updated cell state is 

passed through a tanh layer to scale the values within the range 

of [-1, 1]. This result is then multiplied by the output from the 

sigmoid gate, ensuring that only the selected components are 

retained in the final output. 

 (9) 

 (10

) 

Here,  represents the output of the sigmoid gate, while   

corresponds to the final selected output. This output is then fed 

into the next layer as input, allowing the sequence to continue 

[23]. The general LSTM architecture is illustrated in Figure 4. 

 

Figure 4: LSTM general architecture [5] 

3.6. The Gated Recurrent Unit (GRU)  

GRU is a variant of RNNs designed to enhance the 

computational efficiency of LSTM networks, particularly 

when handling large-scale datasets. The fundamental 

objective of GRU is to simplify the internal structure of LSTM 

blocks, thereby reducing the computational complexity and 

improving processing speed. Unlike LSTM, which utilizes 

three gates, the GRU architecture comprises only two: the 

update gate and the reset gate as illustrated in Figure 5. The 

update gate controls the flow of information across time steps, 

while the reset gate determines the extent to which previous 

information is retained or discarded. 

 

Figure 5: GRU general architecture [5] 

Although there is no definitive consensus on whether LSTM or 

GRU is superior in performance, the choice between them 

depends on the specific application requirements. GRU is 

preferred when computational efficiency and speed are of 

primary importance, whereas LSTM is more suitable for tasks 

where accuracy takes precedence [24]. 

 

4. METHODOLOGY 

This study evaluates the performance of different ML 

techniques in predicting traffic load using a real-world dataset. 

The dataset consists of upload, download, and total traffic load 

data from an LTE site with three sectors (cells) as discussed in 

Section 2. The methodology follows a systematic approach to 

data preprocessing, model selection, training, evaluation, and 

comparison. 

4.1 Data Preprocessing 

Data preprocessing is essential to ensure that the dataset is 

clean, well-structured, and ready for training ML models. This 

step involves handling missing values, normalizing data, and 

preparing the dataset for efficient model training and 

evaluation.  

Since the dataset used in this study did not contain any missing 

values, a thorough check was performed prior to model 

training to ensure data completeness. Statistical methods, such 

as identifying NaN values and checking for outliers, were 

applied to verify the integrity of the dataset. Given that no 

missing data was detected, no imputation or substitution was 

required, ensuring that the dataset remained intact and ready 

for training and evaluation. 

4.1.1  Data Normalization 

To ensure that all features are on a comparable scale and to 

prevent any one feature from disproportionately affecting the 

model performance, Min-Max normalization was applied to 
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the traffic data. This technique rescales the data into a 

predefined range, typically [0, 1], by transforming each feature 

value according to (11) as following [25]: 

 

 

(11

) 

where  represents the original data point, is the 

minimum value of the feature, and  is the maximum value 

of the feature. By normalizing the data in this manner, we 

ensure that the different traffic load metrics (upload, 

download, and total) are treated equally, allowing for a fair 

comparison between them and improving the performance of 

the ML models. 

Additionally, this normalization minimizes bias from variables 

with varying scales, ensuring a more accurate and fair 

comparison between models. 

4.1.2  Train-Test Split 

To evaluate model performance and ensure generalization to 

unseen data, the dataset was divided into two subsets: a 

training set (70%) and a testing set (30%) as shown in Table 1. 

The training set was used to train the models, while the testing 

set was reserved for evaluating predictive performance. This 

division simulates real-world scenarios, where the model 

learns from historical data and makes predictions on new, 

unseen data. The split was performed randomly to ensure that 

both subsets accurately represent overall traffic patterns, 

reducing the risk of overfitting and ensuring that the model 

does not simply memorize the training data. 

Table 1: Train-test split of total traffic data 

Feature Total 

Samples 

Training Set 

(70%) 

Testing Set 

(30%) 

Total 

Traffic 
2160 1512 648 

4.2 Selection ML Models 

For the evaluation of traffic prediction performance, we 

consider a diverse set of ML techniques, including LR, RF, 

SVM, XGBoost, LSTM, and GRU. These models are selected 

based on their unique strengths in handling different aspects of 

traffic prediction. 

LR serves as a baseline, providing a simple yet interpretable 

approach to capturing linear relationships. RF and XGBoost, 

both ensemble-based models, effectively capture complex 

nonlinear patterns and interactions within traffic data. SVM is 

included for its ability to handle high-dimensional feature 

spaces and its robustness to noise. 

Given the sequential and time-dependent nature of traffic data, 

deep learning models such as LSTM and GRU are chosen for 

their strong temporal learning capabilities, allowing them to 

capture long-range dependencies and dynamic trends. 

By evaluating these models, we aim to compare their 

predictive capabilities and determine the most effective 

approach for accurate traffic forecasting. 

4.3 Performance Metrics 

To assess the prediction performance more effectively, the 

most commonly used evaluation metrics are considered. Root 

Mean Squared Error (RMSE) and Mean Absolute Percentage 

Error (MAPE) are employed to quantify prediction errors, 

with lower values indicating better model accuracy. 

Additionally, the coefficient of determination R
2
 is used to 

evaluate how well the predicted values represent the actual 

data, where higher values signify a better predictive 

performance. 

4.3.1  Root Mean Squared Error (RMSE) 

The RMSE is the square root of the Mean Squared Error 

(MSE) and quantifies the standard deviation of prediction 

errors. Since it is expressed in the same units as the predicted 

values, it provides an intuitive measure of the model's 

accuracy, making it easier to interpret the magnitude of errors. 

 

(12

) 

where , , and  are actual target values, predicted values, 

and sample size (number of observations), respectively. 

4.3.2  Mean Absolute Percentage Error (MAPE)  

MAPE measures the average percentage deviation between 

predicted and actual values, providing a relative assessment of 

prediction accuracy. By expressing errors as a percentage of 

the actual values, MAPE allows for easier interpretation and 

comparison across different datasets and scales. This metric is 

particularly useful in scenarios where understanding the 

magnitude of errors relative to the actual values is essential, 

making it a valuable tool for evaluating model performance in 

various applications. However, MAPE can be sensitive to very 

small actual values, potentially leading to inflated error 

percentages. MAPE can be formulated as (13). 

 

(13

) 

4.3.3  Coefficient of Determination (R²)  

R² quantifies the proportion of variance in the actual values 

that can be explained by the predicted values. It ranges from 0 

to 1, where a value closer to 1 indicates a stronger correlation 

and a better model fit. A higher R² suggests that the model 

effectively captures the patterns in the data, while a lower 

value implies that significant variability remains unexplained. 

This metric is particularly useful for evaluating the overall 

goodness of fit, helping to determine how well the model 
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represents the underlying relationships in the data. However, 

R² alone may not fully reflect model performance, especially 

in cases where data is nonlinear or contains outliers. Equation 

(14) represents R
2
 as below: 

 

(14

) 

where  is the mean of the actual target values. 

5. RESULTS AND DISCUSSION 

This section presents the evaluation of various ML techniques 

for predicting traffic load using a real-world dataset. As 

discussed in Section 2, the dataset consists of upload, 

download, and total traffic load data collected from an LTE 

site with three sectors. However, only the total traffic load was 

considered for prediction due to its comprehensive 

representation of the overall traffic behavior, which includes 

both upload and download activities. The performance of six 

ML models, including LR, RF, SVM, XGBoost, LSTM, and 

GRU, was assessed based on key performance metrics such as 

RMSE, MAPE, and R². 

Figure 6 illustrates the true versus predicted traffic values for 

the LSTM model. The plot demonstrates that the LSTM 

captures the overall traffic patterns, with its predictions 

following the actual variations in network load. While the 

model effectively learns sequential dependencies, some 

discrepancies appear, particularly during sharp fluctuations. 

 

Figure 6: True versus predicted LTE site traffic load using the 

LSTM model 

Similarly, Figure 7 presents the true versus predicted traffic 

values generated by the GRU model. Like LSTM, GRU 

captures the general trend of network traffic, but some 

deviations are noticeable, especially in high-variation regions. 

The predicted values align well with the actual traffic data but 

occasionally smooth out certain peaks. 

 

Figure 7: True versus predicted LTE site traffic load using the 

GRU model 

To further assess model performance, Table 2 summarizes key 

performance metrics for LSTM, GRU, and traditional ML 

models. 

Table 2: Summary of the key performance metrics of different 

ML techniques in LTE traffic prediction 

Model RMSE MAPE (%) R
2
 Score 

LSTM 688.81 37.94 0.592 

GRU 732.47 41.88 0.539 

LR 705.26 42.8 0.197 

RF 696.21 118.37 0.266 

SVM 707.26 111.56 0.22 

XGBoost 689.35 118.17 0.296 

From these results in Table 2, DL models (LSTM and GRU) 

significantly outperform traditional ML techniques in terms of 

lower RMSE, lower MAPE, and higher R² scores. Among 

them, LSTM exhibits the best performance with the lowest 

RMSE (688.81) and the highest R² score (0.592), meaning it 

explains more variance in the traffic data compared to other 

models. 

On the other hand, traditional ML models struggle to capture 

complex temporal dependencies. LR has the lowest R² score 

(0.197), indicating that it explains the least variance in traffic 

patterns. However, it has a relatively lower MAPE (42.80%), 

meaning it provides more stable predictions in terms of 

percentage error, though its absolute performance is still 

weaker than DL models. 

RF, SVM, and XGBoost show slightly better R² scores (0.266, 

0.220, and 0.296, respectively) than LR, but they suffer from 

extremely high MAPE values (above 100%), suggesting that 

their predictions have large relative errors compared to the 

actual traffic values. The high MAPE for these models 

indicates that while they might capture some traffic trends, 
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they fail to produce reliable absolute predictions, making them 

unsuitable for accurate forecasting. 

Among all models, LSTM achieves the best balance between 

RMSE, MAPE, and R² score, making it the most effective 

choice for network traffic prediction. 

6. CONCLUSION 

This study evaluated various ML techniques for network 

traffic prediction using real-world LTE data from Kandahar 

province of Afghanistan. Six models, such as LR, RF, SVM, 

XGBoost, LSTM, and GRU were compared based on RMSE, 

MAPE, and R² to assess their predictive performance. The 

results indicate that DL models, such as LSTM and GRU, 

outperform traditional ML models, effectively capturing 

temporal dependencies in traffic patterns. LSTM achieved the 

best performance, making it the most suitable choice for this 

dataset, while GRU also performed well but slightly below 

LSTM. In contrast, traditional ML models exhibited lower 

predictive accuracy with low R² scores and high MAPE 

values, highlighting their limitations in modeling dynamic 

traffic variations. 

Future research could improve prediction accuracy through 

hyperparameter optimization and hybrid ML-DL approaches. 

Additionally, incorporating user mobility and network 

congestion levels could enhance the robustness of traffic 

forecasting models. This comparative analysis provides a 

useful reference for selecting appropriate ML techniques in 

similar datasets, supporting more efficient network 

management strategies. 
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