
Sheela B et al., International Journal of Emerging Trends in Engineering Research, 13(7), July 2025, 146 – 152

146

ABSTRACT

The exponential growth of mobile communication has

intensified the threat of SMS spam, compromising user

security and trust in messaging platforms. This study

addresses this challenge by designing and deploying a robust

spam detection system using machine learning. We analyze a

publicly available SMS dataset through rigorous

pre-processing, including text normalization, tokenization,

and feature engineering, followed by TF-IDF vectorization. A

comparative evaluation of 11 classifiers—spanning

probabilistic models, ensemble methods, and linear

classifiers—reveals that ensemble techniques outperform

traditional algorithms. The Extra Trees Classifier and

XGBoost achieve state-of-the-art results, with 97.9%

accuracy and 97.5% precision, demonstrating their efficacy in

distinguishing spam from legitimate messages. To bridge the

gap between research and practical application, we develop an

interactive Streamlit web application that enables real-time

spam classification with a user-friendly interface. This work

underscores the potential of ensemble learning for text

classification tasks and provides a scalable framework for

combating SMS spam in real-world scenarios.

Key words: Ensemble Learning, Real-Time Classification,

SMS Spam Detection, Streamlit Application, TF-IDF

Vectorization

1. INTRODUCTION

Short Message Service (SMS) remains a vital mode of

communication, facilitating both personal and professional

interactions globally. However, the widespread adoption of

SMS has made it a prime target for malicious actors who

exploit the platform to disseminate spam—unsolicited

messages that often include advertisements, fraudulent

schemes, or phishing attempts. The persistent influx of such

spam messages not only disrupts user experience but also

poses significant security threats, including privacy breaches

and financial losses.

Traditional spam detection methods, such as rule-based

or keyword-matching filters, have proven increasingly

ineffective as spammers continuously adapt their strategies to

evade detection. These static approaches struggle to cope with

the evolving and diverse nature of spam content. In contrast,

machine learning offers a more adaptive and intelligent

solution by enabling systems to automatically learn from

historical data, recognize complex patterns, and generalize to

previously unseen spam tactics.

This work is dedicated to the development of a

comprehensive SMS spam detection system leveraging

advanced machine learning techniques. The work

encompasses the collection and preprocessing of real-world

SMS data, the extraction and engineering of informative

features, and the rigorous evaluation of multiple machine

learning algorithms. Furthermore, to ensure practical

applicability, we have designed and implemented an

interactive web application that empowers users to classify

SMS messages in real time. By integrating robust analytics

with user-centric design, this work aspires to contribute an

effective and scalable solution to the ongoing challenge of

SMS spam.

2. PROPOSED METHODOLOGY

2.1 Objectives of Proposed Methodology

The primary objectives of this study are as follows:

2.1.1 Comprehensive Data Preparation
To collect, pre-process, and analyse a real-world SMS

dataset, ensuring the data is clean, consistent, and suitable for

effective spam detection. This includes handling missing

values, removing duplicates, and standardizing text data.

2.1.2 Algorithm Implementation and Evaluation
To implement a diverse set of machine learning

algorithms for the classification of SMS messages as spam or

ham, and to rigorously compare their performance using

relevant evaluation metrics such as accuracy, precision, recall,

and F1-score.

2.1.3 Identification of optimal Solution
To determine the most accurate and reliable algorithm(s)

for SMS spam detection based on empirical results, with a

focus on maximizing both accuracy and precision while

minimizing false positives and false negatives.

2.1.4Development of User-Friendly Application
To design and deploy an interactive web application that

enables users to perform real-time SMS spam classification,

thereby demonstrating the practical applicability of the

developed models. The application should be accessible,

responsive, and secure.

SMS Spam Detection Using Machine Learning: An

Experimental Study
Sheela B

1
, Komala R

2

1
Ramaiah Institute of Technology, India, sheelabalu003@gmail.com

2
Assistant Professor Department of MCA, India, komalar@msrit.edu

Received Date: May 28, 2025 Accepted Date: June 25, 2025 Published Date : July 07, 2025

 ISSN 2347 - 3983

Volume 13. No.7, July 2025

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter011372025.pdf

https://doi.org/10.30534/ijeter/2025/011372025

Sheela B et al., International Journal of Emerging Trends in Engineering Research, 13(7), July 2025, 146 – 152

147

2.1.5 Contribution to Research and Practice
To provide insights and recommendations for future

work in SMS spam detection, contributing both to academic

research and to the development of real-world anti-spam

solutions. This includes discussing the scalability,

adaptability, and limitations of the proposed system.

3. LITERATURE REVIEW

The field of SMS spam detection has witnessed

significant advancements over the past two decades. Initially,

detection techniques were primarily rule-based, relying on

manually defined patterns, keyword filters, and regular

expressions. While straightforward to implement, these static

methods were prone to high false positive rates and quickly

became ineffective as spammers adapted their strategies to

bypass predefined rules [1].

The integration of machine learning (ML) marked a

transformative phase in spam detection. One of the earliest

and most influential models was the Naive Bayes classifier

[2], favoured for its probabilistic foundation and effectiveness

in handling text data. Its simplicity and speed made it a

popular choice for early spam filters. As research progressed,

more sophisticated algorithms such as Support Vector

Machines (SVMs) [3] and Decision Trees were introduced,

providing improved accuracy and generalization capabilities

in varied spam scenarios.

In recent years, ensemble learning techniques have

emerged as the leading approach in spam detection tasks.

Algorithms like Random Forest [4], Gradient Boosted

Decision Trees (GBDT), and XGBoost [5] aggregate

predictions from multiple base learners, thereby enhancing

model stability and reducing overfitting. Studies have

reported that models such as Boosted Random Forest can

achieve accuracy levels exceeding 98.47%, outperforming

individual classifiers in both precision and recall [6].

Moreover, the advent of deep learning has introduced

models like Convolutional Neural Networks (CNNs) and

Long Short-Term Memory (LSTM) networks to the domain

[7]. These architectures are capable of capturing complex

contextual relationships in textual data. However, despite

their superior learning capacity, deep learning models often

require large datasets and high computational resources,

limiting their applicability in lightweight or real-time spam

detection systems [8].

Overall, the trend in the literature clearly demonstrates a

shift from static, rule-based filters to adaptive, data-driven

models, with ensemble methods currently offering the best

trade-off between performance, complexity, and practical

deployment.

4. DATASET AND PREPROCESSING

4.1 Dataset Description

For this study, we utilized the "SMS Spam Collection" dataset

from the UCI Machine Learning Repository. The dataset

contains 5,169 SMS messages labeled as either 'ham'

(legitimate) or 'spam'. Figure 1 shows a sample of the SMS

messages used in the dataset. Each entry consists of the

message text and its corresponding label. The dataset is

widely used in academic research and provides a reliable

benchmark for spam detection studies. Table 1 summarizes

key statistics of the SMS dataset.

Figure 1: Sample SMS Data from the Dataset

Table 1: Dataset Statistics

Metric Value

Number of messages 5,572

columns 5

Label

distribution(ham/spam)

~87%ham,~13%spam

Average

characters/message

~79

Average words/message ~18

Figure 2 presents a visual representation of the dataset

statistics.

Figure 2: Dataset statistics

Sheela B et al., International Journal of Emerging Trends in Engineering Research, 13(7), July 2025, 146 – 152

148

4.2 Preprocessing Steps

Effective preprocessing is crucial for accurate spam

detection. The following steps were applied to the raw SMS

data:

 Lowercasing: All text was converted to

lowercase to ensure uniformity and reduce

dimensionality.

 Tokenization: Messages were split into

individual words (tokens) using the NLTK library.

 Removal of Non-Alphanumeric Characters:

Only alphanumeric tokens were retained, removing

punctuation and special symbols.

 Stopword Removal: Common English stop

words were removed to focus on informative words.

 Stemming: Words were reduced to their root

form using the Porter Stemmer to minimize

redundancy.

 Feature Extraction: Additional features, such

as the number of characters, words, and sentences in

each message, were calculated to enhance model

performance.

4.3 Data Transformation

A custom transform_text() function was implemented to

automate the preprocessing pipeline, ensuring consistency

and reproducibility. The function integrates all preprocessing

steps and outputs clean, tokenized, and stemmed text suitable

for vectorization.

5. MACHINE LEARNING ALGORITHM USED

This work evaluates the following machine learning

algorithms for SMS spam detection. Each algorithm is briefly

described below:

5.1 Naïve Bayes (NB)

A probabilistic classifier based on Bayes’ Theorem,

assuming independence among features. It is efficient and fast

for text classification tasks, making it suitable for large-scale

datasets.

5.2 Random Forest(RF)

An ensemble learning method that constructs multiple

decision trees during training and outputs the mode of their

predictions. It is robust to overfitting and effective for

handling high-dimensional data.

5.3 Extra Tree Classifier (ETC)
An extension of Random Forest that adds extra

randomness during tree construction. It typically improves

accuracy and reduces variance by using random thresholds for

splits, resulting in faster and often more accurate models.

5.4 Gradient Boosting Decision Tree (GBDT)

A sequential ensemble technique that builds models

iteratively, where each new model corrects the errors of the

previous one. Known for achieving high predictive

performance in classification tasks.

5.5 Logistic Regression (LR)

A linear model for binary classification. It estimates the

probability that a given input belongs to a particular class

using a logistic function.

5.6 XGBoost

An optimized gradient boosting framework designed for

speed and performance. It incorporates regularization to avoid

overfitting and is widely used in competitive machine

learning tasks.

5.7 Bagging Classifier (BgC)

An ensemble method that combines multiple instances of

a base classifier trained on different random subsets of the

training data. It helps reduce variance and improve model

stability.

5.8 AdaBoost

An adaptive boosting technique that focuses on

misclassified instances by adjusting their weights and

combining weak classifiers to form a strong overall predictor.

 5.9 Decision Tree (DT)

A non-parametric model that recursively splits the dataset

into subsets based on feature values, creating a tree-like

structure. It is easy to interpret and visualize but may over fit

if not pruned.

5.10 K-Nearest Neighbor (KNN)

A non-parametric, instance-based learning method. It

classifies new data points based on the majority label of the

‘k’ closest samples in the feature space.

5.11 Support Vector Classifier(SVC)

A powerful supervised learning model that finds the

optimal hyperplane separating classes with maximum margin.

It is effective in high-dimensional spaces but may be

computationally intensive.

6. FEATURE EXTRACTION AND VECTORIZATION

Text data was transformed into numerical features using

TF-IDF (Term Frequency-Inverse Document Frequency)

vectorization. This approach captures the importance of

words in each message relative to the entire dataset, enabling

machine learning algorithms to process and learn from the

content effectively. The TF-IDF representation reduces the

impact of frequently occurring but less informative words,

while highlighting rare but significant terms.

In addition to TF-IDF, feature engineering was

performed to extract message-level attributes, such as

message length, word count, and punctuation frequency,

which can further aid in distinguishing spam from ham.

7. EXPERIMENTAL RESULTS

7.1 Evaluation Metrics

Model performance was evaluated using the following

metrics, in line with IEEE best practices:

 Accuracy: Proportion of correctly classified

messages.

 Precision: Proportion of messages classified as

spam that are actually spam.

 Recall: Proportion of actual spam messages

that were correctly identified.

Sheela B et al., International Journal of Emerging Trends in Engineering Research, 13(7), July 2025, 146 – 152

149

 F1-Score: Harmonic mean of precision and

recall.

Figure 5 illustrates the confusion matrix for the classification

results.

Table 2: Confusion Matrix

 Predicted

Ham

Predicted

Spam

Actual Ham 971 14

Actual Spam 97 878

As illustrated by the confusion matrix in Table 2, the model's

ability to distinguish between ham and spam messages is

evident.

Figure 3 provides a visual representation of the top 30 most

frequent words found in ham messages, offering insights into

typical non-spam content.

Figure 3: Top 30 words of Ham Messages

To contrast with ham messages, Figure 4 displays the top 30

words most frequently appearing in spam messages, which

can aid in feature selection for classification.

Figure 4: Top 30 words in Spam Messages

Figure 5: Confusion Matrix

Table 3: Classification Report

 Precis

ion

Recall F1-sc

ore

Support

0 0.94 0.99 0.96 985

1 0.98 0.93 0.96 945

Accuracy 0.96 1930

Macro Avg 096 0.96 0.96 1930

Weighted

Avg

0.96 0.96 0.96 1930

Table 3 shows the detailed classification metrics including

precision, recall, and F1-score.

7.2 Performance Comparison

The classification performance of the implemented machine

learning models was assessed using accuracy and precision.

Figure 6 compares the accuracy and precision of different

classifiers. Among all models, the Extra Trees Classifier

(ETC) and XGBoost (XGB) achieved the highest accuracy

(97.87%), while Naive Bayes (NB) and Random Forest (RF)

showed perfect precision (1.0000), indicating zero false

positives.

Ensemble methods generally performed better than

individual models, highlighting their effectiveness in handling

SMS spam data.

A visual comparison is provided in Figure 6.

Sheela B et al., International Journal of Emerging Trends in Engineering Research, 13(7), July 2025, 146 – 152

150

Figure 6: Accuracy and Precision Comparison of

Classifiers

8. SYSTEM IMPLEMENTATION

8.1 Model Selection

Based on experimental results, ensemble methods such as

Extra Trees and XGBoost were selected for deployment due

to their superior performance, scalability, and robustness to

overfitting.

 8.2 Web Application

A user-friendly web application was developed using

Streamlit. The application allows users to input SMS

messages and receive real-time predictions (spam or ham)

using the trained model.

Key Features:

 Real-time SMS spam classification

 Intuitive user interface with clear input/output

 Efficient preprocessing and model inference

pipeline

 Secure handling of user data

 Scalability for integration into larger

messaging platforms.

Deployment and Public Access:

 The SMS spam detection system was deployed

as a web application on Streamlit Community Cloud,

which provides a secure and scalable platform for

hosting interactive machine learning applications.

This deployment allows users worldwide to easily

access the app via a public URL, submit SMS

messages, and receive real-time spam classification

results.

 The application not only demonstrates its

practical utility but also encourages wider user

engagement and feedback. The cloud-based

deployment eliminates the need for local installation,

making the tool readily available on any device with

internet access.

 Furthermore, Streamlit’s platform supports

easy updates and maintenance, ensuring that the

application can be improved continuously based on

user input and evolving datasets.

Access the application here:

https://sms-spam-detection-using--mll-publicurl.stre

amlit.app/

Figure 7 displays the interface of the deployed Streamlit web

application.

Figure 7: SMS Spam Classifier Web Application

9. DISCUSSION

9.1 Importance of Preprocessing

Comprehensive text preprocessing significantly

improved model performance, especially for algorithms

sensitive to noise and irrelevant features. The removal of stop

words, stemming, and feature engineering contributed to

higher accuracy and reduced false positives.

9.2 Ensemble Methods

Ensemble models such a Random Forest, Extra Trees,

and Voting Classifier consistently outperformed individual

classifiers, demonstrating the effectiveness of aggregating

diverse model predictions. These methods are particularly

robust to overfitting and can generalize well to unseen data.

9.3 Limitations

 The dataset is limited to English SMS

messages; further work is needed for multilingual or

code-mixed messages.

 Highly imbalanced datasets can challenge

model performance, especially for rare spam types.

Techniques such as SMOTE or cost-sensitive

learning may be explored in future work.

 Real-world deployment may require

additional considerations for privacy, latency, and

integration with existing messaging infrastructure.

https://sms-spam-detection-using--mll-publicurl.streamlit.app/
https://sms-spam-detection-using--mll-publicurl.streamlit.app/

Sheela B et al., International Journal of Emerging Trends in Engineering Research, 13(7), July 2025, 146 – 152

151

10. CONCLUSION

This study demonstrates the effectiveness of machine

learning, particularly ensemble methods, for SMS spam

detection. Extra Trees Classifier and XGBoost delivered the

best results, achieving high accuracy and precision. The

deployment of a web application showcases the practical

utility of the approach. Future work may explore deep

learning models, adaptation to multilingual datasets, and

integration with real-time messaging systems.

11. PSEUDOCODE FOR KEY ALGORITHM

Based on results, the top-performing algorithms were:

 Extra Trees Classifier (ETC)

 XGBoost (Extreme Gradient Boosting)

 Random Forest (RF)

 Naive Bayes (NB)

 Pseudocode: Extra Trees Classifier (ETC)

Input: Training dataset D with features X and labels y

Output: Trained Extra Trees Classifier model

1. For N trees in the ensemble:

 a. Randomly sample training data with replacement

(optional)

 b. For each node in the tree:

 i. Select a random subset of features

 ii. For each feature, randomly choose a split

threshold

 iii. Choose the best split based on information gain

 c. Grow the tree to full depth without pruning

2. For prediction:

 a. Pass input data through each tree

 b. Aggregate predictions using majority vote

(classification)

Return: Aggregated prediction from all trees

Pseudocode: XGBoost

Input: Training data D = {(x1, y1), (x2, y2), ..., (xn, yn)}

Output: Trained XGBoost model

1. Initialize base prediction with a constant value (e.g.,

log odds)

2. For each boosting round t = 1 to T:

 a. Compute gradients and Hessians for current

predictions

 b. Fit a decision tree to the gradients

 c. Compute leaf weights to minimize loss

 d. Update predictions:

 pred = pred + learning_rate * tree_output

3. Final prediction = sign(pred)

Return: Ensemble of T trees with learned weights

Pseudocode: Random Forest

Input: Dataset D with features X and labels y

Output: Random Forest model

1. For each of N trees:

 a. Create a bootstrap sample of D

 b. Build a decision tree:

 i. At each split, randomly select a subset of features

 ii. Choose the best split using Gini index or entropy

 iii. Recursively split until max depth or pure leaf

2. For classification:

 a. Each tree votes for a class

 b. Use majority voting to determine final output

Return: Majority vote across all trees

Pseudocode: Naive Bayes

Input: Training data with features (words) and labels

(spam/ham)

Output: Trained Naive Bayes classifier

1. For each class c in {spam, ham}:

 a. Calculate prior P(c) = count(c) / total_messages

 b. For each word w:

 i. Count frequency of w in class c

 ii. Calculate likelihood P(w|c) with Laplace

smoothing

2. For prediction on new message m:

 a. For each class c:

 i. Compute score: log(P(c)) + Σ log(P(w|c)) for each

word w in m

 b. Predict class with highest score

Return: Class label (spam or ham)

REFERENCES

[1] "SMS Spam Collection Dataset," UCI Machine Learning

Repository. [Online]. Available:

https://archive.ics.uci.edu/ml/datasets/sms+spam+collection.

[2] A. Almeida, J. M. G. Hidalgo, and A. Yamakami,

"Contributions to the study of SMS spam filtering: New

collection and results," in Proc. 11th ACM Symp. Document

Engineering, 2011, pp. 259–262.

[3] I. Androutsopoulos, J. Koutsias, K. V. Chandrinos, and C.

D. Spyropoulos, "An experimental comparison of naive

Bayesian and keyword-based anti-spam filtering with

personal e-mail messages," in Proc. 23rd Annual Int. ACM

SIGIR Conf. Research and Development in Information

Retrieval, 2000, pp. 160–167.

[4] F. Pedregosa et al., "Scikit-learn: Machine learning in

Python," Journal of Machine Learning Research, vol. 12, pp.

2825–2830, 2011.

https://archive.ics.uci.edu/ml/datasets/sms+spam+collection

Sheela B et al., International Journal of Emerging Trends in Engineering Research, 13(7), July 2025, 146 – 152

152

[5] C. Cortes and V. Vapnik, "Support-vector networks,"

Machine Learning, vol. 20, no. 3, pp. 273–297, 1995.

[6] L. Breiman, "Random forests," Machine Learning, vol.

45, no. 1, pp. 5–32, 2001.

[7] T. Chen and C. Guestrin, "XGBoost: A scalable tree

boosting system," in Proc. 22nd ACM SIGKDD Int. Conf.

Knowledge Discovery and Data Mining, 2016, pp. 785–794.

[8] NLTK Project. [Online]. Available: https://www.nltk.org/.

[Accessed: 28-May-2025].

https://www.nltk.org/

