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ABSTRACT 

The exponential growth of mobile communication has 

intensified the threat of SMS spam, compromising user 

security and trust in messaging platforms. This study 

addresses this challenge by designing and deploying a robust 

spam detection system using machine learning. We analyze a 

publicly available SMS dataset through rigorous 

pre-processing, including text normalization, tokenization, 

and feature engineering, followed by TF-IDF vectorization. A 

comparative evaluation of 11 classifiers—spanning 

probabilistic models, ensemble methods, and linear 

classifiers—reveals that ensemble techniques outperform 

traditional algorithms. The Extra Trees Classifier and 

XGBoost achieve state-of-the-art results, with 97.9% 

accuracy and 97.5% precision, demonstrating their efficacy in 

distinguishing spam from legitimate messages. To bridge the 

gap between research and practical application, we develop an 

interactive Streamlit web application that enables real-time 

spam classification with a user-friendly interface. This work 

underscores the potential of ensemble learning for text 

classification tasks and provides a scalable framework for 

combating SMS spam in real-world scenarios. 
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1. INTRODUCTION 

 

Short Message Service (SMS) remains a vital mode of 

communication, facilitating both personal and professional 

interactions globally. However, the widespread adoption of 

SMS has made it a prime target for malicious actors who 

exploit the platform to disseminate spam—unsolicited 

messages that often include advertisements, fraudulent 

schemes, or phishing attempts. The persistent influx of such 

spam messages not only disrupts user experience but also 

poses significant security threats, including privacy breaches 

and financial losses. 

Traditional spam detection methods, such as rule-based 

or keyword-matching filters, have proven increasingly 

ineffective as spammers continuously adapt their strategies to 

 

 
 

evade detection. These static approaches struggle to cope with 

the evolving and diverse nature of spam content. In contrast, 

machine learning offers a more adaptive and intelligent 

solution by enabling systems to automatically learn from 

historical data, recognize complex patterns, and generalize to 

previously unseen spam tactics. 

This work is dedicated to the development of a 

comprehensive SMS spam detection system leveraging 

advanced machine learning techniques. The work 

encompasses the collection and preprocessing of real-world 

SMS data, the extraction and engineering of informative 

features, and the rigorous evaluation of multiple machine 

learning algorithms. Furthermore, to ensure practical 

applicability, we have designed and implemented an 

interactive web application that empowers users to classify 

SMS messages in real time. By integrating robust analytics 

with user-centric design, this work aspires to contribute an 

effective and scalable solution to the ongoing challenge of 

SMS spam. 

 

2. PROPOSED METHODOLOGY 

 

2.1 Objectives of Proposed Methodology 

The primary objectives of this study are as follows: 

2.1.1 Comprehensive Data Preparation 
To collect, pre-process, and analyse a real-world SMS 

dataset, ensuring the data is clean, consistent, and suitable for 

effective spam detection. This includes handling missing 

values, removing duplicates, and standardizing text data. 

2.1.2 Algorithm Implementation and Evaluation 
To implement a diverse set of machine learning 

algorithms for the classification of SMS messages as spam or 

ham, and to rigorously compare their performance using 

relevant evaluation metrics such as accuracy, precision, recall, 

and F1-score. 

2.1.3 Identification of optimal Solution 
To determine the most accurate and reliable algorithm(s) 

for SMS spam detection based on empirical results, with a 

focus on maximizing both accuracy and precision while 

minimizing false positives and false negatives. 

2.1.4Development of User-Friendly Application 
To design and deploy an interactive web application that 

enables users to perform real-time SMS spam classification, 

thereby demonstrating the practical applicability of the 

developed models. The application should be accessible, 

responsive, and secure. 
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2.1.5 Contribution to Research and Practice 
To provide insights and recommendations for future 

work in SMS spam detection, contributing both to academic 

research and to the development of real-world anti-spam 

solutions. This includes discussing the scalability, 

adaptability, and limitations of the proposed system. 

 

3. LITERATURE REVIEW 

The field of SMS spam detection has witnessed 

significant advancements over the past two decades. Initially, 

detection techniques were primarily rule-based, relying on 

manually defined patterns, keyword filters, and regular 

expressions. While straightforward to implement, these static 

methods were prone to high false positive rates and quickly 

became ineffective as spammers adapted their strategies to 

bypass predefined rules [1]. 

The integration of machine learning (ML) marked a 

transformative phase in spam detection. One of the earliest 

and most influential models was the Naive Bayes classifier 

[2], favoured for its probabilistic foundation and effectiveness 

in handling text data. Its simplicity and speed made it a 

popular choice for early spam filters. As research progressed, 

more sophisticated algorithms such as Support Vector 

Machines (SVMs) [3] and Decision Trees were introduced, 

providing improved accuracy and generalization capabilities 

in varied spam scenarios. 

In recent years, ensemble learning techniques have 

emerged as the leading approach in spam detection tasks. 

Algorithms like Random Forest [4], Gradient Boosted 

Decision Trees (GBDT), and XGBoost [5] aggregate 

predictions from multiple base learners, thereby enhancing 

model stability and reducing overfitting. Studies have 

reported that models such as Boosted Random Forest can 

achieve accuracy levels exceeding 98.47%, outperforming 

individual classifiers in both precision and recall [6]. 

Moreover, the advent of deep learning has introduced 

models like Convolutional Neural Networks (CNNs) and 

Long Short-Term Memory (LSTM) networks to the domain 

[7]. These architectures are capable of capturing complex 

contextual relationships in textual data. However, despite 

their superior learning capacity, deep learning models often 

require large datasets and high computational resources, 

limiting their applicability in lightweight or real-time spam 

detection systems [8]. 

Overall, the trend in the literature clearly demonstrates a 

shift from static, rule-based filters to adaptive, data-driven 

models, with ensemble methods currently offering the best 

trade-off between performance, complexity, and practical 

deployment. 

 

4. DATASET AND PREPROCESSING 

4.1 Dataset Description 

For this study, we utilized the "SMS Spam Collection" dataset 

from the UCI Machine Learning Repository. The dataset 

contains 5,169 SMS messages labeled as either 'ham' 

(legitimate) or 'spam'. Figure 1 shows a sample of the SMS 

messages used in the dataset. Each entry consists of the 

message text and its corresponding label. The dataset is 

widely used in academic research and provides a reliable 

benchmark for spam detection studies. Table 1 summarizes 

key statistics of the SMS dataset. 

 

 
Figure 1: Sample SMS Data from the Dataset 

 

 

Table 1: Dataset Statistics 

Metric Value 

Number of messages 5,572 

columns 5 

Label 

distribution(ham/spam) 

~87%ham,~13%spam 

Average 

characters/message 

~79 

Average words/message ~18 

 

Figure 2 presents a visual representation of the dataset 

statistics. 

 

 
 

Figure 2: Dataset statistics 
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4.2 Preprocessing Steps 

Effective preprocessing is crucial for accurate spam 

detection. The following steps were applied to the raw SMS 

data: 

 Lowercasing: All text was converted to 

lowercase to ensure uniformity and reduce 

dimensionality. 

 Tokenization: Messages were split into 

individual words (tokens) using the NLTK library. 

 Removal of Non-Alphanumeric Characters: 

Only alphanumeric tokens were retained, removing 

punctuation and special symbols. 

 Stopword Removal: Common English stop 

words were removed to focus on informative words. 

 Stemming: Words were reduced to their root 

form using the Porter Stemmer to minimize 

redundancy. 

 Feature Extraction: Additional features, such 

as the number of characters, words, and sentences in 

each message, were calculated to enhance model 

performance. 

4.3 Data Transformation 

A custom transform_text() function was implemented to 

automate the preprocessing pipeline, ensuring consistency 

and reproducibility. The function integrates all preprocessing 

steps and outputs clean, tokenized, and stemmed text suitable 

for vectorization. 

 

5. MACHINE LEARNING ALGORITHM USED 

 

This work evaluates the following machine learning 

algorithms for SMS spam detection. Each algorithm is briefly 

described below: 

5.1 Naïve Bayes (NB) 

A probabilistic classifier based on Bayes’ Theorem, 

assuming independence among features. It is efficient and fast 

for text classification tasks, making it suitable for large-scale 

datasets. 

5.2 Random Forest(RF) 

An ensemble learning method that constructs multiple 

decision trees during training and outputs the mode of their 

predictions. It is robust to overfitting and effective for 

handling high-dimensional data. 

 

5.3 Extra Tree Classifier (ETC) 
An extension of Random Forest that adds extra 

randomness during tree construction. It typically improves 

accuracy and reduces variance by using random thresholds for 

splits, resulting in faster and often more accurate models. 

 

5.4 Gradient Boosting Decision Tree (GBDT) 

A sequential ensemble technique that builds models 

iteratively, where each new model corrects the errors of the 

previous one. Known for achieving high predictive 

performance in classification tasks. 

5.5 Logistic Regression (LR) 

A linear model for binary classification. It estimates the 

probability that a given input belongs to a particular class 

using a logistic function. 

 

5.6 XGBoost 

An optimized gradient boosting framework designed for 

speed and performance. It incorporates regularization to avoid 

overfitting and is widely used in competitive machine 

learning tasks. 

 

5.7 Bagging Classifier (BgC) 

An ensemble method that combines multiple instances of 

a base classifier trained on different random subsets of the 

training data. It helps reduce variance and improve model 

stability. 

 

5.8 AdaBoost 

An adaptive boosting technique that focuses on 

misclassified instances by adjusting their weights and 

combining weak classifiers to form a strong overall predictor. 

  5.9 Decision Tree (DT) 

A non-parametric model that recursively splits the dataset 

into subsets based on feature values, creating a tree-like 

structure. It is easy to interpret and visualize but may over fit 

if not pruned. 

 

5.10 K-Nearest Neighbor (KNN) 

A non-parametric, instance-based learning method. It 

classifies new data points based on the majority label of the 

‘k’ closest samples in the feature space. 

 

5.11 Support Vector Classifier(SVC) 

A powerful supervised learning model that finds the 

optimal hyperplane separating classes with maximum margin. 

It is effective in high-dimensional spaces but may be 

computationally intensive. 

 

6. FEATURE EXTRACTION AND VECTORIZATION 

Text data was transformed into numerical features using 

TF-IDF (Term Frequency-Inverse Document Frequency) 

vectorization. This approach captures the importance of 

words in each message relative to the entire dataset, enabling 

machine learning algorithms to process and learn from the 

content effectively. The TF-IDF representation reduces the 

impact of frequently occurring but less informative words, 

while highlighting rare but significant terms. 

In addition to TF-IDF, feature engineering was 

performed to extract message-level attributes, such as 

message length,     word count, and punctuation frequency, 

which can further aid in distinguishing spam from ham.                                                                      

 

7. EXPERIMENTAL RESULTS 

 

7.1 Evaluation Metrics 

Model performance was evaluated using the following 

metrics, in line with IEEE best practices: 

 Accuracy: Proportion of correctly classified 

messages. 

 Precision: Proportion of messages classified as 

spam that are actually spam. 

 Recall: Proportion of actual spam messages 

that were correctly identified. 
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 F1-Score: Harmonic mean of precision and 

recall. 

Figure 5 illustrates the confusion matrix for the classification 

results. 

Table 2: Confusion Matrix 

 Predicted 

Ham 

Predicted 

Spam 

Actual Ham 971 14 

Actual Spam 97 878 

As illustrated by the confusion matrix in Table 2, the model's 

ability to distinguish between ham and spam messages is 

evident. 

 

Figure 3 provides a visual representation of the top 30 most 

frequent words found in ham messages, offering insights into 

typical non-spam content. 

 
Figure 3: Top 30 words of Ham Messages 

 

To contrast with ham messages, Figure 4 displays the top 30 

words most frequently appearing in spam messages, which 

can aid in feature selection for classification. 

 

 
Figure 4:  Top 30 words in Spam Messages 

 
 

Figure 5: Confusion Matrix 

 

Table 3: Classification Report 

 

 Precis

ion 

Recall F1-sc

ore 

Support 

0 0.94 0.99 0.96 985 

1 0.98 0.93 0.96 945 

Accuracy   0.96 1930 

Macro Avg 096 0.96 0.96 1930 

Weighted 

Avg 

0.96 0.96 0.96 1930 

 

Table 3 shows the detailed classification metrics including 

precision, recall, and F1-score. 

 

7.2 Performance Comparison 

 

The classification performance of the implemented machine 

learning models was assessed using accuracy and precision. 

Figure 6 compares the accuracy and precision of different 

classifiers. Among all models, the Extra Trees Classifier 

(ETC) and XGBoost (XGB) achieved the highest accuracy 

(97.87%), while Naive Bayes (NB) and Random Forest (RF) 

showed perfect precision (1.0000), indicating zero false 

positives. 

Ensemble methods generally performed better than 

individual models, highlighting their effectiveness in handling 

SMS spam data. 

 

A visual comparison is provided in Figure 6. 
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Figure 6: Accuracy and Precision Comparison of 

Classifiers 

 

8. SYSTEM IMPLEMENTATION 

8.1 Model Selection 

Based on experimental results, ensemble methods such as 

Extra Trees and XGBoost were selected for deployment due 

to their superior performance, scalability, and robustness to 

overfitting. 

     8.2 Web Application 

A user-friendly web application was developed using 

Streamlit. The application allows users to input SMS 

messages and receive real-time predictions (spam or ham) 

using the trained model. 

Key Features: 

 Real-time SMS spam classification 

 Intuitive user interface with clear input/output 

 Efficient preprocessing and model inference 

pipeline 

 Secure handling of user data 

 Scalability for integration into larger 

messaging platforms. 

Deployment and Public Access: 

 The SMS spam detection system was deployed 

as a web application on Streamlit Community Cloud, 

which provides a secure and scalable platform for 

hosting interactive machine learning applications. 

This deployment allows users worldwide to easily 

access the app via a public URL, submit SMS 

messages, and receive real-time spam classification 

results. 

 The application not only demonstrates its 

practical utility but also encourages wider user 

engagement and feedback. The cloud-based 

deployment eliminates the need for local installation, 

making the tool readily available on any device with 

internet access. 

 Furthermore, Streamlit’s platform supports 

easy updates and maintenance, ensuring that the 

application can be improved continuously based on 

user input and evolving datasets. 

Access the application here: 

https://sms-spam-detection-using--mll-publicurl.stre

amlit.app/ 

 

Figure 7 displays the interface of the deployed Streamlit web 

application. 

 

 
Figure 7: SMS Spam Classifier Web Application 

 

9. DISCUSSION 

9.1 Importance of Preprocessing 

Comprehensive text preprocessing significantly 

improved model performance, especially for algorithms 

sensitive to noise and irrelevant features. The removal of stop 

words, stemming, and feature engineering contributed to 

higher accuracy and reduced false positives. 

9.2 Ensemble Methods 

Ensemble models such a Random Forest, Extra Trees, 

and Voting Classifier consistently outperformed individual 

classifiers, demonstrating the effectiveness of aggregating 

diverse model predictions. These methods are particularly 

robust to overfitting and can generalize well to unseen data. 

9.3 Limitations 

 The dataset is limited to English SMS 

messages; further work is needed for multilingual or 

code-mixed messages. 

 Highly imbalanced datasets can challenge 

model performance, especially for rare spam types. 

Techniques such as SMOTE or cost-sensitive 

learning may be explored in future work. 

 Real-world deployment may require 

additional considerations for privacy, latency, and 

integration with existing messaging infrastructure. 

 

 

https://sms-spam-detection-using--mll-publicurl.streamlit.app/
https://sms-spam-detection-using--mll-publicurl.streamlit.app/
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10. CONCLUSION 

This study demonstrates the effectiveness of machine 

learning, particularly ensemble methods, for SMS spam 

detection. Extra Trees Classifier and XGBoost delivered the 

best results, achieving high accuracy and precision. The 

deployment of a web application showcases the practical 

utility of the approach. Future work may explore deep 

learning models, adaptation to multilingual datasets, and 

integration with real-time messaging systems. 

 

11. PSEUDOCODE FOR KEY ALGORITHM 

 

Based on results, the top-performing algorithms were: 

 Extra Trees Classifier (ETC) 

 XGBoost (Extreme Gradient Boosting) 

 Random Forest (RF) 

 Naive Bayes (NB) 

 Pseudocode: Extra Trees Classifier (ETC) 

 

Input: Training dataset D with features X and labels y 

Output: Trained Extra Trees Classifier model 

 

1. For N trees in the ensemble: 

    a. Randomly sample training data with replacement 

(optional) 

    b. For each node in the tree: 

        i. Select a random subset of features 

        ii. For each feature, randomly choose a split 

threshold 

        iii. Choose the best split based on information gain 

    c. Grow the tree to full depth without pruning 

 

2. For prediction: 

    a. Pass input data through each tree 

    b. Aggregate predictions using majority vote 

(classification) 

 

Return: Aggregated prediction from all trees 

 

Pseudocode: XGBoost 

 

Input: Training data D = {(x1, y1), (x2, y2), ..., (xn, yn)} 

Output: Trained XGBoost model 

 

1. Initialize base prediction with a constant value (e.g., 

log odds) 

2. For each boosting round t = 1 to T: 

    a. Compute gradients and Hessians for current 

predictions 

    b. Fit a decision tree to the gradients 

    c. Compute leaf weights to minimize loss 

    d. Update predictions:  

       pred = pred + learning_rate * tree_output 

3. Final prediction = sign(pred) 

 

Return: Ensemble of T trees with learned weights 

 

Pseudocode: Random Forest 

 

Input: Dataset D with features X and labels y 

Output: Random Forest model 

 

1. For each of N trees: 

    a. Create a bootstrap sample of D 

    b. Build a decision tree: 

        i. At each split, randomly select a subset of features 

        ii. Choose the best split using Gini index or entropy 

        iii. Recursively split until max depth or pure leaf 

 

2. For classification: 

    a. Each tree votes for a class 

    b. Use majority voting to determine final output 

 

Return: Majority vote across all trees 

 

Pseudocode: Naive Bayes 

 

Input: Training data with features (words) and labels 

(spam/ham) 

Output: Trained Naive Bayes classifier 

 

1. For each class c in {spam, ham}: 

    a. Calculate prior P(c) = count(c) / total_messages 

    b. For each word w: 

        i. Count frequency of w in class c 

        ii. Calculate likelihood P(w|c) with Laplace 

smoothing 

 

2. For prediction on new message m: 

    a. For each class c: 

        i. Compute score: log(P(c)) + Σ log(P(w|c)) for each 

word w in m 

    b. Predict class with highest score 

 

Return: Class label (spam or ham) 
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