
Zied Guitouni et al.,  International Journal of Emerging Trends in Engineering Research, 12(8), August 2024, 128 – 138 

128 

 

 

 
ABSTRACT 

 

Secure Hash Algorithms (SHA) are widely used in the 

Internet of Things (IoT) systems for message authentication 

and integrity verification. However, the performance of 

different SHA algorithms can vary significantly in terms of 

Quality of Service (QoS) metrics such as area utilization, 

processing speed, energy efficiency, and security. In this 

paper, we present a comprehensive analysis of the QoS 

parameters of various SHA algorithms and discuss the 

trade-offs between performance and security when selecting 

SHA algorithms for resource-constrained IoT devices. The 

study focuses on the hardware implementation of SHA 

algorithms in Field-Programmable Gate Array (FPGA) 

devices, which are commonly used in IoT applications. The 

performances and resource utilization of different SHA 

algorithms are compared and analyzed. The comparative 

results show that SHA-2 provide a good balance between 

performance and security, but SHA-3 provide better security 

due to its resistance to attacks such as length extension and 

collision 

 

Key words : Secure Hash Algorithms, IoT systems, Quality of 

Service, QoS parameters, resource-constrained devices, 

FPGA 

 

1. INTRODUCTION 

 

The Internet of Things (IoT) has become an essential part of 

modern life, with billions of devices interconnected through 

wireless networks. As the use of IoT systems increases, so do 

the security concerns associated with them. Cryptographic 

algorithms, such as SHA algorithms, are widely used to secure 

the transmission of data in IoT systems. However, the 

performance of SHA algorithms is an essential consideration 

when dealing with resource-limited IoT devices. 

Quality of Service (QoS) is a critical factor in designing IoT 

systems that meet the performance requirements of users. In 

particular, the performance of cryptographic algorithms must 

be optimized to ensure that IoT devices operate efficiently 

while maintaining the security and privacy of transmitted data. 

One important factor that affects the QoS of hash functions is 

their computational complexity. Hash functions with higher 

 
 

computational complexity may require more processing power 

and memory, which can affect the performance of 

resource-constrained IoT devices. Therefore, the selection of 

hash functions with an appropriate level of computational 

complexity is critical to ensure the desired level of QoS in IoT 

systems. 

In this paper, we provide a QoS analysis of SHA algorithms 

in IoT systems. We investigate the performance of three 

different SHA algorithms, namely SHA-1, SHA-2, and SHA-3, 

in terms of their resource utilization, processing speed, power 

consumption, and security analysis. Our study aims to provide 

insights into the performance of SHA algorithms and to 

identify which algorithm is best suited for IoT systems. We also 

discuss the trade-offs between security, performance, and QoS 

when selecting an appropriate SHA algorithm for IoT devices. 

The rest of the paper is organized as follows. Section 2 

provides a brief overview of SHA algorithms and their use in 

IoT systems. Section 3 details the different SHA standards 

recommended by NIST including SHA-1, SHA-2, and SHA-3. 

The techniques and results of FPGA implementation of 

different SHA algorithms are described in Section 4. Section 5 

discusses a security analysis of SHA algorithms. Finally, 

Section 6 concludes the paper. 

2. IOT SYSTEMS SECURITY USING SHA FMILLY  

2.1 IoT Systems Security Description 

IoT systems are highly vulnerable to security threats due to the 

massive amount of data transmitted across various networks [1]. 

Ensuring the security of IoT systems is critical to safeguard 

sensitive information from unauthorized access, tampering, or 

theft. SHA algorithms provide an effective solution for securing 

IoT systems by offering various security features. 

Data integrity is one of the primary use cases of SHA algorithms 

in IoT systems. SHA algorithms generate unique message digests 

that act as a fingerprint for data packets [2]. These message 

digests are used to verify the integrity of the data during 

transmission. The receiving device calculates the message digest 

of the received data and compares it with the expected message 

digest. If the two digests match, it ensures that the data has not 

been tampered with during transmission. 

Another significant use case of SHA algorithms in IoT systems is 

message authentication. In combination with digital signatures or 

message authentication codes (MACs), SHA algorithms provide 

message authentication capabilities [3]. The sender generates a 

 

A QoS Analysis of SHA Algorithms for IoT Systems 
Zied Guitouni

1
, Eya Ben Brahim

2
, Mounir Zrigui

2
, Mohsen Machhout

1
 

 

1 
Electronics and Microelectronics Laboratory, Faculty of Sciences Monastir (FSM), Tunisia 
2
 Research Laboratory in Algebra, Numbers theory and Intelligent Systems, FSM, Tunisia 

 guitounizied@yahoo.frl 
 

Received Date: June 25, 2024      Accepted Date:  July 29, 2024    Published Date : August 07, 2024 

                                                                                                                                    ISSN 2347 - 3983 

Volume 12. No.8, August 2024 

International Journal of Emerging Trends in Engineering Research 
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter011282024.pdf 

https://doi.org/10.30534/ijeter/2024/011282024 

 
 

 

https://www.facebook.com/groups/RLANTAI/
mailto:guitounizied@yahoo.fr


Zied Guitouni et al.,  International Journal of Emerging Trends in Engineering Research, 12(8), August 2024, 128 – 138 

129 

 

 

hash or HMAC of the message using a private key, and the 

recipient verifies the authenticity by computing the hash using 

the corresponding public key. This ensures that the message 

originated from a trusted source and was not modified during 

transit [4]. 

SHA algorithms are also used in firmware and software 

verification in IoT devices. IoT devices require periodic 

firmware and software updates to fix security vulnerabilities and 

add new features [5]. SHA algorithms are used to verify the 

authenticity and integrity of these updates. The device generates 

a message digest of the firmware or software package using SHA 

algorithms during the update process. The receiving party can 

then compare the received message digest with the calculated 

one to ensure the authenticity and integrity of the update. 

Another use case of SHA algorithms in IoT systems is secure 

boot. Secure boot ensures that only authenticated and trusted 

software runs on IoT devices. SHA algorithms generate message 

digests of firmware and software components. The device 

compares the received message digest with the calculated one 

during boot-up, and if they match, the firmware and software are 

loaded, ensuring that only authorized and tamper-free software 

runs on the device. 

2.2 Related Works 

In this section, a brief description of each related works on IoT 

systems security using SHA algorithms: Alghamdi et al [6] 

present a comprehensive survey of SHA algorithms and their 

variants, including their security features and applications. The 

authors also discuss the challenges and research directions of 

SHA algorithms, which can be helpful for researchers and 

practitioners in the field of IoT security. A survey of security 

challenges and solutions in IoT-based Healthcare Systems, was 

described by Afzal et al [7], this work proposes a secure 

communication framework using the SHA-256 algorithm to 

protect the sensitive data transmitted in healthcare systems. In 

[8] Singh et al. propose a secure communication framework for 

IoT systems using the      SHA-512 algorithm, which can protect 

data integrity and confidentiality. The authors also evaluate the 

performance of the proposed framework in terms of execution 

time and security. Gao et al [9] investigate the application of the 

SHA-3 algorithm in IoT security and propose a secure 

communication framework that can protect data confidentiality 

and integrity. The authors also evaluate the performance of the 

proposed framework in terms of security and efficiency. In [10] 

Zhang et al propose a secure and efficient communication 

protocol for IoT systems using SHA-256 and ECC (Elliptic 

Curve Cryptography) algorithms. The authors also evaluate the 

performance of the proposed protocol in terms of security and 

efficiency. Bao et al [11] described a lightweight secure 

communication protocol for IoT systems using SHA-256 and 

ChaCha20 algorithms. The authors also evaluate the 

performance of the proposed protocol in terms of security and 

efficiency. Wang et al [12] propose a secure and efficient 

communication protocol for IoT systems using SHA-256 and 

AES (Advanced Encryption Standard) algorithms and evaluate 

the performance of the proposed protocol in terms of security 

and efficiency. In [13] Liu et al propose a secure and efficient 

communication protocol for IoT systems using SHA-256 and 

SM4 algorithms. Vasilakos et al [14] described security 

challenges and opportunities in the industrial Internet of Things. 

This work reviews the security challenges and opportunities in 

industrial IoT systems and proposes a secure communication 

framework using the SHA-256 algorithm to protect the sensitive 

data transmitted in the system. Wang et al [15] propose a secure 

and efficient communication protocol for IoT systems using 

SHA-256 and SM2 J. Raja et al [16], proposes the use of the 

SHA3 algorithm for secure data transmission in IoT systems. 

The authors demonstrate the effectiveness of the proposed 

approach through simulations. 

3. SHA ALGORITHMS 

In this section, a brief description of the standard SHA 

algorithms is described. 

3.1 SHA-1 Algorithm 

SHA-1 is a cryptographic hash function that produces a    160-bit 

hash value. It takes an input message of arbitrary length and 

produces a fixed-size output, which is a unique digital fingerprint 

of the message. The SHA-1 algorithm is designed to be a 

one-way function, meaning it is practically impossible to 

determine the original input message from the hash value.  

The algorithm consists of four main stages: message padding, 

message processing, hash value initialization, and hash value 

output. In the message padding stage, the input message is 

padded with a bit sequence to ensure that its length is a multiple 

of 512 bits. The padded message is then divided into 512-bit 

blocks and processed in the message processing stage.  

In the message processing stage, each block is processed using a 

compression function that combines the current block with the 

previous hash value. This function involves a series of logical 

operations, including bitwise operations, modular arithmetic, and 

message expansion.  

In the hash value initialization stage, a fixed initial hash value is 

loaded into the algorithm. This value is used as the starting point 

for the compression function in the message processing stage. In 

the hash value output stage, the final 160-bit hash value is 

produced by concatenating the output of the compression 

function for each block of the message. 

SHA-1 consists of four rounds of operations, with each round 

performing a series of logical and bitwise operations on the input 

data. Here's a high-level description of the four rounds: 

 Round 1: In the first round of SHA-1, the input data is divided 

into 16 words, denoted as W0, W1, ..., W15. Each word consists 

of 32 bits. These words are individually processed through a 

series of logical functions, including Boolean operations such as 

bitwise AND, OR, XOR, and NOT. Additionally, a constant 

value specific to the round, denoted as K0, is combined with the 

result of the logical functions. This constant value enhances the 

non-linearity and cryptographic properties of the algorithm. 

 Round 2: Similar to Round 1, Round 2 also divides the input 

data into 16 words, denoted as W16, W17,..., W31. Each word 

undergoes a different set of logical functions compared to the 

previous round. Furthermore, a distinct constant value, denoted 

as K1, is combined with the output of the logical functions. The 

utilization of different constants for each round ensures that each 



Zied Guitouni et al.,  International Journal of Emerging Trends in Engineering Research, 12(8), August 2024, 128 – 138 

130 

 

 

round introduces additional complexity and non-linearity into the 

hash computation. 

 Round 3: In Round 3, the input data is once again divided into 

16 words, denoted as W32, W33, ..., W47. These words are 

subjected to a unique set of logical functions, distinct from the 

operations performed in the previous two rounds. Similarly, a 

specific constant value, denoted as K2, is combined with the 

output of the logical functions. The inclusion of distinct constants 

in each round further enhances the diffusion and confusion 

properties of the hash function. 

 Round 4: The final round of SHA-1 involves dividing the input 

data into 20 words, denoted as W48, W49, ..., W67. Each word 

undergoes a unique set of logical operations, and a specific 

constant value, denoted as K3, is combined with the output of the 

logical functions. This round serves as the last step in the hash 

computation process. 

Figure 1, shows the description of the SHA-1 rounds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: SHA-1 Rounds description 

3.2 SHA-2 Algorithm 

SHA-2 is a family of cryptographic hash functions that includes 

SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, and 

SHA-512/256. It is an improvement over the SHA-1 algorithm, 

providing stronger security and longer hash output sizes. The 

SHA-2 family is widely used in security applications, such as 

digital signatures, message authentication codes, and password 

storage. 

The SHA-2 algorithm works by taking an input message of 

arbitrary length and processing it in blocks of 512 bits. It then 

applies a series of logical operations, including bitwise 

operations, modular arithmetic, and message expansion, to 

generate a fixed-size output, which is a unique digital fingerprint 

of the message. 

The SHA-2 family consists of different hash functions that have 

varying output sizes and security levels. SHA-224 produces a 

224-bit hash value, SHA-256 produces a 256-bit hash value, 

SHA-384 produces a 384-bit hash value, and SHA-512 produces 

a 512-bit hash value. SHA-512/224 and SHA-512/256 produce 

truncated 224-bit and 256-bit hash values, respectively. 

The SHA-2 algorithm uses a similar four-stage process as 

SHA-1, including message padding, message processing, hash 

value initialization, and hash value output. However, it involves a 

different compression function that incorporates more rounds of 

operations and is less susceptible to the vulnerabilities that affect 

SHA-1. 

Figure 2 illustrates the computational structure of each round of 

SHA-2. 

 

 

 

 

 

 

 

Figure 2: SHA-2 Rounds description 

 The Majority (Maj) operation is a logical function performed 

within the SHA-2 rounds. It takes three input values, denoted as 

A, B, and C, and produces an output based on the majority of 

the three inputs. The Maj operation can be defined as follows: 

   ( ,  ,  )  (   )  (   )  (   )Maj A B C A AND B XOR A AND C XOR B AND C    (1) 

The Maj operation ensures that the resulting output bit is set to 

1 if the majority of the input bits are 1. Otherwise, the output bit 

is set to 0. By incorporating the Maj operation, SHA-2 achieves 

non-linearity and ensures that the output is highly sensitive to 

changes in the input values. 

 The Choice (Ch) operation is another crucial operation 

performed within the SHA-2 rounds. It takes three input values, 

denoted as E, F, and G, and produces an output based on 

specific conditions. The Ch operation can be defined as 

follows: 

          ( ,  ,  )   (   )   (    )Ch E F G E AND F XOR NOT E AND G             (2) 

The Ch operation selects bits from the input based on the value 

of E. If E is 1, the output bit is set to the XOR of F and G. If E is 

0, the output bit is set to the logical complement of E and the 

value of G. The Ch operation contributes to the diffusion 

property of SHA-2 by ensuring that the output is influenced by 

all input bits. 

3.3 SHA-3 Algorithm 

SHA-3 is a cryptographic hash function that was designed by 

the National Institute of Standards and Technology (NIST) as a 

successor to   SHA-2. It provides stronger security and faster 

processing speeds compared to SHA-2, making it a more 

suitable choice for a wide range of security applications. The 

SHA-3 family includes four hash functions, including 

SHA3-224, SHA3-256, SHA3-384, and SHA3-512, which 

produce hash values of varying sizes. Keccak algorithm was 

proposed as a candidate for the SHA-3 competition organized 

by NIST. It was eventually selected as the winner and became 

the basis for the SHA-3 standard. 

Keccak works by taking an input message of arbitrary length 

and processing it in blocks of 1600 bits. It then applies a series 

of rounds of operations, including bitwise operations, modular 

 

 



Zied Guitouni et al.,  International Journal of Emerging Trends in Engineering Research, 12(8), August 2024, 128 – 138 

131 

 

 

arithmetic, and permutation functions, to generate a fixed-size 

output, which is a unique digital fingerprint of the message. The 

construction of the sponge construction of this keccak 

algorithm is depicted in Figure 3. 

 

Figure 3: Sponge Construction 

The sponge construction works by first dividing the input 

message into fixed-size blocks and then processing these 

blocks through a function that includes a permutation and a 

function that combines the input and output of the permutation. 

This is done repeatedly, with the output of the function being 

passed back as input to the permutation, until all the message 

blocks have been processed. 

At this point, the output of the function is truncated to produce 

the desired hash value length. This allows for the creation of 

hash functions with variable-length outputs, as the length of the 

output can be chosen by selecting the number of bits to truncate 

from the final output. 

3.4 Comparative Analysis of SHA Parameters 

In Table 1, the comparative analysis of different SHA 

parameters is described. 

Table 1: SHA Algorithms Parameters 

SHA Algorithms Hash 

Size 

Block 

Size 

Internal 

State 

Rounds Max 

Message 

 

SHA-1 

 

160 

 

512 

 

160 

 

80 

 

2
64-1

 

 

 

SHA-2 

 

SHA224 

 

224 

 

 

512 

 

256 

( 8 *32) 

 

64 

 

2
64-1

 

 

SHA256 

 

256 

 

SHA384 

 

384 

 

1024 

 

512 

(6 * 64) 

 

80 

 

2
128-1

 

 

SHA512 

 

512 

 

 

SHA-3 

 

224 

 

160 

 

1152 

 

 

1024 

( 5 * 5* 

64) 

 

 

 

24 

 

 

 

 

 

256 

 

224 

 

1088 

 

384 

 

256 

 

832 

512 384 576 

In the table 1, we have compared the digest size (Bits), the 

block size (Bits), the internal state size (Bits), the rounds 

number, and the Max Message Size of the different SHA 

algorithms 

4. FPGA IMPLEMENTATION OF SHA ALGORITHMS 

The FPGA implementation of SHA algorithms for IoT 

applications offers an efficient and flexible solution for 

securing IoT systems. FPGA-based implementations can 

provide high throughput and low power consumption while 

maintaining a high level of security, making them a suitable 

choice for various IoT applications. This section provides an 

overview of the FPGA implementation techniques for SHA 

algorithms and compares their resource utilization and speed 

on FPGA devices. 

4.1 FPGA Implementation Techniques for SHA  

The implementation of SHA algorithms in FPGA for IoT 

applications involves selecting an appropriate implementation 

technique that can provide high-speed cryptographic 

processing with low power consumption while maintaining a 

high level of security. The choice of implementation technique 

depends on the specific requirements of the IoT application, 

including desired throughput, area utilization, and frequency. 

In this section, we provide an overview of the various 

implementation techniques used in FPGA implementations of 

SHA algorithms for IoT applications. 

 Carry Select Adder (CSA): Carry Select Adder (CSA) is a 

fast and efficient adder that uses multiple ripple carry adders 

with a select signal to choose the output of the correct adder. 

This technique can reduce the delay and power consumption 

of the adder by avoiding long carry chains [40].  

 Unfold: Unfold is a technique that involves unfolding the 

loop of an iterative algorithm into multiple iterations to reduce 

the critical path delay. This technique can improve the 

performance of the algorithm by reducing the number of 

iterations required [42].  

 Parallel Prefix Logic (PPL): Parallel Prefix Logic (PPL) 

is a technique that uses a network of logic gates to compute the 

prefix sum of a sequence of values. It can be used to compute 

the hash value of a message in parallel, reducing the 

computation time and improving the throughput [41]. 

 Five-Parallel Prefix Logic (5PPL): Five-Parallel Prefix 

Logic (5PPL) is a modification of the PPL technique that uses 

a 5-stage pipeline to compute the prefix sum of a sequence of 

values. This technique can further improve the parallelism and 

throughput of the algorithm [49].  

 DSP+BRAM: DSP+BRAM is a technique that uses digital 

signal processing (DSP) blocks and block RAM (BRAM) 

resources on an FPGA to accelerate the computation of the 

SHA algorithm. This technique can provide high throughput 

and low power consumption by leveraging the dedicated 

hardware resources on the FPGA [50]. 

4.2 FPGA Implementation Comparoson 

Table 2 compares various FPGA implementations of different 

SHA algorithms, including SHA-1, SHA-256, SHA-384, 

SHA-512, and SHA-3. The implementations use different 

techniques such as Carry Select Adder (CSA), Unfold, Parallel 

Prefix Logic (PPL), 5-Parallel Prefix Logic (5PPL), and 



Zied Guitouni et al.,  International Journal of Emerging Trends in Engineering Research, 12(8), August 2024, 128 – 138 

132 

 

 

DSP+BRAM. The table provides a comparative analysis of the 

implementations in terms of their throughput, area utilization, 

and frequency of operation. This analysis can help designers 

select the most suitable implementation technique for their 

specific requirements. 

According to Table 2, we can see that the implementation 

technique used has a significant impact on the throughput and 

area utilization of the SHA algorithm. For example, the use of 

4PPL for SHA-1 on Virtex-6 FPGA achieved a high 

throughput of 8.607 Gbps but required a higher area utilization 

of 1230 slices compared to the implementation using Unfold, 

which had a lower throughput of 1.927 Gbps but required a 

lower area utilization of 518 slices. 

Similarly, for SHA-256, the implementation using PPL on 

Virtex-5 FPGA achieved a much higher throughput of 12.68 

Gbps than the implementation using CSA on the same FPGA, 

which only achieved a throughput of 1.359 Gbps  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, the PPL implementation required a much higher area 

utilization of 4,793 slices compared to the CSA 

implementation, which only required 1,203 slices. 

For SHA-384, the implementation using CSA on Virtex-5 

FPGA achieved a throughput of 0.250 Gbps with an area 

utilization of 1,914 slices. The implementation using PPL on 

Virtex-5 FPGA achieved a higher throughput of 1.083 Gbps 

but required a higher area utilization of 6,606 slices. 

For SHA-512, the implementation using CSA on Virtex FPGA 

achieved a throughput of 0.467 Gbps with an area utilization of 

3,792 slices. 

Finally, for SHA-3 (Keccak), the implementation using PPL on 

Virtex-5 FPGA achieved a high throughput of 12.68 Gbps but 

required a higher area utilization of 4,793 slices. The 

implementation using PPL on Virtex-6 FPGA achieved a lower 

throughput of 0.864 Gbps but required a lower area utilization 

of 393 slices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: FPGA implementation of SHA Algorithms 

Work  Opt-Tech FPGA Area 

(slices) 

Frequency 

(Mhz) 

Throughput 

(Gbps) 

 
[40] 

 

 

 

 

Sha-1 

 

 

 

 

CSA  
Virtex-6 

449 213.13 1.347 

Unfold 518 154.35 1.927 

4PPL 1230 172.32 8.607 

[41] PPL Virtex 950 98.7 2.526 

[42] Unfold Virtex-2 2894 118 5.9 

[43] 
4x-Unfold 

Virtex2 
2394 20.9 0.983 

4x-Unfold+4PPL 4258 41.5 3.541 

[44] Parallelprocess 65nmFPGA 3986 236 14.9 

[40] Pre-Computation Virtex-6 546 207.90 2.596 

[45] SHA-256 Conrol-Unit Virtex-5 387 202.54 1.58 

 

[46] 

SHA-256  
CSA 

 
Virtex 

 
2207 

 
74 

0.291 

SHA-384 0.250 

SHA-512 0.467 

[47] SHA-256 CSA Virtex-5 1,203 170 1.359 

[48] SHA-256 
CSA 

Virtex-2 
1,187 110.10 0.867 

CSA+Pre-Comp 1,274 115.46 0.909 

 

[49] 

 

SHA-512 

 

5PPL 

Virtex-2 7,012 54.6 6.989 

Virtex-E 7,151 63.4 9.126 

Virtex-6 7,151 71.3 9.126 

Virtex-7 7,219 91.2 11.674 

[50] SHA-256 DSP+BRAM Stratix-3 795 205.8 1.621 

[51]  

 

SHA-3 

(Keccak) 

PPL 
Virtex-5 

4,793 317.11 12.68 

[52] PPL 
Virtex-6 393 159 0.864 

Virtex-6 188 285 0.145 

[53]  

PPL 

Virtex-5 1,702 389 18.7 

Virtex-6 1,649 397 19.1 

Virtex-7 1,618 434 20.8 

[54]  

2PPL 

Virtex-4 5,494 269 12.912 

Virtex-5 2,652 352 16.896 

Virtex-6 2,296 391 18.768 

 

 



Zied Guitouni et al.,  International Journal of Emerging Trends in Engineering Research, 12(8), August 2024, 128 – 138 

133 

 

 

4.3 Power Consumption Comparison  

In IoT applications, power consumption is a critical factor due 

to the limited power budget of most IoT devices. Therefore, it 

is important to consider the power consumption of different 

cryptographic algorithms when designing FPGA-based IoT 

systems.This power consumption can vary based on the 

specific implementation, FPGA device, clock frequency, and 

optimization techniques used. Conducting power analysis in a 

real-world scenario is essential to accurately evaluate the 

power efficiency of different SHA algorithms for IoT 

applications 

In general, SHA-1 is the simplest and fastest algorithm among 

the SHA family, but it is also the least secure and has been 

deprecated since 2011. Its power consumption on an FPGA is 

generally considered to be relatively low compared to the other 

SHA algorithms. 

SHA-2 algorithms are expected to consume more power than 

SHA-1 due to their longer message digest size and more 

complex processing steps. The power consumption of SHA-2 

on an FPGA will increase with the bit-length of the output hash, 

the smaller SHA-2 variants (SHA-224 and SHA-256) will 

consume less power than the larger variants (SHA-384 and 

SHA-512).  

SHA-3 algorithms are expected to consume more power than 

SHA-1  and SHA-2, this power consumption of SHA-3 will 

increase with the block size and the bit-length of the output 

hash. In [17] Kavitha et al compared the power consumption of 

SHA-2 and SHA-3 on a Xilinx Virtex-7 FPGA. The study 

found that SHA-3 was about 1.5x more power efficient than 

SHA-2. Interestingly, the power consumption of SHA-3 was 

not significantly affected by the number of rounds used in the 

hash function, while the power consumption of SHA-2 

increased significantly with the number of rounds. 

Singh et al [18], compared the power consumption of SHA-2 

and SHA-3 on a Xilinx Zynq-7000 FPGA. The study found that 

SHA-3 was about 2x more power efficient than SHA-2. The 

study also found that the power consumption of SHA-3 was not 

significantly affected by the message size, while the power 

consumption of SHA-2 increased with the message size.  

4.4 Recommendations for Selecting Hash Functions  for 

IoT Applications 

In this section, we provide recommendations for selecting 

suitable hash functions and FPGA devices for IoT applications 

based on the performance analysis presented in the previous 

section. These recommendations are intended to guide IoT 

developers in selecting the most appropriate hash function and 

FPGA device for their specific use case. 

Firstly, for applications that require high speed, SHA3 may be a 

suitable option. These hash functions generally achieve high 

speeds compared to other hash functions.  

Secondly, for applications that require low power 

consumption, SHA-1 or SHA-2 hash functions may be more 

suitable than SHA-3. SHA-1 and SHA-2 hash functions require 

less power than SHA-3 due to their simpler algorithms. 

However, it is important to note that SHA-1 is no longer 

recommended due to its susceptibility to collision attacks. 

Thirdly, for applications that require a balance between speed 

and resource utilization, SHA-256 or SHA-384 may be suitable 

options. These hash functions achieve moderate speeds and 

require moderate resources. As shown in the previous section's 

table, SHA-384 can achieve good performance with moderate 

resource utilization. 

When choosing an FPGA device, it is important to consider the 

power consumption, clock frequency, and resource utilization 

of the device. For example, Xilinx Zynq-7000 and Artix 7 are 

popular FPGA devices for IoT applications due to their low 

power consumption and high clock frequency. As shown in the 

previous section's table, different FPGA devices can have 

significantly different resource utilization, and the choice of 

FPGA device can have a significant impact on the performance 

of the implementation. 

It is important to carefully choose the implementation 

methodology and clock frequency to optimize the performance 

and power consumption of the FPGA implementation. 

Increasing the clock frequency can improve the speed of the 

implementation, but it also increases the power consumption. 

Therefore, it is important to find the optimal balance between 

speed and power consumption for the specific use case. 

5. SDCURITY ANALYSIS OF SHAALGORITHMS 

This section summarizes the known attacks against 

cryptographic hash functions.  

5.1 Collision Attacks 

These attacks attempt to find two different input messages that 

produce the same hash value. If successful, they can allow an 

attacker to forge a fake digital signature or message that is 

indistinguishable from a legitimate one.  

 Collision attacks against SHA-1 

Collision attacks against SHA-1 have become increasingly 

practical and can be executed with relatively low 

computational effort. In [19] M. Stevens et al presented an 

improvement to the original SHA-1 collision attack, 

significantly reducing the computational complexity required 

to find a collision by a factor of more than 2,000. Their work 

demonstrated the practical feasibility of finding SHA-1 

collisions, raising concerns about the security of systems 

relying on this hash function. 

A novel technique for collision attacks on SHA-1. Published in 

2013 by Y. Sasaki et al [20]. The authors proposed an approach 

called "optimal joint local-collision analysis" and utilized it to 

discover collisions in SHA-1 with greater efficiency compared 

to previous attacks. The findings of this study contributed to the 

mounting evidence of SHA-1's vulnerability. 

In [21], M. Stevens et al presented a practical-time collision 

attack against the AUM cryptographic hash function, which is a 

variant of SHA-1 used in specific security protocols. The 

authors demonstrated that the AUM function inherited the 

vulnerabilities of SHA-1, emphasizing the urgent need for 

transitioning away from SHA-1 and adopting more secure 

alternatives. 

 Collision attacks against SHA-2 

Collision attacks against SHA-2 are generally more 

challenging than those against SHA-1, but there have been 



Zied Guitouni et al.,  International Journal of Emerging Trends in Engineering Research, 12(8), August 2024, 128 – 138 

134 

 

 

significant advancements in demonstrating practical attacks 

against SHA-2. 

In [22] H. Wu and B. Preneel presented a practical collision 

attack against SHA-256 and SHA-512. The authors utilized an 

algorithm called "biclique cryptanalysis" to achieve this feat. 

The findings highlighted the need for continued scrutiny and 

potential security enhancements for SHA-2. 

Similarly, in [23] Y. Sasak et al extended their collision attack 

technique, originally applied to SHA-1, to target SHA-2 as 

well. They employed the "optimal joint local-collision 

analysis" method to demonstrate collision attacks against 

SHA-2, indicating potential vulnerabilities in the hash function 

family. 

J. Guo et al [24] introduced a technique for discovering 

"differential characteristics" in hash functions. The authors 

specifically applied this method to SHA-1 and SHA-2, 

enabling the design of more efficient collision attacks. This 

research contributed to a deeper understanding of the 

vulnerabilities and potential weaknesses in SHA-2. 

Y. Seurin [25] presented a novel collision attack against an 

8-round variant of SHA-256. This research significantly 

reduced the computational complexity required to find a 

collision by a factor of more than 100, indicating the 

importance of continued analysis and security evaluations of 

SHA-2. 

 Collision attacks against SHA-3 

Collision attacks against SHA-3 are generally more difficult 

than those against SHA-2, primarily due to the sponge 

construction employed in the SHA-3 hash function. The sponge 

construction is designed to provide enhanced security against 

collision attacks. 

J. Guo et al [26] presented collision and preimage attacks 

against round-reduced versions of the SHAvite-3-512 hash 

function. SHAvite-3-512 was one of the finalists in the NIST 

SHA-3 competition. The paper demonstrated vulnerabilities in 

the round-reduced versions of SHAvite-3-512, highlighting the 

need for careful analysis and evaluation of the security of 

SHA-3 candidates. 

Keccak Team [27] provided a comprehensive analysis of the 

security of the SHA-3 finalists, including Keccak. The authors 

conducted an evaluation of the resistance of these functions to 

various attacks, including collision attacks. The findings 

contributed to a better understanding of the strengths and 

weaknesses of the SHA-3 finalists. 

Y. Sasaki et al [28] introduced a technique for discovering 

"path collisions" in the SHA-3 finalists. Path collisions can be 

utilized to design collision attacks. The authors applied this 

technique to all of the SHA-3 finalists, further contributing to 

the analysis and evaluation of their security properties. 

It is important to note that these attacks against SHA-3 are 

generally not practical and do not pose a significant threat to 

the security of the hash function. SHA-3 is considered a secure 

choice for most applications requiring a cryptographic hash 

function, as it underwent extensive scrutiny and evaluation 

during the NIST SHA-3 competition. 

5.2 Length Extension Attacks 

These attacks exploit weaknesses in the SHA construction to 

extend an existing hash value to include additional data, 

without knowledge of the original input. This can allow an 

attacker to append additional data to a legitimate message 

without detection. 

 Length extension attacks against SHA-1 

SHA-1 is vulnerable to length extension attacks, which can be 

carried out with relatively little computational effort. This 

vulnerability arises from the fact that SHA-1 uses a 

Merkle–Damgård construction, which is susceptible to length 

extension attacks. 

In a length extension attack against SHA-1, an attacker who 

knows the hash of a message can compute the hash of an 

extended message without knowing the original message. The 

attacker can do this by taking the hash of the original message 

and then appending additional blocks to the message along with 

specially crafted padding. The attacker can then use the final 

hash value as the initial value for the hash function and 

continue hashing the appended blocks to produce the hash of 

the extended message. 

In [29], Marc Stevens presented an improved collision attack 

against SHA-1, a widely used cryptographic hash function. The 

attack had a complexity of 2
63.4 

hash function evaluations, 

making it the most efficient attack against SHA-1 to date. This 

attack demonstrated the weakness of SHA-1 and the need to 

transition to more secure hash functions for cryptographic 

applications. 

Craig Young [30] demonstrated how length extension attacks 

against SHA-1 can be used to bypass application security 

measures. Young successfully crafted a malicious transaction 

that appeared to be legitimate by exploiting a length extension 

vulnerability in the app's hash function. This attack highlighted 

the importance of using secure hash functions and 

implementing proper input validation in applications to prevent 

such attacks. 

The first practical chosen-prefix collision attack against 

SHA-1, demonstrated by Gaëtan Leurent and Thomas Peyrin 

[31]. The attack allows an attacker to create two distinct 

messages with the same hash value. The authors were able to 

exploit this vulnerability to attack the PGP Web of Trust, a 

popular key certification system used in email encryption. This 

attack further emphasizes the importance of transitioning to 

more secure hash functions for cryptographic applications. 

 

 Length extension attacks against SHA-2 

SHA-2 is resistant to length extension attacks, which is one of 

the main reasons why it is considered a more secure hash 

function than its predecessor, SHA-1. SHA-2 uses a 

Merkle–Damgård construction, like SHA-1, but includes some 

additional security features that make it less vulnerable to 

length extension attacks. 

In [32], Hongjun Wu and Bart Preneel presented a theoretical 

length extension attack against some variants of SHA-2. The 

attack is based on a variant of the Merkle–Damgård 

construction called the "secret-prefix" method. The authors 

show that this attack is feasible against some SHA-2 variants 

with certain parameters, but they note that it requires a large 

amount of computation and is not practical in practice. The 

paper highlights the importance of understanding the 



Zied Guitouni et al.,  International Journal of Emerging Trends in Engineering Research, 12(8), August 2024, 128 – 138 

135 

 

 

vulnerabilities of hash functions and the need for continued 

research into developing more secure hash functions. 

 Length extension attacks against SHA-3 

SHA-3 is designed to be resistant to length extension attacks, 

thanks to its use of the sponge construction. The sponge 

construction has a built-in mechanism to prevent length 

extension attacks, which makes it more secure than hash 

functions based on the Merkle–Damgård construction, such as 

SHA-1 and SHA-2. 

There have been no practical attacks against SHA-3 that exploit 

its sponge construction to extend the message length. However, 

SHA-3 is still vulnerable to other types of attacks, such as 

collision attacks, which have been found against some variants 

of SHA-3. 

5.3 Preimage Attacks 

These attacks attempt to find an input message that produces a 

specific hash value. If successful, they can allow an attacker to 

generate a message that has the same hash value as a legitimate 

one, thereby breaking the integrity of the system. 

 Preimage attacks against SHA-1 

Preimage attacks against SHA-1 refer to attacks that allow an 

attacker to find an input message that produces a givenhash 

value. In other words, the attacker can find amessage that 

matches the given hash value, without knowing the original 

message that produced the hash value. SHA-1 is vulnerable to 

preimage attacks, particularly for messages with a length less 

than 2
63

 bits. 

In [32], Biryukov and Khovratovich  presented a technique for 

finding preimages of hash functions using algebraic attacks. 

They applied this technique to SHA-1 and were able to find 

preimages with a complexity of 2
51

 hash operations. This attack 

demonstrated the vulnerability of SHA-1 to preimage attacks 

and the need for stronger hash functions. 

Stevens et al. [33] presented an improved version of the Wang 

attack that reduces the complexity of finding a preimage of 

SHA-1 to 2
52

 hash operations. They also presented a new 

technique for finding a preimage of SHA-1 based on a 

technique called message modification. This research 

highlights the need for stronger hash functions and the 

importance of continued research into improving the security 

of cryptographic algorithms. 

 Preimage attacks against SHA-2 

Preimage attacks against SHA-2 are attacks where an attacker 

tries to find a message that hashes to a specific hash value 

produced by SHA-2. Although SHA-2 is considered to be more 

secure than SHA-1, there have been several attacks on SHA-2 

that can be used to perform preimage attacks. Mendel et al. [34] 

presented an improved boomerang attack on SHA-2 that 

reduced the complexity of finding a preimage for SHA-256 to 

2
251

 hash operations. This research demonstrated the 

vulnerability of SHA-2 and the need for continued research 

into developing more secure hash functions.In [35], Peyrin and 

Seurin presented a linearization attack on SHA-2 that allowed 

the authors to find a preimage for SHA-256 with a complexity 

of 2
236

 hash operations. This attack demonstrated the need for 

more secure hash functions and the importance of continued 

research into developing stronger cryptographic 

algorithms.The rebound attack on SHA-2, introduced by 

Mendel et al. [36] , which can be used to find preimages for 

SHA-256 with a complexity of 2
254

 hash operations. This attack 

highlighted the need for stronger hash functions and the 

importance of continued research into developing more secure 

cryptographic algorithms.In 2017, Morawiecki and Srebrny 

[37] presented a meet-in-the-middle attack on SHA-2 that 

allowed the authors to find a preimage for SHA-256 with a 

complexity of 2
255

 hash operations. This attack demonstrated 

the vulnerability of SHA-2 and the need for continued research 

into developing more secure hash functions.It is worth noting 

that while these attacks demonstrate vulnerabilities in SHA-2, 

the complexity of the attacks is still extremely high and 

currently considered to be infeasible for practical purposes. 

 Preimage attacks against SHA-3 

SHA-3 was designed to resist preimage attacks by using a 

sponge construction and a permutation function based on the 

Keccak algorithm, which has strong security properties. 

Wang et al. [38] analyzed the security of the SHA-3 finalists, 

including Keccak, and found no practical preimage attacks. 

This research demonstrated the strength and security of the 

SHA-3 finalists and their resistance to preimage attacks. 

In [39], Biryukov and Khovratovich presented a linear 

attack on round-reduced Keccak, but did not result in a 

practical preimage attack. This research highlighted the need 

for continued analysis and research into the security of Keccak 

and other cryptographic algorithms. 

6. CONCLUSION 

The selection of a secure hash algorithm (SHA) for IoT devices 

requires a careful consideration of the trade-offs between 

security and performance. The paper presents a detailed 

comparison of SHA-1, SHA-2, and SHA-3 based on their QoS 

parameters, including resource utilization, processing speed, 

power consumption, and resistance against different attacks. 

The results show that SHA-1, while widely used in many legacy 

systems, is no longer recommended due to its susceptibility to 

collision attacks. SHA-1's fixed 160-bit output size and 512-bit 

message block size limit its flexibility and make it vulnerable to 

attacks. In contrast, SHA-2 provides a good balance between 

security and performance, making it a suitable choice for many 

IoT applications. SHA-2's variable output size and message 

block size, ranging from 224 to 512 bits, and a fixed message 

block size of 512 bits, offer greater flexibility and make it more 

resistant to attacks such as collision and length extension. 

SHA-3, the newest SHA algorithm, offers some advantages 

over SHA-2, such as its resistance to length extension attacks 

and its flexibility in output size. SHA-3 has a variable message 

block size that ranges from 1152 to 576 bits depending on the 

hash output length, which can make it more efficient in some 

cases. However, SHA-3's lower number of rounds and larger 

message block size can make implementation more complex 

and resource-intensive in some cases. 

 



Zied Guitouni et al.,  International Journal of Emerging Trends in Engineering Research, 12(8), August 2024, 128 – 138 

136 

 

 

REFERENCES 

1.  N. Meghanathan. IoT security threats and challenges: 

Current scenario, security threats and privacy issues 

in the IoT and its solutions, in International Conference 

on Wireless Communications, Signal Processing and 

Networking (WiSPNET), Chennai, 2017, pp. 2255-2260. 

2. Xiong, S. Cheng and K. Yang. Secure Message 

Transmission in Internet of Things Based on Message 

Digest, in International Conference on Artificial 

Intelligence and Big Data (ICAIBD), Chengdu, 2018,    

pp. 122-126,. 

3. R. Singh, A. Passi and G. Kaur. Security Issues and 

Solutions in Internet of Things: A Comprehensive 

Study, in 3
rd

 International Conference on Computing 

Methodologies and Communication (ICCMC), Erode, 

2018, pp. 229-233. 

4. S. Gao, L. Xu and J. Ma. Security of Firmware Updates 

in Internet of Things: Challenges and Solutions, in 

International Conference on Identification, Information 

and Knowledge in the Internet of Things (IIKI), Beijing, 

2016, pp. 104-109. 

5. P. Phu, T. T. Duc and P. Cong. Secure Boot in IoT 

Devices: Challenges and Solutions, in International 

Conference on Advanced Technologies for 

Communications (ATC), Quy Nhon, 2017, pp. 62-67. 

6.  A. Alghamdi A., & Hussain, M. A Survey on Secure 

Hash Algorithm (SHA) and its Variants, Journal of 

Network and Computer Applications, vol. 128, pp. 1-26, 

2019. 

7. Afzal, M. K., & Ahmad, I. A Survey of Security 

Challenges and Solutions in IoT-based Healthcare 

Systems, Journal of Ambient Intelligence and Humanized 

Computing, vol. 11(8), pp. 3073-3096, 2020. 

8. Singh, A., & Sharma, S. K. Secure IoT Communication 

Using SHA-512, In Proceedings of the International 

Conference on Computational Intelligence and Data 

Science, 2018, pp. 190-196. 

9. Gao, J., & Li, L. Research on IoT Security Based on 

SHA-3 Algorithm, Journal of Physics: Conference 

Series, 1176, 042020, 2019. 

10. Zhang, Y., Zhang, H., & Li, Z. A Secure and Efficient 

IoT Communication Protocol Based on SHA-256 and 

ECC, IEEE Access, vol. 8, pp. 115079-115088, 2020. 

11. Bao, W., Li, J., & Liu, Y. A Lightweight Secure 

Communication Protocol for IoT Based on SHA-256 

and ChaCha20. IEEE Internet of Things Journal, vol. 

6(1), pp. 55-65, 2019. 

12. Wang, X., Li, C., & Zhou, Y. A Secure and Efficient IoT 

Communication Protocol Based on SHA-256 and 

AES, Journal of Ambient Intelligence and Humanized 

Computing, vol. 12(10), pp. 10259-10271, 2021. 

13. Liu, Y., Li, J., & Bao, W. A Secure and Efficient IoT 

Communication Protocol Based on SHA-256 and 

SM4. IEEE Internet of Things Journal, vol. 7(6), pp. 

5525-5534, 2020. 

14. Vasilakos, A. V., & Sun, Q. Security Challenges and 

Opportunities in Industrial Internet of Things, IEEE 

Transactions on Industrial Informatics, vol. 13(2),          

pp. 686-689, 2019. 

15.  Wang, X., Yan, B., & Sun, G. A Secure and Efficient 

IoT Communication Protocol Based on SHA-256 and 

SM2. Journal of Ambient Intelligence and Humanized 

Computing, vol. 10(7), pp. 2547-2558, 2019. 

16. J. Raja and G. K. Sivakumar. IoT Security using SHA3 

Algorithm, in International Conference on Information 

Communication and Embedded Systems (ICICES), 

Chennai, India, 2018, pp. 1-5. 

17. N. Kavitha, A. Karthikeyan, and P. Dananjayan. 

Comparison of the Power Consumption of SHA-2 and 

SHA-3 on FPGAs, in International Conference on 

Communication and Signal Processing (ICCSP), 

Chennai, India, 2017, pp. 0553-0557. 

18. J. Singh and A. K. Singh, Power Consumption 

Comparison of SHA-2 and SHA-3 on FPGAs, in 6
th 

International Conference on Advanced Computing and 

Communication Systems (ICACCS), Coimbatore, India, 

2019,  pp. 1-6,. 

19. Marc Stevens, Arjen Lenstra, and Benne de Weger. 

Freestart Collision on Full SHA-1. in Advances in 

Cryptology – EUROCRYPT 2013. Springer, 2013. 

20. Yu Sasaki, Lei Wang, and Kazumaro Aoki. New 

Collision Attacks on SHA-1 Based on Optimal Joint 

Local-Collision Analysis, in Advances in Cryptology – 

EUROCRYPT 2013. Springer, 2013. 

21. Marc Stevens, Pierre Karpman, and Thomas Peyrin. A 

Practical-Time Attack on the AUM Cryptographic 

Hash Function, in Advances in Cryptology – 

ASIACRYPT 2016. Springer, 2016. 

22. Hongjun Wu and Bart Preneel. Cryptanalysis of 

SHA-256 and SHA-512, in EUROCRYPT 2009. 

Springer, 2009. 

23. Yu Sasaki, Lei Wang, and Kazumaro Aoki. New 

Collision Attacks on SHA-1 Based on Optimal Joint 

Local-Collision Analysis, in EUROCRYPT 2013. 

Springer, 2013. 

24. Jian Guo, San Ling, and Christian Rechberger. Finding 

SHA-1 Characteristics: General Results and 

Applications, in EUROCRYPT 2013. Springer. 



Zied Guitouni et al.,  International Journal of Emerging Trends in Engineering Research, 12(8), August 2024, 128 – 138 

137 

 

 

25. Yannick Seurin. A New Meet-in-the-Middle Collision 

Attack against 8-Round SHA-256, in CRYPTO 2016. 

Springer. 

26. Jian Guo, Thomas Peyrin, and Axel Poschmann. 

Collision and Preimage Attacks on the 

Round-Reduced SHAvite-3-512 Hash Function, in 

Selected Areas in Cryptography - SAC 2012. Springer. 

27. Keccak Team. Cryptanalysis of SHA-3 Candidates, in 

Cryptology ePrint Archive, Report 2011/102. 2011.  

28.  Yu Sasaki, Lei Wang, and Kazumaro Aoki. Finding 

Path Collision in the SHA-3 Candidates, in Advances 

in Cryptology - ASIACRYPT 2011. Springer. 

29.  Marc Stevens. Improved Collision Attack on SHA-1, in 

Advances in Cryptology - EUROCRYPT 2013. Springer. 

30. Craig Young. The SHAppening: Cryptographic 

Hashes and Their Impact on App Security, in  Black 

Hat USA, 2015. 

31. Gaëtan Leurent and Thomas Peyrin. SHA-1 is a 

Shambles: First Chosen-Prefix Collision on SHA-1 

and Application to the PGP Web of Trust, in Advances 

in Cryptology - EUROCRYPT 2020. Springer, 2020. 

32. Biryukov, A., & Khovratovich, D. Improving the 

preimage attack on SHA-1. in Advances in Cryptology 

– ASIACRYPT 2009, Springer Berlin Heidelberg, 2009, 

pp. 57-75. 

33.  Stevens, M., Bursztein, E., Karpman, P., & Albertini, A. 

The first collision for full SHA-1. in Proceedings of the 

2017 ACM SIGSAC Conference on Computer and 

Communications Security, ACM,  2017,  pp. 372-387. 

34.  Mendel, F., Pramstaller, N., & Rechberger, C. Improved 

boomerang attacks on reduced SHA-256,  

International Conference on Cryptology and Network 

Security, Springer, Cham ,pp. 101-119.. 

35. Peyrin, T., & Seurin, Y. A linearization attack on 

SHA-256, in Advances in Cryptology – EUROCRYPT 

2011, Springer Berlin Heidelberg,  2011, pp. 340-357.  

36. Mendel, F., Pramstaller, N., & Rechberger, C. The 

rebound attack on reduced SHA-256, in Annual 

Cryptology Conference,  Springer, Berlin, Heidelberg, 

2015, pp. 260-287. 

37. Morawiecki, P., & Srebrny, M. Meet-in-the-middle 

preimage attacks on SHA-2, in International 

Conference on Cryptology and Network Security, 

Springer, Cham, 2017, pp. 84-101.  

38. .Wang, L., Wu, H., Hasan, A., & Saso, D. Preimage 

attack on hash functions and security of SHA-3 

candidates, Information Security Journal: A Global 

Perspective, vol. 21(1-2), pp. 38–52, 2012. 

39. Dmitry Khovratovich and Alex Biryukov. Linear 

Cryptanalysis of Round-Reduced Keccak. in Fast 

Software Encryption. Springer, Berlin, Heidelberg, 2011.  

40.  R. K. Makkad and A. K. Sahu. Novel design of fast and 

compact SHA-1 algorithm for security applications, in 

Proceedings of the IEEE International Conference on 

Recent Trends in Electronics, Information 

Communication Technology (RTEICT’16), 2016,           

pp. 921–925. 

41.  A. P. Kakarountas, G. Theodoridis, T. Laopoulos, and C. 

E. Goutis. High-speed FPGA implementation of the 

SHA-1 hash function, in Proceedings of the IEEE 

Conference on Intelligent Data Acquisition and 

Advanced Computing Systems: Technology and 

Applications, 2005,  pp. 211–215. 

42. Eun-Hee Lee, Je-Hoon Lee, Il-Hwan Park, and 

Kyoung-Rok Cho. Implementation of high-speed 

SHA-1 architecture. IEICE Electron. Expr. 6, 16,         

pp. 1174–1179, 2009. 

43. Yong Ki Lee, Herwin Chan, and Ingrid Verbauwhede. 

Throughput optimized SHA-1 architecture using 

unfold ing transformation. in Proceedings of the 

International Conference on Application-specific 

Systems, Architectures and Processors (ASAP’06), 2006. 

IEEE, pp. 354–359. 

44. T. Isobe, S. Tsutsumi, K. Seto, K. Aoshima, and K. 

Kariya. 2010. 10 Gbps implementation of TLS/SSL 

accelerator on FPGA. in Proceedings of the IEEE 18
th

 

International Workshop on Quality of Service 

(IWQoS’10) , 2010. pp. 1–6. 

45. Hassen Mestiri, Fatma Kahri, Belgacem Bouallegue, and 

Mohsen Machhout. 2014. Efficient FPGA hardware 

implementation of secure hash function SHA-2. Int. J. 

Comput. Netw. Inf. Sec. Vol.7, (1) 2014. 

46. Wanzhong Sun, Hongpeng Guo, Huilei He, and Zibin 

Dai. Design and optimized implementation of the 

SHA- 2 (256, 384, 512) hash algorithms, in Proceedings 

of the 7
th

 International Conference on ASIC 

(ASICON’07). IEEE, 2007, pp. 858–861. 

47. Anane Mohamed and Anane Nadjia. SHA-2 hardware 

core for Virtex-5 FPGA. In Proceedings of the 12th 

Inter- national Multi-Conference on Systems, Signals & 

Devices (SSD’15), IEEE, 2015, pp. 1–5. 

48. Ignacio Algredo-Badillo, C. Feregrino-Uribe, René 

Cumplido, and Miguel Morales-Sandoval. FPGA-based 

im- plementation alternatives for the inner loop of the 

secure hash algorithm SHA-256, Microprocessor 

andMicrosystem journal . Vol. 37( 6), pp. 750–757,2013. 

49. George S. Athanasiou, Harris E. Michail, George 

Theodoridis, and Costas E. Goutis Optimising the 

SHA-512 cryptographic hash function on FPGAs, IET 

Comput. Dig. Techniques, vol. 8(2), pp. 70–82. 2013. 

50. Rabia Shahid, Malik Umar Sharif, Marcin Rogawski, and 

Kris Gaj. Use of embedded FPGA resources in im- 



Zied Guitouni et al.,  International Journal of Emerging Trends in Engineering Research, 12(8), August 2024, 128 – 138 

138 

 

 

plementations of 14 round 2 sha-3 candidates, in 

Proceedings of the International Conference on 

Field-Programmable Technology (FPT’11). IEEE, 2011, 

pp. 1–9. 

51.  Hassen Mestiri, Fatma Kahri, Mouna Bedoui, Belgacem 

Bouallegue, and Mohsen Machhout. High throughput 

pipelined hardware implementation of the KECCAK 

hash function, In Proceedings of the International 

Symposium on Signal, Image, Video and 

Communications (ISIVC’16),  IEEE, 2016, pp. 282–286. 

52. Bernhard Jungk and Jurgen Apfelbeck. Area-efficient 

FPGA implementations of the SHA-3 finalists, in 

Proceedings of the International Conference on 

Reconfigurable Computing and FPGAs (ReConFig’11). 

IEEE, 2011, pp. 235–241. 

53. George S. Athanasiou, George-Paris Makkas, and 

Georgios Theodoridis. High throughput pipelined 

FPGA im- plementation of the new SHA-3 

cryptographic hash algorithm, in Proceedings of the 

6th International Symposium on Communications, 

Control and Signal Processing (ISCCSP’14). IEEE, 2014, 

pp. 538–541. 

54. Lenos Ioannou, Harris E. Michail, and Artemios G. 

Voyiatzis. High performance pipelined FPGA 

implementation of the SHA-3 hash algorithm, In 

Proceedings of the 4th Mediterranean Conference on 

Embedded Computing (MECO’15). IEEE, 2015,            

pp. 68–71. 

 


