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ABSTRACT 

Aspect-Based Sentiment Analysis (ABSA) refines 

conventional sentiment analysis by targeting specific aspects 

within customer reviews. However, existing deep learning 

approaches often fall short when multiple aspects such as 

price, quality, or service are discussed in a single review, 

leading to misclassifications. In this paper, we present a 

comparative study of four baseline models (Recurrent Neural 

Network, Convolutional Neural Network, Recursive Neural 

Network, and Memory Network) alongside four attention 

mechanisms (Self, Multihead, Global, and Hierarchical). 

Experiments on publicly available datasets reveal that while 

the RNN baseline achieves the best accuracy (73.1%) among 

non-attention models, incorporating attention substantially 

enhances performance. In particular, RNN with Hierarchical 

Attention attains the highest accuracy of 84.7%, highlighting 

its superiority in capturing both local (word-level) and global 

(sentence-level) dependencies. Global, Self and Multihead 

Attention boosts performance, but offer moderate gains. The 

study shows that adding attention mechanisms greatly 

improves multi-aspect sentiment classification. Self-Attention 

increased performance by an average of 2.5%, Multi-Head 

Attention by 6.8%, Global Attention by 10.2%, and 

Hierarchical Attention by 15.9%, making it the most effective. 

These findings underscore the importance of attention 

mechanisms for fine-grained sentiment tasks and inform 

researchers on selecting the most effective attention strategy 

for ABSA. We conclude by suggesting avenues for future 

work, including aspect-specific attention enhancements to 

further refine model accuracy.  

 

Key words: Aspect-Based Sentiment Analysis, Attention 

Mechanisms, Hierarchical Attention, Multi-Aspect 

Classification, Deep Learning Models.  

 

1. INTRODUCTION 

In the digital era, user-generated content (UGC) such as online 

reviews or social media posts provides a rich source of 

consumer insights [1]. These contributions can shape public 

 
 

opinion, guide business decisions, and influence purchasing 

habits. However, the rapid growth of UGC makes it 

challenging to organize feedback effectively and extract 

meaningful conclusions from large volumes of text. 

Traditional sentiment analysis often categorizes an entire 

sentence or document as positive, negative, or neutral, 

assuming only one focal sentiment per entry [2]. This 

assumption fails when consumers mention multiple product 

attributes or services such as price, appearance, or reliability 

within the same review. 

 

ABSA identifies different components of an entity and assigns 

sentiments to each one instead of classifying an entire text 

under a single label [3], [4], [5]. For example, a review might 

praise a car’s powerful engine while criticizing its high 

maintenance costs. Assigning a single polarity to the entire 

review would mask these divergent opinions. ABSA 

addresses this complexity by allowing the model to categorize 

sentiments for each distinct feature. Consequently, potential 

buyers gain a clearer picture of how a product or service fares 

in specific areas, and manufacturers can better refine 

individual product attributes. 

 

Studies [6], [7], highlight the importance of detailed review 

analysis in guiding consumer decisions. Research has shown 

that most shoppers trust peer recommendations and are 

willing to spend more on items with favorable reviews [8], [9]. 

Yet, not all reviews discuss the same aspect. Some mention 

only the price, while others focus on durability, performance, 

or service. A single piece of text can carry mixed opinions: a 

positive view on one feature and dissatisfaction with another. 

Simplistic methods cannot untangle these sentiments if they 

treat an entire review as a single expression of polarity. This is 

where ABSA excels by detecting individual aspects and their 

corresponding sentiment polarity. 

 

In ABSA, identifying the sentiment-entity pair is the main 

goal. Entities can be products, services, or any other subject of 

discussion, while aspects represent the components or features 

of that entity [10], [11]. For instance, in product reviews, an 
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entity could be a camera, and aspects might include image 

quality or battery life. Classifying each aspect’s polarity 

reveals whether the overall feedback leans positive or 

negative across different product features. This level of detail 

helps consumers filter information quickly and assists 

businesses in prioritizing improvements. As outlined in [12], 

specifying the sentiment, the target entity, the person 

expressing it, and the time of expression offers a well-defined 

framework for ABSA tasks. Because these tasks involve deep 

contextual understanding, researchers have turned to deep 

learning approaches that can manage context, differentiate 

multiple aspects, and map sentiments more precisely. 

 

Attention mechanisms have emerged as powerful components 

in deep neural architectures by selectively highlighting 

important parts of the input data, thereby enhancing model 

efficiency and accuracy [13]. Unlike traditional RNNs, which 

rely on recurrent operations, attention allows the model to 

weigh different segments of a sequence without processing 

them in strictly sequential order. This capability provides a 

clearer representation of complex dependencies and has 

shown significant improvements in tasks involving 

aspect-based sentiment analysis (ABSA) [14]. 

 

The architectures typically include Encoder-Decoder Stacks, 

various forms of Attention (e.g., Self, Global, Hierarchical), 

Positional Encoding, and Feed-Forward Layers [15], [16], 

[17]. Their increased focus on relevant words or phrases 

makes them particularly effective for multi-aspect sentiment 

classification, where multiple sentiments may exist within a 

single review [18]. By capturing both local word-level and 

global sentence-level clues, attention-based models address 

the limitations of purely sequential processing. 

 

Motivated by these advancements, this work compares Deep 

Learning Baseline Models without attention mechanisms, 

after which the researcher compares the models with attention 

mechanisms—including self-attention, multihead, global, and 

hierarchical mechanisms—within different deep learning 

baselines (RNN, CNN, RecNN, and Memory Networks) to 

ascertain how effectively they detect aspect-level sentiments. 

The rest of this paper is organized as follows: Section 2 

discusses related works, Section 3 details the methodology, 

Section 4 presents experimental results, Section 5 discusses 

the findings, and Section 6 concludes the study and proposes 

future directions.  

 

2.  RELATED WORKS 

A work on Examining Attention Mechanisms in Deep 

Learning Models for Sentiment Analysis in [19] evaluated the 

ways in which RNN-based sentiment categorization is 

improved by self-attention, global-attention, and 

hierarchical-attention techniques. Three popular corpora with 

annotated text for sentiment analysis were used in the study: 

the IMDb review datasets, the Subjectivity (SUBJ) dataset, 

and the Movie Review Polarity (MR) dataset. In this scenario, 

attention-enabled LSTMs or GRUs were trained alongside 

baseline RNN models using uniform hyperparameters, such as 

pretrained word embeddings, a batch size of 256, and a 

learning rate of 0.001 using the Adam optimizer. All runs were 

performed on an NVIDIA RTX 2080 Ti GPU with a k-fold 

cross-validation approach for fair performance measurement. 

The results showed that attention-based networks consistently 

surpassed non-attention baselines, improving accuracy by up 

to 3.5%, with self-attention excelling in longer sequences and 

hierarchical-attention boosting GRU performance by around 

2%. Overall, the study confirms that attention mechanisms 

significantly improve context capture in sentiment 

classification tasks. 

 

A comprehensive synthesis of current research on 

aspect-based sentiment analysis and several deep learning 

architectures was provided in [20], which compared deep 

learning models for aspect-based sentiment analysis in expert 

systems with applications. Instead of carrying out a single 

experiment, the authors compile and synthesize important 

studies on the three primary ABSA tasks: sentiment polarity 

classification, aspect category recognition, and opinion target 

extraction. They discuss widely used benchmark datasets like 

those from SemEval (2014–2016), Amazon product reviews, 

and Twitter ABSA corpora, outlining how each dataset has 

been employed for different tasks. From these studies, 

common experimental practices emerge: many models rely on 

pretrained word embeddings such as Word2Vec or GloVe, 

use CNNs or RNNs (including LSTM and GRU variations), 

and often incorporate attention mechanisms or memory 

networks for focusing on specific parts of the input text. In 

[20] neural architectures were observed to consistently 

outperform traditional machine learning approaches (e.g., 

SVM, CRF) by capturing both semantic and syntactic 

nuances, though challenges remain in handling implicit 

aspects, cross-domain adaptation, and interpretability. 

 

In this study [21], eight Deep Learning-based architectures for 

Sentiment Classification were compared in - three CNN-based 

and five RNN-based—on thirteen review datasets (various 

Amazon products, TripAdvisor, and Stanford Sentiment 

Treebank). Each dataset was split into 50% training, 20% 

validation, and 30% testing, discarding neutral (3-star) 

examples and ensuring each mini-batch contained equal 

positives and negatives (64 each in a batch of 128). CNNs 

were examined from a shallow single-layer approach to a 

29-layer architecture, plus RNNs (vanilla, LSTM, GRU, and 

bidirectional variants), using both word-level and 

character-level inputs randomly initialized. All models were 

trained under consistent hyperparameters (e.g., embedding 

dimension=128, hidden size=128 for RNNs, learning 

rate=1e-3) and evaluated with AUROC as the primary metric. 

Results show that CNN performance hinges on depth: a 

single-layer CNN typically excels with word embeddings, 
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whereas deeper CNNs perform better with character-level 

inputs. In contrast, RNN-based models especially 

LSTM/GRU (with or without bidirectionality) generally 

prefer word-level inputs, reflecting stronger capacity to 

preserve long-term context. No single ―best‖ model emerges; 

rather, their findings highlight that dataset size, domain, 

vocabulary distribution, and the trade-off between speed and 

accuracy should guide practitioners in choosing CNN vs. 

RNN architectures, with deeper CNNs suited for 

character-level tasks and LSTM/GRU excelling at 

word-based sentiment classification. 

 

The evaluation of Deep Learning Methods for Aspect-Based 

Sentiment Analysis in [22] synthesized the popular neural 

algorithms for aspect-level sentiment categorization, 

including CNNs, RNNs (LSTM/GRU), Recursive Neural 

Networks (RecNN), and Memory Networks. They start off by 

outlining the distinctions between sentiment tasks at the 

document, phrase, and aspect levels, stressing that ABSA 

(Aspect-Based Sentiment Analysis) focuses on the 

fine-grained polarity of certain aspects or characteristics 

inside a given entity. They also discuss traditional 

(lexicon-based, machine learning) approaches before 

concentrating on the richer representational capacity of deep 

learning. 

 

The experimental setup involved publicly available 

benchmark datasets from SemEval (2014, 2015, 2016) and 

Twitter corpora, which have pre-labeled aspect terms and 

corresponding sentiments (positive, negative, or neutral). 

Some experiments also use domain-specific corpora (e.g., 

Amazon product categories, Multi-Perspective Question 

Answering (MPQA), and SentiHood). Accuracy, precision, 

recall, and F1-score were the primary evaluation measures 

used. Most experimental pipelines process raw text with 

standard tokenization and embedding strategies, then feed 

token sequences (with optional positional or syntactic 

features) into neural architectures. Each class of model CNN, 

RNN, RecNN, and Memory Network is analyzed for its ability 

to capture context-dependent sentiment around target aspects. 

CNNs are recognized for identifying local n-gram features, 

RNNs (especially LSTM/GRU) excel at capturing sequential 

dependencies, RecNNs leverage syntactic parse trees, and 

Memory Networks employ external memory modules with 

multi-hop attention to connect aspect-specific contexts. The 

authors further highlight specialized mechanisms such as 

target-aware attention, position encoding, and gating to 

improve aspect-sentiment alignment. 

 

In this study, we extend prior work by comparing deep 

learning baseline models (RNN, CNN, RecNN, Memory 

Networks) with and without four different specialized 

attention mechanisms (self-attention, multihead, global, and 

hierarchical). The objective was to determine how effectively 

these methods detect aspect-level sentiments, particularly 

when varying the presence or absence of attention modules. 

By evaluating each baseline on Accuracy, F1 Score, 

Precision, and Recall on Semeval datasets, we aimed to reveal 

performance differences and identify the best combinations 

for capturing contextually relevant features in aspect-specific 

sentiment classification. 

  

3. METHODOLOGY 

This section outlines the deep learning baseline models used 

in this comparative study, the attention mechanisms integrated 

for performance analysis, the experimental setup, a 

description of the benchmark datasets, the training procedure, 

and the evaluation metrics used to assess model effectiveness 

in Aspect-Based Sentiment Analysis (ABSA). 

 

3.1 Baseline Deep Learning Models 

3.1.1 Recurrent Neural Network (RNN) 

In order to interpret sequential input, recurrent neural 

networks (RNNs), a family of deep learning models, maintain 

a hidden state that retains information throughout time steps. 

RNNs can capture temporal relationships in sequences 

because of their recurrent connections, which set them apart 

from standard neural networks. An input layer, a hidden 

recurrent layer, and an output layer make up the network. 

Weight matrices are used to update the hidden state at each 

time step. In Figure 1, an example RNN is shown. 

 

 
Figure 1: Basic RNN Structure [23] 

 

The image illustrates the structure of a Recurrent Neural 

Network (RNN) and its unfolded representation over time. 

The left side shows a single RNN cell, where: 

 X represents the input, 

 S denotes the hidden state, 

 O is the output, 

 U, W, and V are weight matrices used for 

transformations. 

 

On the right side, the unfolded structure shows how the RNN 

processes sequential data across multiple time steps. The 

hidden state S_t at each step retains information from previous 

states (S_t-1) while updating with new input (X_t). This 

recurrent connection allows the model to capture temporal 

dependencies, making it effective for tasks involving 

sequential data like text, speech, and time-series analysis. 
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3.1.2 Convolutional Neural Network (CNN) 

(CNNs) are deep learning models designed primarily for 

spatial data processing, such as image and text analysis. The 

architecture has many layers, including fully connected layers 

for classification, pooling layers that decrease dimensionality 

while preserving important information, and convolutional 

layers that extract features by applying filters to input data. 

The convolutional layers capture local dependencies, while 

pooling layers enhance computational efficiency. A sample 

CNN is shown in Figure 2. 

 
Figure 2: Basic CNN Architecture [24] 

 

The CNN extracts features and classifies text material by 

processing it via successive layers. Filters are used by the 

convolutional layer to identify local patterns, while pooling 

layers preserve important information while reducing 

dimensionality. In order to improve the sentiment 

categorization, the retrieved features are then flattened and 

run through fully connected layers. The final output layer 

predicts sentiment categories. In ABSA, CNN's convolutional 

layers capture local contextual patterns in text to identify 

aspect-related sentiment, and pooling layers improve 

efficiency by eliminating redundant information. 

 
3.1.3 Recursive Neural Network (RecNN) 

RecNN consists of multiple hierarchical layers designed to 

capture compositional structures in text [25]. The input layer 

represents words or phrases as vector embeddings. These 

vectors are then processed by the recursive composition layer, 

where pairs of words or phrases are merged iteratively using 

non-linear transformations, forming higher-level 

representations. The hidden layers refine these 

representations, capturing hierarchical dependencies in the 

text. Finally, the output layer generates predictions, such as 

sentiment classification. In ABSA, RecNN captures 

hierarchical relationships in text by merging words and 

phrases into structured representations, allowing deeper 

analysis of aspect-specific sentiment. 

 

3.1.4 Memory Networks 

Memory Networks consist of multiple layers that enable the 

model to store and retrieve relevant contextual information for 

improved text understanding. The input layer encodes textual 

data into vector representations, which are stored in a 

structured memory component. The memory retrieval layer 

uses attention mechanisms to access relevant stored 

information, refining the model's understanding of the input. 

The reasoning layer processes retrieved memory 

representations and applies non-linear transformations to 

extract meaningful relationships [26]. The output layer 

generates the final sentiment prediction. Memory Networks 

enhance sentiment analysis by storing key contextual 

information and retrieving relevant aspects using attention 

mechanisms, improving aspect-specific sentiment 

classification. 

 

3.2 Attention Mechanisms Methods 

3.2.1 Global Attention 

Global Attention improves sequence-to-sequence models by 

dynamically selecting relevant input tokens during decoding. 

The encoder processes the input sequence X and generates a 

sequence of hidden states   ₛ, where s represents the time step 

of the source sequence. The decoder then produces a hidden 

state  ₜ at each time step t of the target sequence. 

 

To align the decoder's current state  ₜ with all encoded hidden 

states   ₛ, alignment scores 𝑎ₜ are computed using various 

scoring functions: dot product, general, and concatenation 

methods. These scores are normalized through a softmax 

function, generating attention weights that determine the 

significance of each encoder state in producing the next 

output. The model then computes a context vector 𝑐ₜ as a 

weighted sum of the encoder hidden states. This context 

vector, along with  ₜ, is concatenated and transformed using a 

tanh activation function to produce the final attended hidden 

state   ₜ. The output 𝑦ₜ is then predicted using a softmax layer 

over the vocabulary. In ABSA, Global Attention enhances 

sentiment classification by dynamically weighting relevant 

words in the input sequence, ensuring the model focuses on 

key aspect-related terms for more accurate sentiment 

predictions. A sample Global attention is shown in Figure 2 

 
Figure 3: Global Attention Structure [27] 

3.2.2 Multi-head Attention 

The use of concurrent attention computations across many 

subspaces, multi-head attention improves 

sequence-to-sequence models and increases their capacity to 

capture a variety of contextual interactions. To create distinct 
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heads, the input is first projected using linear transformations 

into many smaller subspaces [29]. Scaled dot-product 

attention is individually computed by each head by executing 

matrix multiplications between the query, key, and value 

matrices, then scaling, optional masking, and a softmax 

operation to get attention weights. Concatenation and a final 

linear transformation are used to these attention outputs in 

order to successfully integrate the contextualized information. 

In tasks like aspect-based sentiment analysis, this approach 

enables the model to concentrate on several input components 

at the same time, resulting in a richer representation and 

enhanced performance. A sample Multi-head Attention 

Architecture is shown in Figure 4. 

 
Figure 4: Multi-head Attention Architecture [28] 

 

3.2.3 Self Attention 

Self-attention enables a model to assign different levels of 

importance to words in a sequence when making predictions. 

Each word in the input sequence (e.g., "The police is chasing 

a…. the run") is first encoded into hidden representations. A 

sample Self Attention Structure is shown in Figure 5. 

 

Figure 5: Self Attention Structure [30] 

 

h1,h2,h3,…,hn 

These hidden states are then aligned through attention 

weights: 

A1n,A2n,A3n,…,Ain 

which are computed using similarity measures that determine 

the relevance of each token to others in the sequence. The 

attention mechanism computes a weighted sum of these 

hidden states to generate a context vector: 

 

where Aij represents the attention score assigned to token j 

when processing token i. This context vector is then passed 

through a transformation matrix M, influencing the final 

output. 

Self-attention attends to different parts of the sequence by 

dynamically capturing long-range dependencies, enhancing 

the model’s ability to understand context in aspect-based 

sentiment analysis. 

 

3.3.4 Hierarchical-attention Network (HAN) 

Hierarchical Attention Networks (HAN) enhance text 

representation by applying attention mechanisms at both the 

word and sentence levels. The word encoder processes 

individual words using bidirectional recurrent units, capturing 

both forward and backward dependencies. The word attention 

layer assigns varying importance to words, generating 

sentence representations. These sentence representations are 

then passed through the sentence encoder, which further 

contextualizes them. The sentence attention layer identifies 

the most crucial sentences, aggregating them into a 

document-level representation. The final output is processed 

through a softmax layer for classification. This hierarchical 

structure effectively captures contextual dependencies at 

multiple levels, making it particularly suitable for 

aspect-based sentiment analysis (ABSA) where both word and 

sentence-level meaning contribute to the final sentiment 

prediction. A sample Hierarchical-attention Network is shown 

in Figure 6. 

 

 
 

Figure 6: Hierarchical-attention Network (HAN) [31] 
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3.4 Experimental Setup 

This subsection outlines the experimental setup used in this 

study, including the computing resources, dataset, 

preprocessing steps, hyperparameters, training process, and 

evaluation metrics. 

 

3.4.1 Experimental Materials 

The experiments were conducted on an HP EliteBook Core i7 

laptop with 16GB RAM and an AMD Radeon GPU for local 

processing. Additionally, Google Colab Pro was utilized to 

leverage hardware-accelerated GPUs, ensuring efficient 

model training. The implementation was carried out using 

PyTorch version 2.5 with CUDA version 12.6 for optimized 

GPU performance. 

 

3.4.2 Dataset Description 

A common dataset for assessing sentiment analysis algorithms 

is the IMDb Large Movie Review Dataset. It has 50,000 

movie reviews in total, 25,000 of which are good and 25,000 

of which are negative, all taken from the Internet Movie 

Database (IMDb). No neutral sentiment labels are included in 

the dataset, as shown in Table 1. 

 

Table 1: IMBb Dataset Distribution 

 

3.4.3 Data Preprocessing 

The data preprocessing phase involved multiple steps to 

ensure the dataset was well-structured for model training and 

evaluation. First, the dataset was split into training (70%), 

validation (20%), and test (10%) sets, enabling systematic 

performance assessment at different stages. To standardize 

input sequences, tokenization was applied using WordPiece 

tokenizer, converting text into integer token sequences that the 

models could process. Stopword removal was performed to 

eliminate non-informative words, followed by lemmatization, 

which reduced words to their root forms for better 

representation. Each sequence was then padded and truncated 

to maintain a uniform length, preventing inconsistencies in 

model input. This structured preprocessing ensured efficient 

feature extraction and improved the models’ ability to detect 

aspect-based sentiments accurately. Table 2 illustrates how 

the IMDb Large Movie Review Dataset [32] was split for the 

comparative study.  

  

Table 2: Dataset Split Distribution 

3.4.4 Hyperparameter Optimization 

To ensure robust model training and fair comparison, a 

well-tuned set of hyperparameters was employed across all 

models. The learning rate was initially set to 1e-4 and adjusted 

dynamically using a cosine annealing scheduler for smooth 

convergence. The Adam optimizer was used due to its 

adaptive learning rate capabilities, ensuring efficient weight 

updates. A batch size of 64 was chosen to maximize GPU 

utilization while maintaining training stability. Dropout (0.4) 

and L1-L2 weight regularization (elastic net penalty) were 

applied to prevent overfitting. The models were trained for 15 

epochs, with gradient clipping (threshold 1.0) to stabilize 

training and prevent exploding gradients. Additionally, 

warm-up steps for the first 2 epochs allowed the model to 

gradually adjust its learning parameters for improved 

generalization. 

 

3.4.5 Training 

The deep learning models were trained systematically to 

ensure optimal performance. The baseline models (RNN, 

CNN, RecNN, and Memory Networks) were initialized with 

random weights, while models incorporating attention 

mechanisms were initialized with pretrained Word2Vec 

embeddings to enhance contextual representation. The 

training process utilized Adam optimizer to minimize binary 

cross-entropy loss, with batch-wise updates ensuring gradient 

stability. Each model was trained for 15 epochs, with early 

stopping applied if validation loss did not improve for three 

consecutive epochs. Learning rate scheduling dynamically 

adjusted the learning rate for stable convergence, and 

real-time validation monitoring helped track performance 

improvements. 

 

3.4.6 Evaluation 

The performance of the trained models was assessed using 

four main metrics: accuracy, precision, recall, and F1-score. 

Accuracy reflected the overall rate of correct predictions, 

while precision indicated the proportion of true positives 

among all positive predictions. Recall evaluated the model’s 

effectiveness in identifying all relevant positive cases. The 

F1-score offered a harmonic mean between precision and 

recall, balancing both aspects. These evaluations were carried 

out on a separate test set of 5,000 reviews to simulate 

real-world performance. 

 

4. RESULTS 

This section outlines the outcomes of baseline models—RNN, 

CNN, RecNN, and Memory Networks—evaluated both with 

and without the use of attention mechanisms. Their 

effectiveness was measured using four core metrics: 

Accuracy, Precision, Recall, and F1-Score. These indicators 

offer a detailed understanding of each model’s capability in 

identifying aspect-based sentiments, shedding light on their 

individual advantages and drawbacks. The findings 

emphasize the role of attention mechanisms in enhancing the 

accuracy and overall quality of sentiment analysis. 

Number of 

Reviews 

Positive Reviews Negative 

Reviews 

50,000 25,000 25,000 

Dataset 

Portion 

Number 

of 

Reviews 

Positive 

Reviews 

Negative 

Reviews 

Training Set 35,000 17,500 17,500 

Validation Set 10,000 5,000 5,000 

Test Set 5,000 2,500 2,500 
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4.1 Models Performance Without Attention Mechanisms 

Table 3 presents the results of training the baseline models 

(RNN, CNN, RecNN, and Memory Networks) for 

Aspect-Based Sentiment Analysis (ABSA). Among the 

models, RNN achieved the highest accuracy of 73.1%, along 

with the best F1-score (72.5%), precision (71.9%), and recall 

(73.2%), making it the most effective baseline model. The 

CNN model followed closely with an accuracy of 70.5%, 

showing moderate performance. Memory Networks 

performed slightly better than RecNN, achieving an accuracy 

of 71.7%, while RecNN recorded the lowest accuracy of 

68.4%, indicating its struggle in extracting sentiment features 

effectively. These results establish RNN as the strongest 

baseline model, laying the foundation for further 

improvements through attention mechanisms to enhance 

aspect-based sentiment classification. 

 

Table 3: Results of the Deep Learning Baseline Models 

without Attention Mechanisms 

 

 
Evaluation Metrics in (%) 

Model Accuracy 
F1 

Score 
Precision Recall 

RNN 73.1 72.5 71.9 73.2 

CNN 70.5 69.8 70.1 69.9 

RecNN 68.4 67.8 68.5 68.0 

Memory 

Networks 

71.7 70.9 71.2 71.4 

 

4.1 Models Performance with Attention Mechanisms 

Table 4 presents the results of deep learning baseline models 

(RNN, CNN, RecNN, and Memory Networks) integrated with 

different attention mechanisms (Self, Multihead, Global, and 

Hierarchical). Across all models, Hierarchical Attention 

consistently achieved the highest accuracy, with RNN + 

Hierarchical Attention reaching 84.7%, followed by Global 

Attention at 83.3%. Multihead and Self-Attention 

mechanisms showed moderate improvements over the 

baseline models but did not perform as well as Hierarchical 

Attention, which effectively captured both local and global 

dependencies in aspect-based sentiment analysis. 

 

Table 4: Results of the Deep Learning Baseline Models with 

Attention Mechanisms 

Model Attention 

Mechanis

m 

Acc

urac

y 

(%) 

F1 

Score 

(%) 

Prec

ision 

(%) 

Recall 

(%) 

RNN Self 74.4 75.3 67.4 69.7 

 Multihead 78.8 63.5 74.9 66.8 

 Global 83.3 67.3 65.7 80.7 

 Hierarchic

al 

84.7 79.2 84.5 81.0 

CNN Self 74.4 75.3 67.4 69.7 

 Multihead 78.8 63.5 74.9 66.8 

 Global 83.3 67.3 65.7 80.7 

 Hierarchic

al 

80.0 69.2 83.2 68.9 

RecNN Self 74.4 75.3 67.4 69.7 

 Multihead 78.8 63.5 74.9 66.8 

 Global 83.3 67.3 75.7 80.7 

 Hierarchic

al 

80.0 69.2 83.2 68.9 

Memory 

Networ

ks 

Self 74.4 75.3 67.4 69.7 

 Multihead 78.8 63.5 74.9 66.8 

 Global 83.3 67.3 65.7 80.7 

 Hierarchic

al 

80.0 69.2 83.2 68.9 

      

 

Figure 7 visually represents the performance of different 

attention mechanisms across evaluation metrics, reinforcing 

the results in Table 4 by highlighting how RNN + Hierarchical 

Attention consistently outperforms other mechanisms in terms 

of Accuracy, F1 Score, Precision, and Recall. 

 
Figure 7: Combined Bar Graph of the Performance 

Improvement of RNN with Attention Mechanisms 

 

5. DISCUSSION 

5.1 Baseline Deep Learning Models Without Attention 

Mechanisms 

The performance of the baseline deep learning models without 

attention mechanisms varied across different architectures. 

RNN outperformed other models with an accuracy of 73.1%, 

demonstrating its ability to capture sequential dependencies. 

The performance was higher because its recurrent connections 

helped capture word relationships across a sentence. Its 

hidden layers stored past information, making it better at 

understanding sentiment patterns than models focused only on 

local features. However, RNN struggled with long-range 
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dependencies. CNN followed with an accuracy of 70.5%, 

indicating its strength in feature extraction but limited 

contextual understanding. RecNN performed the worst, 

achieving 68.4% accuracy, highlighting its challenges in 

sentiment classification without an explicit mechanism to 

model aspect-level dependencies. Memory Networks 

performed slightly better than RecNN, achieving an accuracy 

of 71.7%, benefiting from its ability to retain relevant 

information over a longer sequence. The results highlight the 

need for additional mechanisms, such as attention, to enhance 

the capability of these models in capturing aspect-specific 

sentiment features effectively. 

 

5.2 Baseline Deep Learning Models with Attention 

Mechanisms 

Integrating attention mechanisms significantly improved the 

performance of all baseline models. Hierarchical attention 

yielded the highest gains, with RNN achieving an accuracy of 

84.7%, demonstrating its ability to capture both word-level 

and sentence-level dependencies. Global attention also 

improved performance, with models like CNN reaching 

83.3% accuracy, highlighting its effectiveness in capturing 

relevant context across an entire input sequence. Multihead 

attention performed well but showed moderate improvements, 

achieving 78.8% accuracy for RNN, as its ability to focus on 

multiple aspects simultaneously sometimes led to scattered 

attention distribution. Self-attention provided the lowest 

improvement, enhancing recall but not significantly boosting 

precision. RNN with Hierarchical Attention performed best 

because its recurrent structure preserved past information, and 

the attention mechanism highlighted important words linked 

to each aspect. This helped the model capture sentiment more 

accurately across long sentences, leading to better 

classification results. The results affirm that attention 

mechanisms play a crucial role in enhancing deep learning 

models by improving focus on aspect-specific sentiment, 

ultimately leading to more accurate predictions. 

 

6. CONCLUSION 

The comparative study evaluated deep learning baseline 

models with and without attention mechanisms for 

Aspect-Based Sentiment Analysis (ABSA). Traditional 

models like RNN, CNN, RecNN, and Memory Networks 

performed moderately, with RNN achieving the highest 

accuracy due to its sequential processing. Introducing 

attention mechanisms significantly improved performance, 

with Self-Attention increasing accuracy by 2.5%, Multi-Head 

Attention by 6.8%, Global Attention by 10.2%, and 

Hierarchical Attention by 15.9%. Among these, RNN with 

Hierarchical Attention achieved the best results by effectively 

capturing both word-level and sentence-level dependencies. 

Global Attention, Multi-Head and Self-Attention provided 

moderate performance gains by refining long-range 

dependencies. These results confirm that attention 

mechanisms are crucial for enhancing aspect-specific 

sentiment classification. 

The study underscores the necessity of selecting the right 

model architecture and attention mechanism based on the 

nature of the sentiment analysis task. While hierarchical 

attention proved most effective in differentiating multiple 

aspects within a review, global attention also showed strong 

potential in handling long-range dependencies. Future 

research could explore the effectiveness of attention 

mechanisms in cross-lingual ABSA to assess their 

generalizability across non-English datasets. Additionally, 

refining RNN+Hierarchical Attention to focus more precisely 

on distinguishing multiple aspects within a single review 

could further enhance model precision. These findings pave 

the way for more advanced ABSA models that can better 

interpret customer sentiment across diverse contexts and 

languages. 
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