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 

ABSTRACT 

 

Anomaly detection has become a critical area of research in 

fields such as cybersecurity, system monitoring, and software 

engineering. Modern approaches utilize machine learning 

techniques to identify anomalies by learning patterns of 

expected behavior. This paper presents a technical 

characterization of anomalies in software systems and 

proposes a data-driven approach to anomaly detection. By 

using machine learning techniques, the proposed methodology 

aims to improve the adaptability, scalability, and accuracy of 

detection mechanisms in modern software products.  

 

Key words : anomaly detection, machine learning, software 

products, system architecture.  

 

1. INTRODUCTION 

 

The reliability and stability of software products are 

paramount in modern digital ecosystems. As software systems 

grow in complexity, ensuring their reliability during runtime 

becomes increasingly challenging. Modern software 

applications, whether desktop, web, or cloud-based, operate in 

dynamic environments where unexpected behaviors referred 

to as anomalies can arise from bugs, misconfigurations, 

resource leaks, or unanticipated usage patterns. The increasing 

complexity of software products, combined with dynamic user 

demands and diverse deployment environments, has made the 

identification of anomalies an essential aspect of software 

maintenance and quality assurance. As applications scale in 

complexity and interconnectivity, unforeseen anomalies such 

as performance degradation, functional errors, and unusual 

usage patterns become increasingly common. Anomalies, 

which manifest as deviations from expected software 

behavior, can lead to performance bottlenecks, degraded user 

experience, or even system failures if left undetected. Early 
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detection and accurate analysis of these anomalies are crucial 

to ensuring software quality, maintaining performance, 

minimizing downtime, improving and maintaining user trust 

and experience. 

 

Traditional rule-based monitoring approaches often rely on 

static thresholds or manual rule definitions which lack 

adaptability and generate high false-positive rates. Although 

useful for well-known issues the traditional anomaly detection 

methods often fail to capture nuanced and evolving anomalies 

related to the complexity of modern software behavior. This 

necessitates the development of advanced anomaly detection 

methods that leverage machine learning (ML) techniques 

utilized to automatically learn patterns of normal software 

behavior and accurately detect anomalies in real-time, with 

minimal human intervention. 

 

The paper focuses on the development of a technical 

characterization of anomalies in software systems and presents 

a data-driven approach to anomaly detection in software 

products leveraging ML to achieve more adaptive, scalable, 

and accurate detection systems. 

 

2. RELATED WORKS 

 

Anomaly detection has been widely studied in various 

disciplines, including cybersecurity, system monitoring, and 

software engineering. Classical approaches such as 

threshold-based alerts and log file scanning are common but 

limited in terms of scalability and adaptability. More recent 

approaches include machine learning models to automatically 

identify deviations from expected behavior. Techniques range 

from simple clustering to complex deep learning architectures 

such as autoencoders. For example, MidLog is presented as an 

automated method for anomaly detection in log files based on 

a multi-head GRU architecture inspired by the multi-head 

Transformer mechanism [1]. Each GRU learns local patterns 

of sequence in the system log files, and their combined 

analysis allows for accurate anomaly detection. MidLog offers 

greater flexibility and scalability, achieving better accuracy 
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than baseline methods in experiments with public log file 

datasets. 

 

Some researchers address the growing need for advanced 

cybersecurity tools due to emerging technologies like IoT and 

pervasive computing, which introduce new intrusion threats 

[2]. To support cybersecurity efforts, the authors propose a 

novel data preprocessing model based on a distributed 

computing architecture designed for handling large-scale 

datasets such as UGR’16. The study also explores the use of 

machine learning techniques to enhance the efficiency and 

responsiveness of intrusion detection systems. Experimental 

results show that decision tree algorithms perform better than 

multilayer perceptron neural networks when applied to large 

datasets in this context. However, most existing developments 

focus primarily on network-level anomalies or system-level 

resource monitoring, with relatively less emphasis on 

application-level anomalies in software products. 

Furthermore, the challenge remains in building interpretable, 

real-time, low-latency detection mechanisms suitable for 

deployment in software ecosystems. 

 

An example of network-level anomalies is the study [3], which 

addresses the need for simple and effective methods for 

anomaly detection in large-scale network environments, where 

traditional approaches often lack depth and fail to utilize 

techniques such as unsupervised neural networks. As an 

alternative, the study uses self-organizing maps and extends 

the analysis beyond network traffic, including data from 

various information systems and using in-memory databases 

for faster processing. Data from application log files was 

analyzed and the anomaly detection method achieved a 96% 

success rate in validation tests. The proposed approach 

reduces the need for manual pre-qualification, reduces the 

burden on IT and security monitoring, and helps prevent 

potential attacks and security issues in advance. 

 

Several anomaly detection techniques have been proposed in 

software engineering literature, ranging from static code 

analysis to dynamic monitoring techniques. Rule-based and 

signature-based methods rely heavily on domain expertise and 

predefined thresholds, limiting their ability to generalize to 

new or evolving anomalies. For example, the study [4] 

introduces a rule-based method using First-Order Logic to 

detect anomalies in software product lines, with a focus on 

false-optional features and incorrect cardinality. While issues 

such as dead features and redundancy have been widely 

studied, false-optional features and incorrect cardinality have 

received less attention, despite their significant impact on 

software configuration and validity. The authors propose a 

new classification for wrong cardinality and define all known 

cases of these anomalies in the domain engineering process. 

Experimental results confirm the scalability and effectiveness 

of the proposed approach. 

 

Early approaches to anomaly detection in software focused on 

log scanning, rule-based alerts, and static performance 

thresholds. While simple to implement, these methods often 

fail in complex applications where behavior fluctuates based 

on user interactions, deployment environments, or business 

logic. Recent research in the software engineering domain 

highlights the effectiveness of machine learning techniques 

especially unsupervised and semi-supervised learning for 

automatically detecting anomalous application behavior. 

Models such as autoencoders, clustering algorithms, and 

tree-based methods have shown promise, particularly for 

detecting performance degradation, software regressions, and 

usage anomalies. Nevertheless, challenges remain in applying 

these models efficiently at runtime with low latency and high 

accuracy. 

 

More recent advancements focus on machine learning models, 

including clustering algorithms, neural networks, and 

probabilistic models, to identify patterns indicative of 

anomalies. For example, some researchers introduce GRAND, 

a neural network model that combines a variational 

autoencoder and a generative adversarial network to identify 

anomalies in execution traces. [5] They focus on detecting 

software runtime anomalies using internal execution traces 

rather than external performance metrics, allowing the 

detection of both performance and functional errors. The 

method was tested on data from the Cassandra database 

system, comprising over 5,000-time series with millions of 

data points.A deep learning-based method for software 

anomaly detection is presented that uses convolutional neural 

networks to extract runtime data features and predict 

anomalies [6]. Experimental results demonstrate that the 

approach outperforms traditional methods in terms of 

accuracy, although it has limitations, including prolonged 

testing times.  

 

Other study [7] presents a framework for automated anomaly 

detection and application change analysis, which integrates a 

regression-based transaction model and an application 

performance signature to detect significant changes in 

application behavior. It offers a non-intrusive and efficient 

solution using readily available monitoring data, making it 

suitable for enterprise environments.  

 

The Coniferest package [8] is an open-source Python tool for 

anomaly detection that aligns closely with modern machine 

learning practices. It supports multiple algorithms, including 

Isolation Forest, Active Anomaly Discovery, and Pineforest. It 

utilizes Cython for performance-critical operations, enabling 

fast and scalable parallel processing, and features a 

user-friendly interface. Coniferest supports model 

serialization in ONNX format, making it easy to integrate into 

automated machine learning pipelines. However, 

application-level anomaly detection, especially within 

production software environments, remains an open challenge 
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due to data scarcity, the dynamic nature of applications, and 

the need for real-time analysis. 

 

The DevOps toolchain generates large amounts of data that are 

often overlooked; yet, analyzing this data can provide valuable 

insights into a project’s status and evolution [9]. Metrics such 

as the number of lines of code added since the last release or 

the number of failures detected in the staging environment can 

help predict potential risks in upcoming releases. To prevent 

issues in production, an anomaly detection system can analyze 

the staging environment by comparing current and previous 

releases using predefined metrics, with human operators 

handling false positives and negatives. This paper presents a 

proof-of-concept implementation that demonstrates the 

feasibility of this approach for selected functionalities. 

 

Some researchers argue that equivalent mutants, traditionally 

viewed as a drawback in mutation analysis, can actually aid in 

detecting static anomalies in software artifacts [10]. The 

authors propose a technique that combines mutation, 

equivalence checking, and quality evaluation to identify 

deficiencies such as lack of clarity, unnecessary elements, or 

redundancy. They demonstrate that this approach applies to 

various artifacts, such as source code, Boolean expressions, 

feature models, and dependency graphs, where anomalies 

often reflect issues like non-minimality or poor readability. 

Although the method is not the fastest due to the cost of 

equivalence checking, experiments show it can detect 

anomalies as effectively as other techniques. 

 

3. TECHNICAL CHARACTERIZATION OF 

ANOMALIES IN SOFTWARE SYSTEMS 

 

An anomaly in software systems refers to any deviation from 

normal behavior that may indicate a defect, inefficiency, or 

abnormal state. We define anomalies along the following 

dimensions: 

 Performance Anomalies: Unexpected spikes or drops 

in response time, CPU usage, memory consumption, or I/O 

throughput. 

 Behavioral Anomalies: Deviations in user 

interactions, API call sequences, or internal application 

events. 

 Functional Anomalies: Execution of unintended code 

paths, logical inconsistencies, or unusual error rates. 

 

For machine learning, these anomalies are detected through 

structured features such as application-level metrics (response 

times, error rates), event logs (log message frequencies, log 

patterns), and user behavior sequences (clickstreams, session 

flows). 

 

To effectively capture these anomalies, a structured feature 

taxonomy is proposed including resource usage metrics, 

application-level indicators, user interaction data, and system 

log patterns (Table 1).   

The taxonomy guides the selection of relevant data features for 

model training and anomaly detection. The technical 

characterization guides the design of anomaly detection 

systems by defining what constitutes ―normal‖ and the metrics 

to monitor deviations. 

 

Table 1: Feature Taxonomy for Anomaly Detection 

 

4. MACHINE LEARNING-BASED ANOMALY 

DETECTION METHODOLOG 

 

The proposed methodology consists of four stages: data 

collection, preprocessing, anomaly modeling, and evaluation. 

The suggested high-level system architecture for data-driven 

anomaly detection pipeline in software products is shown in 

Figure 1. The system comprises seven main layers: (1) data 

collection layer; (2) data preprocessing & feature extraction 

layer; (3) machine learning model layer; (4) model 

explainability (5) anomaly scoring & decision logic; (6) 

monitoring, alerting, & visualization layer; (7) feedback and 

model retraining. 

 

4.1 Data Collection Layer 

 

The Data Collection Layer serves as the foundational 

component of the anomaly detection pipeline, responsible for 

continuously capturing, aggregating, and forwarding 

operational data from software applications. Its primary goal is 

to ensure comprehensive and timely visibility into the 

behavior of software systems, enabling downstream analysis 

and anomaly detection processes to function effectively. This 

layer operates in both real-time and batch modes, depending 

on the operational requirements. In real-time mode, data is 

streamed with minimal delay to facilitate immediate anomaly 

detection, while in batch mode, historical data is periodically 

ingested for retrospective analysis or model training. 

 

Feature Type Example Metrics 

Resource Usage 
CPU, Memory, Disk I/O,  

Network I/O 

Application Metrics 
Response Time, Error Rate,  

API Latency 

Event Sequences 
Function Call Traces,  

API Call Graphs 

User Interaction 
Clickstreams, Session Durations,  

Page Flows 

System Logs 
Log Frequency, Log Pattern 

Deviations 
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Figure 1: High-level system architecture for data-driven anomaly 

detection pipeline in software products 

 

The key data collection layer components are as follows:  

 

 Application Monitoring Agents: lightweight agents or 

SDKs embedded in applications to collect telemetry data 

without significantly impacting application performance. 

 Application Performance Monitoring Tools: tools 

capture high-level application metrics such as OpenTelemetry, 

Prometheus, or commercial APMs (e.g., Dynatrace, Datadog). 

 Log Collection Tools: solutions that gather structured 

and unstructured logs standardizing them into a centralized 

logging system. 

 

Data is collected from various sources such as application logs 

(structured (JSON, XML) and unstructured (plain text) logs 

generated by application components capturing events, errors, 

and execution flows), performance counters (key metrics such 

as response time, request rate, latency, throughput, 

CPU/memory utilization, and error rates), event streams 

(time-ordered sequences of application events including user 

interaction events (clicks, session actions), API request traces, 

and transaction flows) and optional system-level signals 

(metrics such as resource utilization and system health 

indicators, if relevant to application behavior). 

 

The tools and technologies that can be used involve logging 

agents (Fluentd, Logstash), metrics collectors (Prometheus, 

OpenTelemetry SDKs), event streaming platforms (Apache 

Kafka or Redis Streams for reliable, high-throughput data 

streaming, supporting low-latency anomaly detection). 

 

4.2 Data Preprocessing & Feature Extraction Layer 

The data preprocessing and feature extraction layer serves as a 

crucial intermediary stage in the anomaly detection pipeline. 

Its primary objective is to convert the raw, often noisy and 

unstructured operational data collected from software 

applications into clean, structured, and high-quality feature 

representations suitable for effective machine learning 

analysis. This layer ensures that downstream machine learning 

models receive well-prepared inputs that accurately reflect the 

application’s behavioral patterns. It is aimed to prepare raw 

data by cleaning, structuring, and transforming them into 

meaningful features suitable for machine learning models raw.  

 

The main purpose and objectives of data preprocessing and 

feature extraction layer are as follows:  

 clean and filter the raw data to eliminate noise, 

inconsistencies, and irrelevant information; 

 structure unstructured data formats (especially logs) 

into organized datasets;  

 engineer meaningful statistical, temporal, and 

behavioral features that capture both short-term anomalies and 

long-term patterns;  

 normalize and scale features to ensure consistency 

and comparability across data streams, thereby improving 

machine learning model convergence and stability.  

The core layer components include: 

 Data cleaning: detect and remove duplicate records 

that may arise from repeated log transmissions or retries; 

handle missing values using appropriate imputation 

techniques (e.g., forward-fill, interpolation) or by discarding 

corrupted records when necessary; filter out non-informative 

or irrelevant events, such as health-check pings or debug-level 

logs that do not contribute to anomaly characterization. 

 Data parsing: convert unstructured logs into 

structured formats by using regex patterns or log templates to 

extract key fields (e.g., timestamps, log levels, error codes), 

apply Natural Language Processing (NLP) techniques like 

keyword extraction or clustering (e.g., TF-IDF, topic 

modeling) for complex log messages; transform raw event 

streams into organized, timestamped event sequences suitable 

for sequence-based modeling (e.g., recurrent neural networks 

or sequence embeddings). 

 Feature extraction: generate aggregated statistical 

features (mean, median, variance, minimum, maximum values 

within fixed or dynamic time windows), construct sequence 

features including event frequency counts and encodings, 

n-grams encoding of event or API call sequences to capture 

behavioral patterns and session-based features (e.g., number 

of actions per user session, duration of sessions), derive 

behavioral ratio features like errors per request, retry rates, 

failure ratios, or latency-to-throughput ratios that are sensitive 

indicators of system health, extract trend features such as 

rolling averages, exponentially weighted moving averages  

and anomaly likelihood scores based on recent behavior. 

 Data normalization: apply normalization techniques 

to scale numerical features into a common range or 

standardize them to zero mean and unit variance, apply 

encoding strategies for categorical features such as one-hot 

encoding or ordinal encoding, depending on model 

requirements, manage time-alignment of features to handle 

asynchronous data sources ensuring temporal consistency 

across the feature set.  
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The tools used at the data preprocessing and feature extraction 

layer include Python scripts (pandas, NumPy), Apache Spark 

(for large-scale processing), or in-stream processing (Apache 

Flink). 

 

4.3 Machine Learning Model Layer 

The machine learning model layer frames the core ML 

inference engine for anomaly detection. It is the central 

analytical component of the anomaly detection system 

responsible for analyzing preprocessed data and generating 

anomaly predictions. This layer utilizes a variety of machine 

learning algorithms to model the normal behavioral patterns of 

software applications and detect deviations indicative of 

anomalies. It is designed to handle the diverse nature of 

software application data, which can be high-dimensional, 

time-dependent, and partially labeled or entirely unlabeled. 

 

The primary objectives of the layer in the system architecture 

is to model the complex dynamics of software application 

behavior, to detect unusual patterns or deviations that signal 

potential software anomalies and to provide real-time or 

near-real-time inference capabilities to support proactive issue 

detection. 

 

The main categories of ML models that can be used to predict 

or score anomalies in the software application behavior 

include: 

 Unsupervised learning: used when labeled anomaly 

data is scarce or unavailable which is common in real-world 

software systems. The ML algorithms utilized include: 

 Isolation Forest: a tree-based ensemble method effective 

for high-dimensional datasets that isolates outliers based on 

feature splitting mechanisms producing anomaly scores based 

on how easily a data point can be isolated; 

 Autoencoders: neural network architectures trained to 

reconstruct normal data patterns; higher reconstruction errors 

typically indicate anomalous behavior. Suitable for complex, 

non-linear feature spaces and temporal data sequences (e.g., 

LSTM Autoencoders); 

 Clustering Models: algorithms like DBSCAN or k-means 

that identify clusters of ―normal‖ behavior, with points outside 

these clusters flagged as anomalies. Useful for systems where 

behavioral modes naturally cluster. 

 Semi-Supervised learning: applied when normal data 

is abundant but anomalous data is rare or undefined.    

One-Class Support Vector Machines is a promising approach 

to learn the boundary of normal data distribution in the feature 

space and classify any point falling outside the learned 

boundary as anomalous data and identifies outliers. One-class 

SVM is effective for compact feature spaces with stable 

normal behavior patterns. 

 Supervised learning: utilized when historical labeled 

datasets are available, typically after substantial data 

collection and manual labeling efforts. Gradient Boosting 

Machines models such as XGBoost or LightGBM efficiently 

classify data into normal and anomalous classes capable of 

capturing non-linear dependencies and handling 

heterogeneous feature types. When rich labeled datasets are 

available deep learning classifiers can be utilized to classify 

different types of anomalies (e.g., performance vs. functional 

anomalies), especially when raw logs or sequences are used as 

input. 

 

Depending on the modeling approach and system 

requirements, the output from the ML layer can be: 

 raw anomaly scores: continuous scores representing the 

likelihood or severity of an anomaly, useful for flexible 

thresholding strategies; 

 binary anomaly labels: simple ―normal‖ vs. ―anomalous‖ 

classification outputs, suitable for triggering immediate alerts; 

 multi-class anomaly classification: labels that distinguish 

between different anomaly categories (e.g., performance 

degradation, functional failure, behavioral drift), providing 

more context for issue diagnosis;  

 confidence intervals: optional uncertainty estimates 

accompanying predictions, especially useful for critical 

applications where decision risk needs quantification.  

 

Model serving options include microservice model API, 

inference server or embedded model inference for low-latency 

environments). In the microservice-based model API strategy 

models are deployed as RESTful APIs behind scalable 

services (Docker, Kubernetes) that ensures flexible and 

language-agnostic integration with existing application 

monitoring tools. Inference servers strategy uses dedicated 

ML serving frameworks for high-throughput low-latency 

inference at scale and supports advanced features like 

batching, model versioning, and hardware acceleration 

(GPU/TPU inference). Embedded model inference strategy is 

based on utilization of lightweight models embedded directly 

into application processes or edge environments for 

ultra-low-latency predictions without external service calls. 

Embedded model inference is suitable for mission-critical, 

high-frequency anomaly detection tasks within microservices. 

 

The design considerations for the ML layer include model 

selection criteria based on data availability 

(labeled/unlabeled), inference latency requirements, and 

interpretability needs, model versioning and lifecycle 

management for tracking and deploying model versions 

systematically and design for horizontal scaling to handle 

growing application telemetry volumes. 

 

4.4 Model Explainability 

Anomaly detection explainability is crucial in software 

applications because it bridges the gap between automated 

detection and human understanding, fostering trust, 

transparency, and actionable insights. Without explainability, 

anomaly detection systems often operate as opaque black 

boxes, making it difficult for developers and operators to 

comprehend why specific behaviors are flagged as anomalous. 
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By providing clear, interpretable reasons—such as 

highlighting which features or patterns contributed most to an 

anomaly—teams can more efficiently diagnose issues, reduce 

false positives, and improve system reliability. Explainability 

also enhances accountability in critical environments by 

enabling organizations to audit decisions and ensure that 

detection mechanisms align with operational goals and 

compliance requirements. Explainability transforms anomaly 

detection from a purely technical tool into a practical 

decision-support system that accelerates root cause analysis 

and promotes faster incident resolution.  

 

Incorporating explainability outputs alongside model 

predictions for improved transparency and developer trust 

using:  

 SHAP (SHapley Additive exPlanations) Integration: 

provides game-theory-based explanations that attribute how 

much each feature contributed to a particular prediction (in 

this case, the anomaly score). Use cases include explanation 

why a specific software request or session was flagged as 

anomalous as well as advising developers to identify which 

features (e.g., error rate, API latency, log frequency) had the 

strongest impact on the anomaly decision. 

 LIME (Local Interpretable Model-agnostic 

Explanations) Integration: works by perturbing input features 

and observing changes in predictions, providing local 

approximations for individual anomalies. Possible use cases 

are quick explanation of individual anomaly cases, especially 

useful for deep learning models like autoencoders where 

feature interactions are opaque and on-demand explanation 

service that allow developers or operators to request LIME 

explanations via API. Dedicated LIME microservice takes in 

feature vectors and returns an interpretable feature importance 

visualization. When integrated with developer dashboards 

clicking on an anomaly alert a LIME explanation is fetched 

and displayed. LIME explanations can be used during model 

validation to help understand false positives or negatives. 

 

4.5 Anomaly Scoring & Decision Logic 

The anomaly scoring and decision logic layer serves as the 

interpretive and decision-making component of the anomaly 

detection system. It transforms the raw anomaly scores or 

labels generated by machine learning models into actionable 

decisions, such as triggering alerts or escalating anomalies for 

further analysis. This layer ensures that the system balances 

sensitivity (detecting true anomalies) and specificity (avoiding 

false positives), adapting to evolving software application 

behavior through flexible, rule-driven logic. Its main purpose 

and objectives are to interpret and post-process the outputs of 

machine learning models, to apply business-appropriate logic 

to distinguish between benign anomalies and actionable 

incidents and to manage alerting sensitivity dynamically, 

reducing alert fatigue while maintaining timely anomaly 

detection as well as optionally to incorporate domain 

knowledge through rule augmentation to handle edge cases 

that statistical models may overlook. 

 

The core functional components and the decision logic 

techniques include anomaly scoring aggregation, thresholding 

techniques, rule augmentation and anomaly prioritization and 

labeling.  

 

Anomaly scoring aggregation aggregates model outputs (e.g., 

probability scores, reconstruction errors, distance metrics) 

into unified anomaly scores and supports both direct usage of 

single-model scores and combined scoring from multiple 

models to create a robust anomaly detection signal. In addition 

can include smoothing techniques (e.g., exponential moving 

averages) to stabilize noisy predictions in high-frequency 

environments. 

Thresholding techniques that can be utilized are as follows:  

 Static thresholding: uses fixed pre-defined threshold 

values to classify anomalies. It is suitable for environments 

with well-understood, stable behavior patterns and is simple 

and easy to audit with low operational complexity. The main 

disadvantage of the single threshold approach is it is prone to 

false positives or missed anomalies in dynamic environments. 

 Dynamic thresholding: adjusts thresholds in 

real-time or over rolling time windows accounting for 

fluctuations in system behavior (e.g., time-of-day patterns, 

seasonal load changes). The main techniques include rolling 

mean and standard deviation thresholds, percentile-based 

adaptive thresholds (e.g., top 5% of anomaly scores over the 

past hour) and exponentially weighted moving average 

thresholds. Compared to static thresholding these techniques 

are more resilient to natural system variability and reduces 

false positives but requires careful tuning to avoid masking 

genuine anomalies. 

 Multi-model ensemble scoring: combines outputs 

from multiple ML models (e.g., unsupervised and supervised 

models) to improve detection robustness. The ensemble 

techniques include weighted average scoring, majority voting 

on binary anomaly labels and anomaly score stacking with 

meta-learners. The multi-model ensemble scoring balances 

strengths and weaknesses of different algorithms and improves 

overall system reliability but is more computationally 

intensive and requires careful calibration of ensemble 

strategies.  

 

The additional rule augmentation can also be utilized as 

optional business logic validation layer. Rule augmentation 

implements customizable business logic rules on top of ML 

outputs to filter, prioritize, or contextualize anomalies.       

Example rules that can be utilized suppress anomalies during 

maintenance windows, escalate anomalies affecting critical 

transaction paths or only trigger alerts if anomalies persist 

across multiple time windows (debounce logic). The rule 

augmentation enables incorporation of domain-specific 

knowledge, making the system more relevant to operational 
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teams and allows human-in-the-loop controls where engineers 

can modify or override decision logic without model 

retraining. 

 

The primary output of the anomaly scoring and decision logic 

layer are discrete anomaly events, annotated with metadata 

(e.g., timestamp, anomaly type, score, affected application 

component) as well as alerting mechanisms and event 

streaming emission of enriched anomaly events to real-time 

event buses for further consumption by monitoring dashboards 

or incident response pipelines and logging captured anomalies 

to a feedback store enabling human validation and future 

model retraining. 

 

4.6 Monitoring, Alerting and Visualization Layer 

The monitoring, alerting, and visualization layer is the critical 

interface between the anomaly detection system and human 

operators. Its primary function is to convert the analytical 

outputs – anomaly detections, scores, and classifications, into 

actionable insights through intuitive dashboards, real-time 

alerts, and periodic reports. This layer enhances operational 

visibility, enables rapid response to emerging anomalies, and 

supports long-term trend analysis of software application 

behavior. The purpose of this layer is to provide real-time 

observability of anomaly detection outputs through interactive 

dashboards, to deliver proactive alerts to relevant teams for 

immediate anomaly resolution, to offer historical insights and 

anomaly trends to support root cause analysis and capacity 

planning and to integrate seamlessly into existing operational 

workflows and observability platforms to minimize friction 

and maximize operational efficiency. 

 

The core functional layer components include: 

 Dashboard tools:  

 real-time anomaly dashboards: interactive visual 

dashboards (e.g., Grafana, Kibana) to monitor anomaly scores, 

labels, and incident trends in near real-time, dynamic 

visualizations such as time-series charts, heatmaps, and 

correlation matrices to visualize anomalies alongside 

application metrics (latency, throughput, error rates) and 

drill-down capabilities to explore anomalies at different levels: 

system-wide, application-specific, or even 

component/module-specific; 

 historical anomaly analytics: persistent storage of anomaly 

events enables historical querying and visualization, trend 

charts and anomaly count histograms to analyze daily, weekly, 

or monthly behavior patterns and visual correlation between 

anomaly occurrence and operational incidents (e.g., 

deployments, infrastructure changes). 

 Alerting tools:  

 real-time notifications: configurable alert triggers based on 

anomaly flags, severity levels, or aggregated anomaly scores 

and integration with established alerting pipelines such as 

Prometheus Alertmanager for metric-based alerts, PagerDuty 

for incident escalation management, Slack or Microsoft Teams 

for developer and operational team chat notifications, e-mail 

notifications for broader team communications or escalation 

paths; 

 custom alert policies: threshold-based alerts (static or 

dynamic), frequency-based alerting (e.g., only alert if N 

anomalies in T minutes) and conditional alerting (e.g., escalate 

if critical anomaly detected during business hours); 

 alert suppression logic: alert deduplication, silencing, or 

maintenance window exclusions to reduce alert fatigue and 

irrelevant noise. 

 Reporting tools:  

 scheduled summary reports: automated daily or weekly 

reports summarizing anomaly detection activity that include 

number of anomalies, types of anomalies, top affected services 

or components, and severity breakdowns;  

 incident retrospective support: integration of anomaly 

summaries with post-incident review processes and timeline 

views overlaying anomalies with system events (e.g., 

deployments, incidents); 

capacity and risk reporting: monthly or quarterly anomaly 

trend reports to assist in capacity planning, identifying 

application hotspots, or monitoring regression risks after code 

changes. 

 

4.7 Feedback and Model Retraining 

The feedback and model retraining loop plays a critical role in 

maintaining and improving the accuracy, relevance, and 

robustness of the anomaly detection system over time. It 

establishes a continuous learning process, allowing the 

detection models to adapt to evolving application behaviors, 

changing workloads, software updates, and operational 

patterns. This layer ensures the anomaly detection system 

remains effective in the face of concept drift, seasonal 

behavior changes, and system upgrades. Its main purpose and 

objectives is to ensure continuous improvement of model 

performance through operational feedback, to reduce false 

positives and false negatives by incorporating human insights 

into model updates, to detect and respond to data distribution 

shifts (concept drift) before performance degradation affects 

downstream systems and to automate the retraining and 

deployment process for machine learning models, ensuring 

agility and scalability. 

 

The main feedback mechanisms comprise:  

 Human-in-the-loop feedback: manual confirmation 

of anomalies through: 

 interactive feedback interfaces: integration of UI 

components within dashboards (e.g., Grafana annotations, 

custom web apps) where operators can label anomalies as 

―True Anomaly‖, ―False Positive‖, or ―Needs Investigation‖; 

 feedback logging: collected human feedback is stored in a 

structured feedback repository (e.g., PostgreSQL, 

Elasticsearch) including metadata such as timestamp, user ID, 

anomaly score, and resolution status; 
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 feedback-driven data augmentation: validated anomalies 

and false positives are appended to training datasets, 

enhancing both supervised and semi-supervised models. 

 closed-loop improvement: facilitates root cause analysis 

and highlights blind spots in model logic by promoting 

transparent feedback cycles. 

 Auto-retraining pipelines:  

 active learning integration: employs active learning 

strategies to selectively sample data points with high model 

uncertainty or borderline anomaly scores for human labeling, 

prioritizing the most informative data. 

 automated data pipelines: end-to-end pipelines that collect 

labeled data, update datasets, and retrain models in scheduled 

cycles (e.g., weekly, monthly), leveraging orchestration tools 

like Apache Airflow, Kubeflow Pipelines, or Prefect; 

 CI/CD integration: CI/CD pipelines (e.g., Jenkins, GitLab 

CI, GitHub Actions) that automatically trigger retraining jobs, 

conduct model validation (e.g., cross-validation, A/B testing), 

and deploy validated models to production environments;  

 model validation gates: retrained models must pass 

predefined performance thresholds (e.g., reduced false 

positive rate, improved F1-score) before deployment. 

 Drift detection mechanisms:  

 statistical drift detectors: techniques that measure shifts in 

input data distribution over time; 

 concept drift detectors: model performance monitoring 

through monitoring residuals, prediction confidence drop-offs, 

or error distribution shifts to identify degradation in prediction 

quality; 

 automatic drift triggers: when significant data or concept 

drift is detected, the system flags the model as ―outdated,‖ 

triggering automatic retraining pipelines or notifying ML 

operations teams for manual intervention; 

 visualization of drift: drift monitoring dashboards showing 

changes in feature distributions, model accuracy over time, 

and anomaly volume shifts. 

 

The operational workflow of the feedback and model 

retraining loop is as follows:  

(a) anomalies are detected and re displayed on dashboards; 

(b) human operator reviews anomalies and labels anomalies 

with feedback; 

(c) feedback repository collects and logs this information;  

(d) drift detection runs continuously and detects when data 

distribution or model performance degrades;  

(e) retraining pipeline is automatically initiated to         update 

training data with new labeled samples, retrain and 

validate model on augmented datasets and        deploy 

updated model using CI/CD workflows; 

(f)     new model serves predictions continuously monitored by 

the scoring and decision logic layer. 

 

 

 

5. DISCUSSION 

 

In proposed high-level system architecture for data-driven 

anomaly detection pipeline in software products data flows are 

collected from various application sources through lightweight 

agents or APIs to the data collection layer. From there, data is 

normalized and tagged with application version or 

environment metadata, and transmitted to centralized 

pipelines. Real-time data streams are directed to a message 

broker (e.g. Kafka) or time-series database (e.g. InfluxDB) for 

immediate consumption. Batch data is stored in a data lake or 

cold storage for historical model training, drift detection, or 

forensic analysis. 

 

In the context of the ML model layer, datasets represent 

structured collections of real-world information that help 

models learn underlying patterns [2]. Each entry in a dataset 

reflects a specific instance, defined by a set of variables, which 

together form the input space for the model. The complexity 

and size of these datasets can vary significantly depending on 

the domain, directly influencing the depth and accuracy of the 

resulting models. The Data Collection Layer ensures that all 

downstream components—preprocessing, machine learning 

inference, explainability, and alerting—receive consistent, 

accurate, and timely data. A robust and scalable data 

collection architecture minimizes data loss, supports 

multi-environment observability (e.g., production, staging), 

and lays the groundwork for high-accuracy anomaly detection 

by capturing rich operational signals from the application. 

 

Тhe success of machine learning systems fundamentally 

depends on the quality of the data pipeline – specifically, how 

data is collected, cleaned, and structured [11]. The discussion 

underlines the need for greater attention to data preprocessing 

as a foundational aspect of any ML solution. So, we propose to 

include Data Preprocessing & Feature Extraction Layer, which 

transforms diverse raw operational data into robust, 

information-rich feature sets that improves the accuracy and 

robustness of anomaly detection models, reduce noise and 

false-positive rates by ensuring that models focus on relevant, 

high-quality signals and enables the detection of both known 

and unknown (novel) anomalies by capturing complex 

behavioral patterns. 

 

By systematically applying preprocessing and feature 

extraction, the pipeline ensures that machine learning 

algorithms operate on data representations that closely reflect 

the operational state of the software applications, thereby 

maximizing the effectiveness of anomaly detection. The 

machine learning model layer transforms preprocessed 

application data into actionable anomaly insights through 

advanced ML algorithms. It ensures rapid, reliable, and 

explainable anomaly detection, serving as the analytical 

engine that enables proactive system health monitoring, root 

cause analysis, and automated operational responses. 
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Anomaly scoring & decision logic layer acts as the decision 

gateway, translating probabilistic or continuous anomaly 

signals into clear, operationally meaningful alerts. It provides 

the flexibility to adapt the system to changing business 

contexts, ensures actionable precision, and supports 

continuous system improvement via adaptive thresholds and 

rule tuning. By balancing statistical detection with practical 

business logic, the anomaly scoring and decision logic layer 

minimizes false alarms, reduces mean-time-to-detect and 

enhances the overall trustworthiness of the anomaly detection 

framework. 

 

The monitoring, alerting, and visualization layer ensures that 

anomalies detected by the system do not remain hidden within 

technical logs or backend systems. It surfaces critical insights 

to human operators in a timely, clear, and actionable manner, 

fostering faster detection-to-response cycles, reduced Mean 

Time to Detection (MTTD) and Mean Time to Resolution 

(MTTR), increased transparency and accountability through 

accessible historical records and reports and continuous 

feedback loops to improve anomaly detection efficacy based 

on user feedback and observed outcomes. By providing 

intuitive visibility and actionable alerts, the monitoring, 

alerting, and visualization layer transforms raw anomaly data 

into operational intelligence that directly improves software 

reliability and user experience. 

 

The main benefits of the feedback and retraining loop are 

improved model adaptability to changing application 

environments and user behaviors, reduced operational burden 

through automation of retraining and deployment, enhanced 

model robustness, capturing rare or emerging anomaly 

patterns via active learning, transparent system improvement, 

with a clear audit trail of feedback, retraining, and 

performance shifts and reduced alert fatigue through lower 

false positive rates and more accurate anomaly detection. This 

layer transforms the anomaly detection system from a static, 

one-time deployment into a living, learning system that 

evolves with the software application lifecycle. It embeds 

human expertise into the machine learning lifecycle and 

ensures the system remains reliable, trustworthy, and aligned 

with operational realities.  

6. CONCLUSION 

 

The paper presents a system architecture for effective 

data-driven anomaly detection in software products. The 

suggested architecture creates a full lifecycle for application 

anomaly detection from real-time data capture to ML-based 

detection, automated alerts, and continuous model 

improvement, making software systems more resilient, 

adaptive, and transparent. The proposed methodology is 

adaptable, interpretable, and suitable for real-time deployment 

in diverse software environments. The system architecture is 

designed to be modular, scalable, and adaptable for various 

types of software applications (web, desktop, microservices). 

 

Future work will focus on integrating the suggested high-level 

system architecture within DevOps and CI/CD pipelines for 

early anomaly detection and extending it for microservices and 

distributed architectures, utilizing adaptive learning methods 

to handle software evolution and dynamic user behavior and 

integration with explainable AI (XAI) techniques to improve 

interpretability and trust in anomaly detection decisions. 
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