
Milena Lazarova et al.,

 International Journal of Advances in Computer Science and Technology, 14(9), September 2025, 45 - 54

45



ABSTRACT

Anomaly detection has become a critical area of research in

fields such as cybersecurity, system monitoring, and software

engineering. Modern approaches utilize machine learning

techniques to identify anomalies by learning patterns of

expected behavior. This paper presents a technical

characterization of anomalies in software systems and

proposes a data-driven approach to anomaly detection. By

using machine learning techniques, the proposed methodology

aims to improve the adaptability, scalability, and accuracy of

detection mechanisms in modern software products.

Key words : anomaly detection, machine learning, software

products, system architecture.

1. INTRODUCTION

The reliability and stability of software products are

paramount in modern digital ecosystems. As software systems

grow in complexity, ensuring their reliability during runtime

becomes increasingly challenging. Modern software

applications, whether desktop, web, or cloud-based, operate in

dynamic environments where unexpected behaviors referred

to as anomalies can arise from bugs, misconfigurations,

resource leaks, or unanticipated usage patterns. The increasing

complexity of software products, combined with dynamic user

demands and diverse deployment environments, has made the

identification of anomalies an essential aspect of software

maintenance and quality assurance. As applications scale in

complexity and interconnectivity, unforeseen anomalies such

as performance degradation, functional errors, and unusual

usage patterns become increasingly common. Anomalies,

which manifest as deviations from expected software

behavior, can lead to performance bottlenecks, degraded user

experience, or even system failures if left undetected. Early

The research reported is funded by the project with contract №:

KP-06-N57/4 from 16.11.2021, funded by the Bulgarian National Science

Fund.

detection and accurate analysis of these anomalies are crucial

to ensuring software quality, maintaining performance,

minimizing downtime, improving and maintaining user trust

and experience.

Traditional rule-based monitoring approaches often rely on

static thresholds or manual rule definitions which lack

adaptability and generate high false-positive rates. Although

useful for well-known issues the traditional anomaly detection

methods often fail to capture nuanced and evolving anomalies

related to the complexity of modern software behavior. This

necessitates the development of advanced anomaly detection

methods that leverage machine learning (ML) techniques

utilized to automatically learn patterns of normal software

behavior and accurately detect anomalies in real-time, with

minimal human intervention.

The paper focuses on the development of a technical

characterization of anomalies in software systems and presents

a data-driven approach to anomaly detection in software

products leveraging ML to achieve more adaptive, scalable,

and accurate detection systems.

2. RELATED WORKS

Anomaly detection has been widely studied in various

disciplines, including cybersecurity, system monitoring, and

software engineering. Classical approaches such as

threshold-based alerts and log file scanning are common but

limited in terms of scalability and adaptability. More recent

approaches include machine learning models to automatically

identify deviations from expected behavior. Techniques range

from simple clustering to complex deep learning architectures

such as autoencoders. For example, MidLog is presented as an

automated method for anomaly detection in log files based on

a multi-head GRU architecture inspired by the multi-head

Transformer mechanism [1]. Each GRU learns local patterns

of sequence in the system log files, and their combined

analysis allows for accurate anomaly detection. MidLog offers

greater flexibility and scalability, achieving better accuracy

Machine Learning-Based Methodology and

System Architecture for Anomaly Detection in

Software Products

Milena Lazarova
1
, Аdelina Aleksieva-Petrova

2
, Antoniya Tasheva

3

1
Technical University of Sofia, Bulgaria, milaz@tu-sofia.bg

2
Technical University of Sofia, Bulgaria, aaleksieva@tu-sofia.bg
3
Technical University of Sofia, Bulgaria, atasheva@tu-sofia.bg

Received Date : July 28, 2025 Accepted Date : August 29, 2025 Published Date : September 07, 2025

 ISSN 2320 - 2602

Volume 14 No. 9, September 2025

International Journal of Advances in Computer Science and Technology
Available Online at http://www.warse.org/IJACST/static/pdf/file/ijacst021492025.pdf

https://doi.org/10.30534/ijacst/2025/021492025

Milena Lazarova et al.,

 International Journal of Advances in Computer Science and Technology, 14(9), September 2025, 45 - 54

46

than baseline methods in experiments with public log file

datasets.

Some researchers address the growing need for advanced

cybersecurity tools due to emerging technologies like IoT and

pervasive computing, which introduce new intrusion threats

[2]. To support cybersecurity efforts, the authors propose a

novel data preprocessing model based on a distributed

computing architecture designed for handling large-scale

datasets such as UGR’16. The study also explores the use of

machine learning techniques to enhance the efficiency and

responsiveness of intrusion detection systems. Experimental

results show that decision tree algorithms perform better than

multilayer perceptron neural networks when applied to large

datasets in this context. However, most existing developments

focus primarily on network-level anomalies or system-level

resource monitoring, with relatively less emphasis on

application-level anomalies in software products.

Furthermore, the challenge remains in building interpretable,

real-time, low-latency detection mechanisms suitable for

deployment in software ecosystems.

An example of network-level anomalies is the study [3], which

addresses the need for simple and effective methods for

anomaly detection in large-scale network environments, where

traditional approaches often lack depth and fail to utilize

techniques such as unsupervised neural networks. As an

alternative, the study uses self-organizing maps and extends

the analysis beyond network traffic, including data from

various information systems and using in-memory databases

for faster processing. Data from application log files was

analyzed and the anomaly detection method achieved a 96%

success rate in validation tests. The proposed approach

reduces the need for manual pre-qualification, reduces the

burden on IT and security monitoring, and helps prevent

potential attacks and security issues in advance.

Several anomaly detection techniques have been proposed in

software engineering literature, ranging from static code

analysis to dynamic monitoring techniques. Rule-based and

signature-based methods rely heavily on domain expertise and

predefined thresholds, limiting their ability to generalize to

new or evolving anomalies. For example, the study [4]

introduces a rule-based method using First-Order Logic to

detect anomalies in software product lines, with a focus on

false-optional features and incorrect cardinality. While issues

such as dead features and redundancy have been widely

studied, false-optional features and incorrect cardinality have

received less attention, despite their significant impact on

software configuration and validity. The authors propose a

new classification for wrong cardinality and define all known

cases of these anomalies in the domain engineering process.

Experimental results confirm the scalability and effectiveness

of the proposed approach.

Early approaches to anomaly detection in software focused on

log scanning, rule-based alerts, and static performance

thresholds. While simple to implement, these methods often

fail in complex applications where behavior fluctuates based

on user interactions, deployment environments, or business

logic. Recent research in the software engineering domain

highlights the effectiveness of machine learning techniques

especially unsupervised and semi-supervised learning for

automatically detecting anomalous application behavior.

Models such as autoencoders, clustering algorithms, and

tree-based methods have shown promise, particularly for

detecting performance degradation, software regressions, and

usage anomalies. Nevertheless, challenges remain in applying

these models efficiently at runtime with low latency and high

accuracy.

More recent advancements focus on machine learning models,

including clustering algorithms, neural networks, and

probabilistic models, to identify patterns indicative of

anomalies. For example, some researchers introduce GRAND,

a neural network model that combines a variational

autoencoder and a generative adversarial network to identify

anomalies in execution traces. [5] They focus on detecting

software runtime anomalies using internal execution traces

rather than external performance metrics, allowing the

detection of both performance and functional errors. The

method was tested on data from the Cassandra database

system, comprising over 5,000-time series with millions of

data points.A deep learning-based method for software

anomaly detection is presented that uses convolutional neural

networks to extract runtime data features and predict

anomalies [6]. Experimental results demonstrate that the

approach outperforms traditional methods in terms of

accuracy, although it has limitations, including prolonged

testing times.

Other study [7] presents a framework for automated anomaly

detection and application change analysis, which integrates a

regression-based transaction model and an application

performance signature to detect significant changes in

application behavior. It offers a non-intrusive and efficient

solution using readily available monitoring data, making it

suitable for enterprise environments.

The Coniferest package [8] is an open-source Python tool for

anomaly detection that aligns closely with modern machine

learning practices. It supports multiple algorithms, including

Isolation Forest, Active Anomaly Discovery, and Pineforest. It

utilizes Cython for performance-critical operations, enabling

fast and scalable parallel processing, and features a

user-friendly interface. Coniferest supports model

serialization in ONNX format, making it easy to integrate into

automated machine learning pipelines. However,

application-level anomaly detection, especially within

production software environments, remains an open challenge

Milena Lazarova et al.,

 International Journal of Advances in Computer Science and Technology, 14(9), September 2025, 45 - 54

47

due to data scarcity, the dynamic nature of applications, and

the need for real-time analysis.

The DevOps toolchain generates large amounts of data that are

often overlooked; yet, analyzing this data can provide valuable

insights into a project’s status and evolution [9]. Metrics such

as the number of lines of code added since the last release or

the number of failures detected in the staging environment can

help predict potential risks in upcoming releases. To prevent

issues in production, an anomaly detection system can analyze

the staging environment by comparing current and previous

releases using predefined metrics, with human operators

handling false positives and negatives. This paper presents a

proof-of-concept implementation that demonstrates the

feasibility of this approach for selected functionalities.

Some researchers argue that equivalent mutants, traditionally

viewed as a drawback in mutation analysis, can actually aid in

detecting static anomalies in software artifacts [10]. The

authors propose a technique that combines mutation,

equivalence checking, and quality evaluation to identify

deficiencies such as lack of clarity, unnecessary elements, or

redundancy. They demonstrate that this approach applies to

various artifacts, such as source code, Boolean expressions,

feature models, and dependency graphs, where anomalies

often reflect issues like non-minimality or poor readability.

Although the method is not the fastest due to the cost of

equivalence checking, experiments show it can detect

anomalies as effectively as other techniques.

3. TECHNICAL CHARACTERIZATION OF

ANOMALIES IN SOFTWARE SYSTEMS

An anomaly in software systems refers to any deviation from

normal behavior that may indicate a defect, inefficiency, or

abnormal state. We define anomalies along the following

dimensions:

 Performance Anomalies: Unexpected spikes or drops

in response time, CPU usage, memory consumption, or I/O

throughput.

 Behavioral Anomalies: Deviations in user

interactions, API call sequences, or internal application

events.

 Functional Anomalies: Execution of unintended code

paths, logical inconsistencies, or unusual error rates.

For machine learning, these anomalies are detected through

structured features such as application-level metrics (response

times, error rates), event logs (log message frequencies, log

patterns), and user behavior sequences (clickstreams, session

flows).

To effectively capture these anomalies, a structured feature

taxonomy is proposed including resource usage metrics,

application-level indicators, user interaction data, and system

log patterns (Table 1).

The taxonomy guides the selection of relevant data features for

model training and anomaly detection. The technical

characterization guides the design of anomaly detection

systems by defining what constitutes ―normal‖ and the metrics

to monitor deviations.

Table 1: Feature Taxonomy for Anomaly Detection

4. MACHINE LEARNING-BASED ANOMALY

DETECTION METHODOLOG

The proposed methodology consists of four stages: data

collection, preprocessing, anomaly modeling, and evaluation.

The suggested high-level system architecture for data-driven

anomaly detection pipeline in software products is shown in

Figure 1. The system comprises seven main layers: (1) data

collection layer; (2) data preprocessing & feature extraction

layer; (3) machine learning model layer; (4) model

explainability (5) anomaly scoring & decision logic; (6)

monitoring, alerting, & visualization layer; (7) feedback and

model retraining.

4.1 Data Collection Layer

The Data Collection Layer serves as the foundational

component of the anomaly detection pipeline, responsible for

continuously capturing, aggregating, and forwarding

operational data from software applications. Its primary goal is

to ensure comprehensive and timely visibility into the

behavior of software systems, enabling downstream analysis

and anomaly detection processes to function effectively. This

layer operates in both real-time and batch modes, depending

on the operational requirements. In real-time mode, data is

streamed with minimal delay to facilitate immediate anomaly

detection, while in batch mode, historical data is periodically

ingested for retrospective analysis or model training.

Feature Type Example Metrics

Resource Usage
CPU, Memory, Disk I/O,

Network I/O

Application Metrics
Response Time, Error Rate,

API Latency

Event Sequences
Function Call Traces,

API Call Graphs

User Interaction
Clickstreams, Session Durations,

Page Flows

System Logs
Log Frequency, Log Pattern

Deviations

Milena Lazarova et al.,

 International Journal of Advances in Computer Science and Technology, 14(9), September 2025, 45 - 54

48

Figure 1: High-level system architecture for data-driven anomaly

detection pipeline in software products

The key data collection layer components are as follows:

 Application Monitoring Agents: lightweight agents or

SDKs embedded in applications to collect telemetry data

without significantly impacting application performance.

 Application Performance Monitoring Tools: tools

capture high-level application metrics such as OpenTelemetry,

Prometheus, or commercial APMs (e.g., Dynatrace, Datadog).

 Log Collection Tools: solutions that gather structured

and unstructured logs standardizing them into a centralized

logging system.

Data is collected from various sources such as application logs

(structured (JSON, XML) and unstructured (plain text) logs

generated by application components capturing events, errors,

and execution flows), performance counters (key metrics such

as response time, request rate, latency, throughput,

CPU/memory utilization, and error rates), event streams

(time-ordered sequences of application events including user

interaction events (clicks, session actions), API request traces,

and transaction flows) and optional system-level signals

(metrics such as resource utilization and system health

indicators, if relevant to application behavior).

The tools and technologies that can be used involve logging

agents (Fluentd, Logstash), metrics collectors (Prometheus,

OpenTelemetry SDKs), event streaming platforms (Apache

Kafka or Redis Streams for reliable, high-throughput data

streaming, supporting low-latency anomaly detection).

4.2 Data Preprocessing & Feature Extraction Layer

The data preprocessing and feature extraction layer serves as a

crucial intermediary stage in the anomaly detection pipeline.

Its primary objective is to convert the raw, often noisy and

unstructured operational data collected from software

applications into clean, structured, and high-quality feature

representations suitable for effective machine learning

analysis. This layer ensures that downstream machine learning

models receive well-prepared inputs that accurately reflect the

application’s behavioral patterns. It is aimed to prepare raw

data by cleaning, structuring, and transforming them into

meaningful features suitable for machine learning models raw.

The main purpose and objectives of data preprocessing and

feature extraction layer are as follows:

 clean and filter the raw data to eliminate noise,

inconsistencies, and irrelevant information;

 structure unstructured data formats (especially logs)

into organized datasets;

 engineer meaningful statistical, temporal, and

behavioral features that capture both short-term anomalies and

long-term patterns;

 normalize and scale features to ensure consistency

and comparability across data streams, thereby improving

machine learning model convergence and stability.

The core layer components include:

 Data cleaning: detect and remove duplicate records

that may arise from repeated log transmissions or retries;

handle missing values using appropriate imputation

techniques (e.g., forward-fill, interpolation) or by discarding

corrupted records when necessary; filter out non-informative

or irrelevant events, such as health-check pings or debug-level

logs that do not contribute to anomaly characterization.

 Data parsing: convert unstructured logs into

structured formats by using regex patterns or log templates to

extract key fields (e.g., timestamps, log levels, error codes),

apply Natural Language Processing (NLP) techniques like

keyword extraction or clustering (e.g., TF-IDF, topic

modeling) for complex log messages; transform raw event

streams into organized, timestamped event sequences suitable

for sequence-based modeling (e.g., recurrent neural networks

or sequence embeddings).

 Feature extraction: generate aggregated statistical

features (mean, median, variance, minimum, maximum values

within fixed or dynamic time windows), construct sequence

features including event frequency counts and encodings,

n-grams encoding of event or API call sequences to capture

behavioral patterns and session-based features (e.g., number

of actions per user session, duration of sessions), derive

behavioral ratio features like errors per request, retry rates,

failure ratios, or latency-to-throughput ratios that are sensitive

indicators of system health, extract trend features such as

rolling averages, exponentially weighted moving averages

and anomaly likelihood scores based on recent behavior.

 Data normalization: apply normalization techniques

to scale numerical features into a common range or

standardize them to zero mean and unit variance, apply

encoding strategies for categorical features such as one-hot

encoding or ordinal encoding, depending on model

requirements, manage time-alignment of features to handle

asynchronous data sources ensuring temporal consistency

across the feature set.

Milena Lazarova et al.,

 International Journal of Advances in Computer Science and Technology, 14(9), September 2025, 45 - 54

49

The tools used at the data preprocessing and feature extraction

layer include Python scripts (pandas, NumPy), Apache Spark

(for large-scale processing), or in-stream processing (Apache

Flink).

4.3 Machine Learning Model Layer

The machine learning model layer frames the core ML

inference engine for anomaly detection. It is the central

analytical component of the anomaly detection system

responsible for analyzing preprocessed data and generating

anomaly predictions. This layer utilizes a variety of machine

learning algorithms to model the normal behavioral patterns of

software applications and detect deviations indicative of

anomalies. It is designed to handle the diverse nature of

software application data, which can be high-dimensional,

time-dependent, and partially labeled or entirely unlabeled.

The primary objectives of the layer in the system architecture

is to model the complex dynamics of software application

behavior, to detect unusual patterns or deviations that signal

potential software anomalies and to provide real-time or

near-real-time inference capabilities to support proactive issue

detection.

The main categories of ML models that can be used to predict

or score anomalies in the software application behavior

include:

 Unsupervised learning: used when labeled anomaly

data is scarce or unavailable which is common in real-world

software systems. The ML algorithms utilized include:

 Isolation Forest: a tree-based ensemble method effective

for high-dimensional datasets that isolates outliers based on

feature splitting mechanisms producing anomaly scores based

on how easily a data point can be isolated;

 Autoencoders: neural network architectures trained to

reconstruct normal data patterns; higher reconstruction errors

typically indicate anomalous behavior. Suitable for complex,

non-linear feature spaces and temporal data sequences (e.g.,

LSTM Autoencoders);

 Clustering Models: algorithms like DBSCAN or k-means

that identify clusters of ―normal‖ behavior, with points outside

these clusters flagged as anomalies. Useful for systems where

behavioral modes naturally cluster.

 Semi-Supervised learning: applied when normal data

is abundant but anomalous data is rare or undefined.

One-Class Support Vector Machines is a promising approach

to learn the boundary of normal data distribution in the feature

space and classify any point falling outside the learned

boundary as anomalous data and identifies outliers. One-class

SVM is effective for compact feature spaces with stable

normal behavior patterns.

 Supervised learning: utilized when historical labeled

datasets are available, typically after substantial data

collection and manual labeling efforts. Gradient Boosting

Machines models such as XGBoost or LightGBM efficiently

classify data into normal and anomalous classes capable of

capturing non-linear dependencies and handling

heterogeneous feature types. When rich labeled datasets are

available deep learning classifiers can be utilized to classify

different types of anomalies (e.g., performance vs. functional

anomalies), especially when raw logs or sequences are used as

input.

Depending on the modeling approach and system

requirements, the output from the ML layer can be:

 raw anomaly scores: continuous scores representing the

likelihood or severity of an anomaly, useful for flexible

thresholding strategies;

 binary anomaly labels: simple ―normal‖ vs. ―anomalous‖

classification outputs, suitable for triggering immediate alerts;

 multi-class anomaly classification: labels that distinguish

between different anomaly categories (e.g., performance

degradation, functional failure, behavioral drift), providing

more context for issue diagnosis;

 confidence intervals: optional uncertainty estimates

accompanying predictions, especially useful for critical

applications where decision risk needs quantification.

Model serving options include microservice model API,

inference server or embedded model inference for low-latency

environments). In the microservice-based model API strategy

models are deployed as RESTful APIs behind scalable

services (Docker, Kubernetes) that ensures flexible and

language-agnostic integration with existing application

monitoring tools. Inference servers strategy uses dedicated

ML serving frameworks for high-throughput low-latency

inference at scale and supports advanced features like

batching, model versioning, and hardware acceleration

(GPU/TPU inference). Embedded model inference strategy is

based on utilization of lightweight models embedded directly

into application processes or edge environments for

ultra-low-latency predictions without external service calls.

Embedded model inference is suitable for mission-critical,

high-frequency anomaly detection tasks within microservices.

The design considerations for the ML layer include model

selection criteria based on data availability

(labeled/unlabeled), inference latency requirements, and

interpretability needs, model versioning and lifecycle

management for tracking and deploying model versions

systematically and design for horizontal scaling to handle

growing application telemetry volumes.

4.4 Model Explainability

Anomaly detection explainability is crucial in software

applications because it bridges the gap between automated

detection and human understanding, fostering trust,

transparency, and actionable insights. Without explainability,

anomaly detection systems often operate as opaque black

boxes, making it difficult for developers and operators to

comprehend why specific behaviors are flagged as anomalous.

Milena Lazarova et al.,

 International Journal of Advances in Computer Science and Technology, 14(9), September 2025, 45 - 54

50

By providing clear, interpretable reasons—such as

highlighting which features or patterns contributed most to an

anomaly—teams can more efficiently diagnose issues, reduce

false positives, and improve system reliability. Explainability

also enhances accountability in critical environments by

enabling organizations to audit decisions and ensure that

detection mechanisms align with operational goals and

compliance requirements. Explainability transforms anomaly

detection from a purely technical tool into a practical

decision-support system that accelerates root cause analysis

and promotes faster incident resolution.

Incorporating explainability outputs alongside model

predictions for improved transparency and developer trust

using:

 SHAP (SHapley Additive exPlanations) Integration:

provides game-theory-based explanations that attribute how

much each feature contributed to a particular prediction (in

this case, the anomaly score). Use cases include explanation

why a specific software request or session was flagged as

anomalous as well as advising developers to identify which

features (e.g., error rate, API latency, log frequency) had the

strongest impact on the anomaly decision.

 LIME (Local Interpretable Model-agnostic

Explanations) Integration: works by perturbing input features

and observing changes in predictions, providing local

approximations for individual anomalies. Possible use cases

are quick explanation of individual anomaly cases, especially

useful for deep learning models like autoencoders where

feature interactions are opaque and on-demand explanation

service that allow developers or operators to request LIME

explanations via API. Dedicated LIME microservice takes in

feature vectors and returns an interpretable feature importance

visualization. When integrated with developer dashboards

clicking on an anomaly alert a LIME explanation is fetched

and displayed. LIME explanations can be used during model

validation to help understand false positives or negatives.

4.5 Anomaly Scoring & Decision Logic

The anomaly scoring and decision logic layer serves as the

interpretive and decision-making component of the anomaly

detection system. It transforms the raw anomaly scores or

labels generated by machine learning models into actionable

decisions, such as triggering alerts or escalating anomalies for

further analysis. This layer ensures that the system balances

sensitivity (detecting true anomalies) and specificity (avoiding

false positives), adapting to evolving software application

behavior through flexible, rule-driven logic. Its main purpose

and objectives are to interpret and post-process the outputs of

machine learning models, to apply business-appropriate logic

to distinguish between benign anomalies and actionable

incidents and to manage alerting sensitivity dynamically,

reducing alert fatigue while maintaining timely anomaly

detection as well as optionally to incorporate domain

knowledge through rule augmentation to handle edge cases

that statistical models may overlook.

The core functional components and the decision logic

techniques include anomaly scoring aggregation, thresholding

techniques, rule augmentation and anomaly prioritization and

labeling.

Anomaly scoring aggregation aggregates model outputs (e.g.,

probability scores, reconstruction errors, distance metrics)

into unified anomaly scores and supports both direct usage of

single-model scores and combined scoring from multiple

models to create a robust anomaly detection signal. In addition

can include smoothing techniques (e.g., exponential moving

averages) to stabilize noisy predictions in high-frequency

environments.

Thresholding techniques that can be utilized are as follows:

 Static thresholding: uses fixed pre-defined threshold

values to classify anomalies. It is suitable for environments

with well-understood, stable behavior patterns and is simple

and easy to audit with low operational complexity. The main

disadvantage of the single threshold approach is it is prone to

false positives or missed anomalies in dynamic environments.

 Dynamic thresholding: adjusts thresholds in

real-time or over rolling time windows accounting for

fluctuations in system behavior (e.g., time-of-day patterns,

seasonal load changes). The main techniques include rolling

mean and standard deviation thresholds, percentile-based

adaptive thresholds (e.g., top 5% of anomaly scores over the

past hour) and exponentially weighted moving average

thresholds. Compared to static thresholding these techniques

are more resilient to natural system variability and reduces

false positives but requires careful tuning to avoid masking

genuine anomalies.

 Multi-model ensemble scoring: combines outputs

from multiple ML models (e.g., unsupervised and supervised

models) to improve detection robustness. The ensemble

techniques include weighted average scoring, majority voting

on binary anomaly labels and anomaly score stacking with

meta-learners. The multi-model ensemble scoring balances

strengths and weaknesses of different algorithms and improves

overall system reliability but is more computationally

intensive and requires careful calibration of ensemble

strategies.

The additional rule augmentation can also be utilized as

optional business logic validation layer. Rule augmentation

implements customizable business logic rules on top of ML

outputs to filter, prioritize, or contextualize anomalies.

Example rules that can be utilized suppress anomalies during

maintenance windows, escalate anomalies affecting critical

transaction paths or only trigger alerts if anomalies persist

across multiple time windows (debounce logic). The rule

augmentation enables incorporation of domain-specific

knowledge, making the system more relevant to operational

Milena Lazarova et al.,

 International Journal of Advances in Computer Science and Technology, 14(9), September 2025, 45 - 54

51

teams and allows human-in-the-loop controls where engineers

can modify or override decision logic without model

retraining.

The primary output of the anomaly scoring and decision logic

layer are discrete anomaly events, annotated with metadata

(e.g., timestamp, anomaly type, score, affected application

component) as well as alerting mechanisms and event

streaming emission of enriched anomaly events to real-time

event buses for further consumption by monitoring dashboards

or incident response pipelines and logging captured anomalies

to a feedback store enabling human validation and future

model retraining.

4.6 Monitoring, Alerting and Visualization Layer

The monitoring, alerting, and visualization layer is the critical

interface between the anomaly detection system and human

operators. Its primary function is to convert the analytical

outputs – anomaly detections, scores, and classifications, into

actionable insights through intuitive dashboards, real-time

alerts, and periodic reports. This layer enhances operational

visibility, enables rapid response to emerging anomalies, and

supports long-term trend analysis of software application

behavior. The purpose of this layer is to provide real-time

observability of anomaly detection outputs through interactive

dashboards, to deliver proactive alerts to relevant teams for

immediate anomaly resolution, to offer historical insights and

anomaly trends to support root cause analysis and capacity

planning and to integrate seamlessly into existing operational

workflows and observability platforms to minimize friction

and maximize operational efficiency.

The core functional layer components include:

 Dashboard tools:

 real-time anomaly dashboards: interactive visual

dashboards (e.g., Grafana, Kibana) to monitor anomaly scores,

labels, and incident trends in near real-time, dynamic

visualizations such as time-series charts, heatmaps, and

correlation matrices to visualize anomalies alongside

application metrics (latency, throughput, error rates) and

drill-down capabilities to explore anomalies at different levels:

system-wide, application-specific, or even

component/module-specific;

 historical anomaly analytics: persistent storage of anomaly

events enables historical querying and visualization, trend

charts and anomaly count histograms to analyze daily, weekly,

or monthly behavior patterns and visual correlation between

anomaly occurrence and operational incidents (e.g.,

deployments, infrastructure changes).

 Alerting tools:

 real-time notifications: configurable alert triggers based on

anomaly flags, severity levels, or aggregated anomaly scores

and integration with established alerting pipelines such as

Prometheus Alertmanager for metric-based alerts, PagerDuty

for incident escalation management, Slack or Microsoft Teams

for developer and operational team chat notifications, e-mail

notifications for broader team communications or escalation

paths;

 custom alert policies: threshold-based alerts (static or

dynamic), frequency-based alerting (e.g., only alert if N

anomalies in T minutes) and conditional alerting (e.g., escalate

if critical anomaly detected during business hours);

 alert suppression logic: alert deduplication, silencing, or

maintenance window exclusions to reduce alert fatigue and

irrelevant noise.

 Reporting tools:

 scheduled summary reports: automated daily or weekly

reports summarizing anomaly detection activity that include

number of anomalies, types of anomalies, top affected services

or components, and severity breakdowns;

 incident retrospective support: integration of anomaly

summaries with post-incident review processes and timeline

views overlaying anomalies with system events (e.g.,

deployments, incidents);

capacity and risk reporting: monthly or quarterly anomaly

trend reports to assist in capacity planning, identifying

application hotspots, or monitoring regression risks after code

changes.

4.7 Feedback and Model Retraining

The feedback and model retraining loop plays a critical role in

maintaining and improving the accuracy, relevance, and

robustness of the anomaly detection system over time. It

establishes a continuous learning process, allowing the

detection models to adapt to evolving application behaviors,

changing workloads, software updates, and operational

patterns. This layer ensures the anomaly detection system

remains effective in the face of concept drift, seasonal

behavior changes, and system upgrades. Its main purpose and

objectives is to ensure continuous improvement of model

performance through operational feedback, to reduce false

positives and false negatives by incorporating human insights

into model updates, to detect and respond to data distribution

shifts (concept drift) before performance degradation affects

downstream systems and to automate the retraining and

deployment process for machine learning models, ensuring

agility and scalability.

The main feedback mechanisms comprise:

 Human-in-the-loop feedback: manual confirmation

of anomalies through:

 interactive feedback interfaces: integration of UI

components within dashboards (e.g., Grafana annotations,

custom web apps) where operators can label anomalies as

―True Anomaly‖, ―False Positive‖, or ―Needs Investigation‖;

 feedback logging: collected human feedback is stored in a

structured feedback repository (e.g., PostgreSQL,

Elasticsearch) including metadata such as timestamp, user ID,

anomaly score, and resolution status;

Milena Lazarova et al.,

 International Journal of Advances in Computer Science and Technology, 14(9), September 2025, 45 - 54

52

 feedback-driven data augmentation: validated anomalies

and false positives are appended to training datasets,

enhancing both supervised and semi-supervised models.

 closed-loop improvement: facilitates root cause analysis

and highlights blind spots in model logic by promoting

transparent feedback cycles.

 Auto-retraining pipelines:

 active learning integration: employs active learning

strategies to selectively sample data points with high model

uncertainty or borderline anomaly scores for human labeling,

prioritizing the most informative data.

 automated data pipelines: end-to-end pipelines that collect

labeled data, update datasets, and retrain models in scheduled

cycles (e.g., weekly, monthly), leveraging orchestration tools

like Apache Airflow, Kubeflow Pipelines, or Prefect;

 CI/CD integration: CI/CD pipelines (e.g., Jenkins, GitLab

CI, GitHub Actions) that automatically trigger retraining jobs,

conduct model validation (e.g., cross-validation, A/B testing),

and deploy validated models to production environments;

 model validation gates: retrained models must pass

predefined performance thresholds (e.g., reduced false

positive rate, improved F1-score) before deployment.

 Drift detection mechanisms:

 statistical drift detectors: techniques that measure shifts in

input data distribution over time;

 concept drift detectors: model performance monitoring

through monitoring residuals, prediction confidence drop-offs,

or error distribution shifts to identify degradation in prediction

quality;

 automatic drift triggers: when significant data or concept

drift is detected, the system flags the model as ―outdated,‖

triggering automatic retraining pipelines or notifying ML

operations teams for manual intervention;

 visualization of drift: drift monitoring dashboards showing

changes in feature distributions, model accuracy over time,

and anomaly volume shifts.

The operational workflow of the feedback and model

retraining loop is as follows:

(a) anomalies are detected and re displayed on dashboards;

(b) human operator reviews anomalies and labels anomalies

with feedback;

(c) feedback repository collects and logs this information;

(d) drift detection runs continuously and detects when data

distribution or model performance degrades;

(e) retraining pipeline is automatically initiated to update

training data with new labeled samples, retrain and

validate model on augmented datasets and deploy

updated model using CI/CD workflows;

(f) new model serves predictions continuously monitored by

the scoring and decision logic layer.

5. DISCUSSION

In proposed high-level system architecture for data-driven

anomaly detection pipeline in software products data flows are

collected from various application sources through lightweight

agents or APIs to the data collection layer. From there, data is

normalized and tagged with application version or

environment metadata, and transmitted to centralized

pipelines. Real-time data streams are directed to a message

broker (e.g. Kafka) or time-series database (e.g. InfluxDB) for

immediate consumption. Batch data is stored in a data lake or

cold storage for historical model training, drift detection, or

forensic analysis.

In the context of the ML model layer, datasets represent

structured collections of real-world information that help

models learn underlying patterns [2]. Each entry in a dataset

reflects a specific instance, defined by a set of variables, which

together form the input space for the model. The complexity

and size of these datasets can vary significantly depending on

the domain, directly influencing the depth and accuracy of the

resulting models. The Data Collection Layer ensures that all

downstream components—preprocessing, machine learning

inference, explainability, and alerting—receive consistent,

accurate, and timely data. A robust and scalable data

collection architecture minimizes data loss, supports

multi-environment observability (e.g., production, staging),

and lays the groundwork for high-accuracy anomaly detection

by capturing rich operational signals from the application.

Тhe success of machine learning systems fundamentally

depends on the quality of the data pipeline – specifically, how

data is collected, cleaned, and structured [11]. The discussion

underlines the need for greater attention to data preprocessing

as a foundational aspect of any ML solution. So, we propose to

include Data Preprocessing & Feature Extraction Layer, which

transforms diverse raw operational data into robust,

information-rich feature sets that improves the accuracy and

robustness of anomaly detection models, reduce noise and

false-positive rates by ensuring that models focus on relevant,

high-quality signals and enables the detection of both known

and unknown (novel) anomalies by capturing complex

behavioral patterns.

By systematically applying preprocessing and feature

extraction, the pipeline ensures that machine learning

algorithms operate on data representations that closely reflect

the operational state of the software applications, thereby

maximizing the effectiveness of anomaly detection. The

machine learning model layer transforms preprocessed

application data into actionable anomaly insights through

advanced ML algorithms. It ensures rapid, reliable, and

explainable anomaly detection, serving as the analytical

engine that enables proactive system health monitoring, root

cause analysis, and automated operational responses.

Milena Lazarova et al.,

 International Journal of Advances in Computer Science and Technology, 14(9), September 2025, 45 - 54

53

Anomaly scoring & decision logic layer acts as the decision

gateway, translating probabilistic or continuous anomaly

signals into clear, operationally meaningful alerts. It provides

the flexibility to adapt the system to changing business

contexts, ensures actionable precision, and supports

continuous system improvement via adaptive thresholds and

rule tuning. By balancing statistical detection with practical

business logic, the anomaly scoring and decision logic layer

minimizes false alarms, reduces mean-time-to-detect and

enhances the overall trustworthiness of the anomaly detection

framework.

The monitoring, alerting, and visualization layer ensures that

anomalies detected by the system do not remain hidden within

technical logs or backend systems. It surfaces critical insights

to human operators in a timely, clear, and actionable manner,

fostering faster detection-to-response cycles, reduced Mean

Time to Detection (MTTD) and Mean Time to Resolution

(MTTR), increased transparency and accountability through

accessible historical records and reports and continuous

feedback loops to improve anomaly detection efficacy based

on user feedback and observed outcomes. By providing

intuitive visibility and actionable alerts, the monitoring,

alerting, and visualization layer transforms raw anomaly data

into operational intelligence that directly improves software

reliability and user experience.

The main benefits of the feedback and retraining loop are

improved model adaptability to changing application

environments and user behaviors, reduced operational burden

through automation of retraining and deployment, enhanced

model robustness, capturing rare or emerging anomaly

patterns via active learning, transparent system improvement,

with a clear audit trail of feedback, retraining, and

performance shifts and reduced alert fatigue through lower

false positive rates and more accurate anomaly detection. This

layer transforms the anomaly detection system from a static,

one-time deployment into a living, learning system that

evolves with the software application lifecycle. It embeds

human expertise into the machine learning lifecycle and

ensures the system remains reliable, trustworthy, and aligned

with operational realities.

6. CONCLUSION

The paper presents a system architecture for effective

data-driven anomaly detection in software products. The

suggested architecture creates a full lifecycle for application

anomaly detection from real-time data capture to ML-based

detection, automated alerts, and continuous model

improvement, making software systems more resilient,

adaptive, and transparent. The proposed methodology is

adaptable, interpretable, and suitable for real-time deployment

in diverse software environments. The system architecture is

designed to be modular, scalable, and adaptable for various

types of software applications (web, desktop, microservices).

Future work will focus on integrating the suggested high-level

system architecture within DevOps and CI/CD pipelines for

early anomaly detection and extending it for microservices and

distributed architectures, utilizing adaptive learning methods

to handle software evolution and dynamic user behavior and

integration with explainable AI (XAI) techniques to improve

interpretability and trust in anomaly detection decisions.

ACKNOWLEDGEMENT

The research reported is funded by the project with contract

№: KP-06-N57/4 from 16.11.2021, funded by the Bulgarian

National Science Fund.

REFERENCES

1. W. Yuan, S. Ying, X. Duan, H. Cheng, Y. Zhao, and J.

Shang. MidLog: An automated log anomaly detection

method based on multi-head GRU, Journal of Systems

and Software, vol. 226, 2025.

2. X. Larriva-Novo, M. Vega-Barbas, V. A. Villagra, D.

Rivera, M. Alvarez-Campana, and J. Berrocal. Efficient

distributed preprocessing model for machine

learning-based anomaly detection over large-scale

cybersecurity datasets, Applied Sciences, vol. 10, no. 10,

2020.

3. F. Sönmez, M. Zontul, O. Kaynar, and H. Tutar.

Anomaly detection using data mining methods in IT

systems: a decision support application, Sakarya

University Journal of Science, vol. 22, no. 4, pp.

1109-1123, 2018.

4. A. O. Elfaki, S. L. Fong, P. Vijayaprasad, M. G. M. Johar,

and M. S. Fadhil. Research Article Using a Rule-based

Method for Detecting Anomalies in Software Product

Line, Research Journal of Applied Sciences, Engineering

and Technology, vol. 7, no. 2, pp. 275-281, 2014.

5. S. Kong, J. Ai, M. Lu, and Y. Gong. GRAND:

GAN-based software runtime anomaly detection

method using trace information, Neural networks, vol.

169, pp. 365-377, 2024.

6. G. Long, K. Yu, S. Yang, X. Zhou, X. Shen, X., and N.

Lu. Software anomaly detection technology based on

deep learning, Procedia Computer Science, vol. 259, pp.

1123-1129, 2025.

7. L. Cherkasova, K. Ozonat, N. Mi, J. Symons, J., and E.

Smirni. Automated anomaly detection and

performance modeling of enterprise applications,

ACM Transactions on Computer Systems (TOCS), vol.

27, no. 3, pp. 1-32, 2009.

8. M. V. Kornilov, et al. Coniferest: a complete active

anomaly detection framework, Astronomy and

Computing, vol. 52, 2025.

9. A. Capizzi, S. Distefano, L. J. Araújo, M. Mazzara, M.,

Ahmad, and E. Bobrov. Anomaly detection in devops

toolchain, in Software Engineering Aspects of

Continuous Development and New Paradigms of

Milena Lazarova et al.,

 International Journal of Advances in Computer Science and Technology, 14(9), September 2025, 45 - 54

54

Software Production and Deployment, JM. Bruel, M.

Mazzara, B. Meyer, Eds. Lecture Notes in Computer

Science, vol. 12055, Springer, Cham: Springer

International Publishing, 2019, pp. 37-51.

10. P. Arcaini, A. Gargantini, E. Riccobene, and P.

Vavassori. A novel use of equivalent mutants for static

anomaly detection in software artifacts, Information

and Software Technology, vol. 81, pp. 52-64, 2017.

11. O. S. Ndibe. Integrating Machine Learning with

Digital Forensics to Enhance Anomaly Detection and

Mitigation Strategies, International Journal of Advance

Research Publication and Reviews, vol. 2, no. 5, pp

365-388, 2025.

