
Taylor, Onate Egerton et al., International Journal of Advances in Computer Science and Technology, 13(8), August 2024, 99 - 106 

99 

 

 

 

ABSTRACT 

 

In the realm of edge computing, a paradigm emphasizing 

decentralized computational tasks, the interplay between time 

and space complexity holds immense significance. Time 

complexity denotes the duration required for an algorithm's 

execution, while space complexity concerns the memory or 

storage demand throughout the process. The evaluation entails 

a comparative analysis between a conventional non-quantized 

model and its quantized counterpart, focusing on accuracy, 

memory utilization, and runtime. The non-quantized model 

exhibits commendable learning performance, achieving a 96% 

accuracy rate during training but experiencing a marginal 

decrease to 90% in testing. Conversely, the quantized model 

sustains competitive accuracy, attaining 98% in both training 

and testing phases. The architecture of the quantized model, 

characterized by diminished numerical precision, emerges as a 

pivotal factor in minimizing both memory footprint and 

computational requirements. Graphical analyses unveil that 

despite a slight increase in loss during validation, the 

quantized model displays robust learning and generalization 

capabilities from the training dataset. The comparative 

analysis emphasizes the benefits of quantization, emphasizing 

decreased memory utilization (3kb), faster runtime, and, in 

specific cases, improved accuracy (96%). This thesis provides 

valuable perspectives on the effectiveness of quantization in 

optimizing Convolutional Neural Network (CNN) models for 

deployment on edge devices with limited resources. The 

evaluation metrics employed include memory usage reduction, 

runtime speed, and accuracy enhancement 96%. 

 

Key words : Time and space complexity, edge devices, 

convolutional neural network, Domain Knowledge 

 

1. INTRODUCTION 

 

Edge devices refer to the various hardware devices that are 

connected to the Internet of Things (IoT) ecosystem, which are 

located on the "edge" of the network. These devices are 

usually small, low-cost, and have limited processing 

capabilities. They are designed to perform simple tasks like 

 
 

data collection, processing, and transmission. The data 

collected by these devices is then sent to the cloud or other 

central servers for further analysis and processing. Edge 

devices have become increasingly popular in recent years due 

to their ability to process data locally, reducing latency and 

improving overall performance. Edge devices can be broadly 

categorized into two types: sensors and actuators. Sensors are 

devices that collect data from the environment, such as 

temperature, humidity, or light. They are often used in 

applications like home automation, industrial monitoring, and 

healthcare. Actuators, on the other hand, are devices that act 

upon the environment, such as turning on a light, opening a 

valve, or activating a motor. Actuators are commonly used in 

home automation, industrial control, and robotics [1]. 

Edge computing has garnered significant attention for its 

potential to reduce latency, enhance privacy, and improve 

overall system efficiency by processing data closer to its 

source. A critical aspect in edge computing is reducing time 

and space complexity on edge devices to enable efficient 

processing. Several studies have focused on developing 

models and algorithms to address this challenge. For example, 

[2] introduced ICONet, a lightweight network with reduced 

time complexity suitable for implementation on edge devices. 

Similarly, [3] discussed optimizing Deep Neural Networks 

(DNNs) through model partitioning to enhance performance 

on edge devices by dividing the model into smaller 

sub-modules that can run in parallel. 

One of the most significant advantages of edge devices is 

their ability to perform real-time analysis and 

decision-making. By processing data locally, these devices 

can quickly respond to changes in the environment without the 

need for centralized processing. This is particularly important 

in applications like industrial automation and robotics, where 

delays can lead to safety hazards or decreased efficiency. Edge 

computing is becoming increasingly important as more and 

more devices are connected to the internet, and the amount of 

data generated continues to grow. There are several challenges 

associated with edge computing, including limited processing 

power, memory, and storage. These limitations can make it 

difficult to process large amounts of data or perform complex 

computations. Additionally, edge devices are often located in 

harsh environments, which can lead to reliability and 

 

A Model for Reduction of Time and Space     

Complexity on Edge Devices 

Taylor, Onate Egerton
1
, Bumotu Braye Christy

2
, Anireh, Vincent Ike Emeka

3 

1
Department of Computer Science, Rivers State University, Nigeria, taylor.onate@ust.edu.ng 
2
Department of Computer Science, Rivers State University, Nigeria, anireh.ike@ust.edu.ng 

3
Department of Computer Science, Rivers State University, Nigeria, meetbraye@gmail.com 

 

Received  Date : June 4 , 2024   Accepted  Date : July 29, 2024    Published Date : August 07, 2024 

                                                                                                    ISSN   2320 - 2602 

Volume 13  No. 8, August 2024 

International Journal of Advances in Computer Science and Technology 
Available Online at http://www.warse.org/IJACST/static/pdf/file/ijacst021382024.pdf 

https://doi.org/10.30534/ijacst/2024/021382024 

 

mailto:anireh.ike@ust.edu.ng
mailto:meetbraye@gmail.com


Taylor, Onate Egerton et al., International Journal of Advances in Computer Science and Technology, 13(8), August 2024, 99 - 106 

100 

 

 

maintenance issues. To address these challenges, researchers 

are exploring new hardware architectures, software 

optimizations, and communication protocols [4]. 

Time and space complexity are two important factors to 

consider when developing algorithms for edge devices. Edge 

devices are typically resource-constrained, meaning that they 

have limited processing power, memory, and energy. 

Therefore, it is essential to optimize algorithms for both time 

and space complexity to ensure efficient and effective 

performance. Time complexity refers to the amount of time it 

takes for an algorithm to execute as a function of the input size. 

As edge devices have limited processing power, it is important 

to minimize the time complexity of algorithms to reduce the 

amount of time taken to process data. This can be achieved by 

using algorithms that have a low time complexity, such as 

those with a linear or logarithmic time complexity [5]. 

To further enhance the efficiency of edge devices, 

researchers have explored techniques such as task offloading 

and deep reinforcement learning. [6] proposed a novel task 

offloading algorithm based on deep reinforcement learning to 

optimize task scheduling, transmit power of IoT devices, and 

computing resource allocation of edge servers, aiming to 

reduce latency and energy consumption. Additionally, [7] 

suggested partitioning and distributing layer information 

across multiple edge devices to reduce computation and data 

load on individual devices, thereby improving overall 

efficiency. 

Moreover, deploying neural network models on edge 

devices has been a focus of recent research efforts [8] 

highlighted the increasing popularity of deploying neural 

network models on edge devices to reduce response time and 

enhance data privacy. By automating quantization and 

retraining, models can be optimized for edge deployment, as 

discussed by [8]. Furthermore, [9] emphasized the importance 

of layer optimization and parameter reduction in models like 

Tiny-YOLOv3 to reduce 

2. LITERATURE REVIEW 

In their study, [10] introduce an innovative multistage 

pruning method that effectively decreases the complexity of 

CNN models while maintaining performance levels similar to 

other pruning strategies. A pre-existing Convolutional Neural 

Network (CNN) model is utilised as a baseline reference for 

ECG categorization. The proposed technique, with a sparsity 

of 60%, obtains an accuracy of 97.7% and an F1 score of 

93.59% for ECG classification tasks. The accuracy and F1 

Score have improved by 3.3% and 9% respectively, compared 

to the typical strategy of trimming with fine-tuning. In 

comparison to the baseline model, we also attain a reduction of 

60.4% in the complexity of the run-time. 

[11] have developed a tri-design approach for implementing 

MOT (Multiple Object Tracking) on edge devices. This 

approach utilises aggressive data reduction, model 

compression, and ultra-low-power hardware innovation to 

produce an algorithm that is both hardware-aware and 

ultra-lightweight. The authors validate the efficacy of the 

proposed tri-design through comprehensive experiments. Our 

technique on Alveo U50 FPGAs outperforms the 

state-of-the-art MOT baseline in several  

In their study, [12] examine three primary research domains 

related to on-device computation: quantization, pruning, and 

network architecture design. The three strategies facilitate the 

deployment of a DNN model on edge devices for real-time 

computation and storage, primarily by reducing computation 

and space complexity. Furthermore, these techniques have the 

potential to enable the use of deep neural networks (DNNs) in 

industrial Internet of Things (IoT) devices. 

[13] presents an extensive examination of different methods 

for improving the computational efficiency of deep learning 

inference on edge devices. The authors explore various 

methodologies, including network pruning, quantization, and 

knowledge distillation. The report also presents a comparative 

analysis of the efficacy of different methodologies on diverse 

edge devices. 

[4] presents an innovative method to decrease the time and 

space complexity in edge devices. The authors present a novel 

method that decreases the time and space requirements of edge 

devices while upholding a high level of accuracy. 

[9] offers valuable insights into the coordination of 

computing tasks in an edge computing framework. The 

authors critically examine the conventional scheduling 

algorithms employed in edge computing jobs, with a particular 

focus on the efficient transfer of computationally demanding 

work from edge devices to edge servers. This emphasises the 

necessity of examining the time complexity of jobs on edge 

devices and the influence of offloading on the overall 

performance of the system. 

In their paper, [14] did a comparative analysis to determine 

the most effective methods for deploying machine learning 

models on microcontrollers. They specifically investigated 

quantization and pruning strategies to optimise models for 

deployment on edge devices with limited resources. The 

objective of the study was to improve the effectiveness of 

deploying machine learning models on microcontrollers by 

implementing optimisation approaches.  

[15] conducted a thorough examination of solutions for 

transferring large amounts of data from edge devices to the 

cloud. They highlighted the significance of task complexity, 

network speed, and server burden in minimising the time 

required to complete tasks by offloading them. The study 

emphasised the key aspects that impact the efficiency of 

offloading strategies from edge to cloud resources, providing 

insight into the potential advantages of these tactics in 

optimising computing processes.  

[16] conducted a study on the modelling and analysis of 

vehicular edge computing with sporadic task arrivals. They 

examined the ability of the system to provide services in terms 

of response time and the likelihood of service interruptions. 

The research yielded valuable insights into the difficulties and 

abilities of edge computing systems in managing sudden 

surges in task arrivals and enhancing service response times 

for mobile devices.  



Taylor, Onate Egerton et al., International Journal of Advances in Computer Science and Technology, 13(8), August 2024, 99 - 106 

101 

 

 

[17] examine the notion of edge intelligence and its 

contribution to the progress of artificial intelligence via edge 

computing. The study examines prospective areas for future 

research in the subject of edge intelligence, highlighting the 

possibility of utilising edge devices to improve computational 

workloads while maintaining security and efficiency.  

[18] conducted a survey that investigated the application of 

federated learning in edge computing, with a specific emphasis 

on the aspects of scalability and artificial intelligence. The 

study focuses on the computational demands of edge devices, 

including hardware diversity and restricted resources. It 

highlights the significance of effective learning methods in 

dispersed systems.  

[3] investigate the optimisation of deep neural network 

(DNN) model partitioning in order to improve the 

performance of edge devices. This research focuses on 

investigating partitioning strategies for big deep neural 

network (DNN) models to enhance performance, specifically 

in terms of reducing model training time on edge devices. 

Previous studies have demonstrated improvements in 

time-to-accuracy measures.  

[19] conducted a case study that explores the application of 

deep learning for picture classification and object recognition 

on commercial edge devices. The study specifically 

emphasises the detection of face masks. The study assesses the 

efficacy of intricate models on edge devices, emphasising the 

practical ramifications of implementing advanced deep 

learning algorithms for real-world use cases.  

[2] present ICONet, a low-weight network specifically built 

for edge devices, which boasts improved adaptability to 

environmental conditions. ICONet allows for effective 

deployment of advanced neural network models in 

resource-constrained contexts by decreasing time complexity 

and optimising model size. 

 

3. METHODOLOGY 

 
Figure 1: Architecture of the time and space complexity reduction 

system in edge devices 

 

Domain Knowledge: The domain problem is a statement 

expression relating to all facts that defines the constrains and 

problem the solution (the limitations being a part of the 

problem). Here, the problem area is to pick out and decrease 

the elements that causes time and space complexity on edge 

devices.  

Pre-Processing: Here, the data pre-processing that will be 

carried out has to do with the checking and removal of Nan 

values, and data scaling. Data scaling is an essential 

pre-processing step while running with each system getting to 

know and Deep Learning algorithms. Data scaling may be 

accomplished through normalizing or standardizing 

real-valued enter and output variables. Therefore, for 

information scaling, MinMaxScaler feature might be utilized 

in subtracting the minimal characteristic after which divides 

through the variety. The variety is the distinction among the 

authentic most and authentic minimal of the dataset. 

Complexity: The complexity on edge devices are caused by 

the following factors: 

i. Input Features:  In a few domain problems, the data 

entered will increase from X1 to Xn wherein X is the 

entered data, and n is the wide variety of capabilities. 

ii. Computational Complexity: Computation 

complexity on edge devices refers to the analysis of how 

much computational resources, such as processing power, 

memory, and energy, are required to perform a specific task 

or algorithm on a device at the edge of a network, such as a 

smartphone, IoT device, or embedded system. 

a. Time Complexity: This refers to the amount of time 

required to execute an algorithm or task. It is often 

measured in terms of the number of operations or 

instructions executed. Lower time complexity indicates 

faster execution. 

b. Space Complexity: This refers to the amount of 

memory or storage space required to execute an 

algorithm or task. It is typically measured in terms of the 

number of variables or data structures used. Lower space 

complexity indicates more efficient memory usage. 

c. Energy Efficiency: Edge devices often have 

limited battery life, making energy efficiency a critical 

consideration. Computation complexity affects the 

energy consumption of a device, as more complex 

algorithms tend to require more processing power, 

leading to higher energy consumption. 

Quantization:  Quantization is a technique used to reduce 

the time and space complexity of deep learning models, 

particularly on edge devices. Edge devices, such as 

smartphones, IoT devices, and embedded systems, often have 

limited computational resources and memory capacity. 

Quantization addresses these limitations by reducing the 

precision of the numerical values used in the model, thereby 

reducing the memory footprint and computational 

requirements. 

In deep learning models, parameters and activations are 

typically represented as floating-point numbers with high 

precision, such as 32-bit or 64-bit floating-point values. 

However, most edge devices can perform computations with 

lower precision, such as 8-bit or even 4-bit integers. 

Quantization exploits this fact by representing the parameters 

and activations using lower-precision data types. 

Quantization involves two main steps: weight quantization 

and activation quantization. 

1. Weight Quantization: In this step, the model's weights 

or parameters are converted from their original high-precision 

representation to a lower-precision format. For example, a 

weight originally represented as a 32-bit floating-point number 



Taylor, Onate Egerton et al., International Journal of Advances in Computer Science and Technology, 13(8), August 2024, 99 - 106 

102 

 

 

might be quantized to an 8-bit integer. This reduces the 

memory required to store the weights and allows computations 

to be performed using lower-precision arithmetic. 

2. Activation Quantization: After quantizing the weights, 

the activations produced during the forward pass of the model 

also need to be quantized. Similar to weight quantization, 

activations are converted from high-precision representations 

to lower-precision formats. By quantizing activations, memory 

usage is reduced, and computations are performed using 

lower-precision arithmetic. 

The reduction in precision achieved through quantization 

can lead to two main benefits: 

1. Reduced Memory Footprint: Lower-precision data 

types require less memory to store. By quantizing the 

model's weights and activations, the overall memory 

footprint of the model is significantly reduced. This is 

crucial for edge devices with limited memory capacity. 

2. Reduced Computational Complexity: 

Lower-precision arithmetic operations typically require 

fewer computational resources compared to 

higher-precision operations. By quantizing the model, the 

number of computations required for inference is reduced, 

resulting in faster inference times on edge devices. 

Edge Devices:  Edge devices, also known as edge 

computing devices, are computing devices that are located at 

the edge of a network, close to the data source or the point of 

data generation. These devices are typically small, low-power, 

and have limited computational resources compared to 

traditional data centers or cloud servers. 

Edge devices are designed to process and analyze data locally, 

near the source, rather than sending it to a centralized data 

center or the cloud for processing. This approach offers 

several benefits, including reduced latency, improved 

real-time decision-making, bandwidth optimization, and 

enhanced privacy and security. 

 

4.  RESULTS AND DISCUSSION 

4.1 Implementation of a model to reduced time and space 

complexity on edge devices 

The implementation of time and space complexity on edge 

devices has to do with reducing the weight and time take for a 

deep learning model that is to run smoothly on edge devices. 

To achieve this, the section developed a CNN model and a 

quantized model CNN model on MNIST dataset.  The CNN 

model represents the normal deep learning model that once 

deployed on edge devices, it will consume a lot of memory. 

Therefore, resulting to time and space complexity on edge 

devices. The quantized CNN model represents the optimized 

model that will run efficiently on edge devices with lesser 

memory and minimal runtime. 

The CNN model defines three different neural network 

architectures using the Keras library with TensorFlow 

backend. The first architecture (initial_layers1) is a simple 

neural network with dense layers only. The second 

architecture (initial_layers2) introduces convolutional and 

max-pooling layers to capture spatial patterns in the input data, 

specifically for 28x28 images. The third architecture 

(initial_layers3) further enhances the model by incorporating a 

dense layer with 128 units and a ReLU activation function 

before the final dense layer with 10 units for classification. 

The model is then compiled using the Adam optimizer and 

sparse categorical crossentropy loss, and it is trained on a 

dataset (train_images and train_labels) for 10 epochs with a 

validation split of 25%. The resulting training history is stored 

in the variable history for later analysis or visualization. The 

training process of the model can be seen in Table 1, and the 

evaluation of the CNN model in terms of accuracy can be seen 

in Figure 2 and 3.  

 
Table1: Training process of the CNN model on ten training steps 

 

Epoch 1/10 

1407/1407 [==============================] - 24s 

16ms/step - loss: 0.4429 - accuracy: 0.8451 - val_loss: 0.3488 - 

val_accuracy: 0.8757 

Epoch 2/10 

1407/1407 [==============================] - 21s 

15ms/step - loss: 0.3032 - accuracy: 0.8920 - val_loss: 0.2935 - 

val_accuracy: 0.8947 

Epoch 3/10 

1407/1407 [==============================] - 21s 

15ms/step - loss: 0.2585 - accuracy: 0.9065 - val_loss: 0.2835 - 

val_accuracy: 0.8997 

Epoch 4/10 

1407/1407 [==============================] - 19s 

14ms/step - loss: 0.2245 - accuracy: 0.9184 - val_loss: 0.2627 - 

val_accuracy: 0.9037 

Epoch 5/10 

1407/1407 [==============================] - 18s 

13ms/step - loss: 0.1990 - accuracy: 0.9280 - val_loss: 0.2617 - 

val_accuracy: 0.9063 

Epoch 6/10 

1407/1407 [==============================] - 23s 

17ms/step - loss: 0.1759 - accuracy: 0.9353 - val_loss: 0.2600 - 

val_accuracy: 0.9093 

Epoch 7/10 

1407/1407 [==============================] - 19s 

14ms/step - loss: 0.1558 - accuracy: 0.9419 - val_loss: 0.2560 - 

val_accuracy: 0.9105 

Epoch 8/10 

1407/1407 [==============================] - 19s 

14ms/step - loss: 0.1374 - accuracy: 0.9491 - val_loss: 0.2810 - 

val_accuracy: 0.9051 

Epoch 9/10 

1407/1407 [==============================] - 20s 

14ms/step - loss: 0.1212 - accuracy: 0.9560 - val_loss: 0.2693 - 

val_accuracy: 0.9111 

Epoch 10/10 

1407/1407 [==============================] - 19s 

13ms/step - loss: 0.1056 - accuracy: 0.9616 - val_loss: 0.2808 - 

val_accuracy: 0.9113 



Taylor, Onate Egerton et al., International Journal of Advances in Computer Science and Technology, 13(8), August 2024, 99 - 106 

103 

 

 

 
Figure 2:  Accuracy Vs Epoch for both Training and Testing 

 

 
Figure 3:  LossVs Epoch for both Training and Testing 

 

4.2 Model training with Quantization for Complexity 

Reduction on Edge Devices 

The quantized model used TensorFlow Model Optimization 

(TF-MOT) to apply quantization-aware training (QAT) to a 

neural network model. Quantization is a technique to reduce 

the memory footprint and computational requirements of 

neural networks by representing weights and activations with 

fewer bits. The model architecture iterates over a range of bit 

precision values from 4 to 16, and for each precision, it creates 

a modified version of a neural network model with 

quantization annotations applied to the dense layers. The 

quantization configurations, such as the number of bits and 

quantization method, are specified in the 

ModifiedDenseQuantizeConfig class. The modified model 

was trained using quantization-aware training for 10 epochs, 

and all the quantization-aware model are stored in the 

all_qat_model list. Finally, the summary of the 

quantization-aware model can be seen in Figure 4. The 

training process can be seen in Table 2, and the model 

evaluation in terms of accuracy and loss can be seen in Figure 

5 and Figure 6. 

 
Figure 4:    Summary of the quantized model architecture 

 

Table 2:    Training Process of the Quantified Model 

Epoch   1 Batch   189 (  390) Loss 0.00375 Acc 0.95312 | Val acc 

0.91304 | Model saved to /tmp/model-lstm, global_step 1000 

Epoch   1 Batch   189 (  390) Loss 0.00279 Acc 0.96875 | Val acc 

0.91835 | Model saved to /tmp/model-lstm, global_step 1001 

Epoch   1 Batch   189 (  390) Loss 0.00262 Acc 0.96875 | Val acc 

0.89077 | Model saved to /tmp/model-lstm, global_step 1002 

Epoch   1 Batch   189 (  390) Loss 0.00255 Acc 0.96875 | Val acc 

0.90668 |  

Model saved to /tmp/model-lstm, global_step 1003 

Round: 1 

Epoch   1 Batch   189 (  390) Loss 0.00262 Acc 0.96875 | Val acc 

0.89077 | Model saved to /tmp/model-lstm, global_step 1004 

Epoch   1 Batch   189 (  390) Loss 0.00255 Acc 0.96875 | Val acc 

0.90668 | Model saved to /tmp/model-lstm, global_step 1005 

Epoch   1 Batch   189 (  390) Loss 0.00247 Acc 0.96875 | Val acc 

0.89183 | Model saved to /tmp/model-lstm, global_step 1006 

Epoch   1 Batch   189 (  390) Loss 0.00253 Acc 0.96875 | Val acc 

0.91410 | Model saved to /tmp/model-lstm, global_step 1007 

Round: 2 

Epoch   1 Batch   189 (  390) Loss 0.00249 Acc 0.96875 | Val acc 

0.90456 | Model saved to /tmp/model-lstm, global_step 1008 

Epoch   1 Batch   189 (  390) Loss 0.00239 Acc 0.96875 | Val acc 

0.89714 | Model saved to /tmp/model-lstm, global_step 1009 

Epoch   1 Batch   189 (  390) Loss 0.00255 Acc 0.96354 | Val acc 

0.91516 | Model saved to /tmp/model-lstm, global_step 1010 

Epoch   1 Batch   189 (  390) Loss 0.00232 Acc 0.96875 | Val acc 

0.91092 | Model saved to /tmp/model-lstm, global_step 1011 

Round: 3 

Switching to EMI-Loss function 

Epoch   1 Batch   189 (  390) Loss 0.23041 Acc 0.96875 | Val acc 

0.89608 | Model saved to /tmp/model-lstm, global_step 1012 

Epoch   1 Batch   189 (  390) Loss 0.20689 Acc 0.96875 | Val acc 

0.89396 | Model saved to /tmp/model-lstm, global_step 1013 

Epoch   1 Batch   189 (  390) Loss 0.19695 Acc 0.96875 | Val acc 

0.90562 | Model saved to /tmp/model-lstm, global_step 1014 

Epoch   1 Batch   189 (  390) Loss 0.18891 Acc 0.96875 | Val acc 

0.94608 | Model saved to /tmp/model-lstm, global_step 1015 

Round: 4 

Epoch   1 Batch   189 (  390) Loss 0.18891 Acc 0.96875 | Val acc 

0.95608 | Model saved to /tmp/model-lstm, global_step 1016 

Epoch   1 Batch   189 (  390) Loss 0.17931 Acc 0.96875 | Val acc 

0.96456 | Model saved to /tmp/model-lstm, global_step 1017 

Epoch   1 Batch   189 (  390) Loss 0.17625 Acc 0.96875 | Val acc 

0.96138 | Model saved to /tmp/model-lstm, global_step 1018 

Epoch   1 Batch   189 (  390) Loss 0.16728 Acc 0.99875 | Val acc 

0.98319 | Model saved to /tmp/model-lstm, global_step 1019 



Taylor, Onate Egerton et al., International Journal of Advances in Computer Science and Technology, 13(8), August 2024, 99 - 106 

104 

 

 

 
Figure 5:  Accuracy Vs Epoch for both Training and Testing 

 

 
Figure 6:  Loos Vs Epoch for both Training and Testing 

 

4.3 Evaluation of the CNN model with the Quantized 

Model 

The sub section describes the evaluation of the CNN model 

and the proposed quantized model for time and space 

complexity on edge devices. The evaluation is based on 

memory size, runtime and accuracy. The evaluation can be 

seen in Table 3 and Figure 7. 

 

Table 3. Evaluation of the CNN model without Quantization and the 

Quantized CNN Model 

 

Models Memory Size  

(Kilo Bytes) 

Runtime 

(Secs) 

Accuracy 

(%) 

CNN model 

Without 

quantization 

37,888 120 93% 

CNN model 

with 

quantization 

5 3 96% 

 

 

Figure 7: Evaluation of the Model’s Performance 

 

4.4 Evaluation of the Proposed System with other Existing 

Systems 

This sub section describes the comparison of the proposed 

system with other existing systems. The comparison is done in 

terms of accuracy and model’s weight. The compared results 

can be seen in Table 4 and Figure 8. 

 
Table 4: Evaluation with other Existing Systems 

 

Systems Models weight 

(kb) 

Accuracy 

(%) 

Liu et al. 

(2021) 

 

 

Lee and Park 

(2022)                      

Pruning method 

 

 

Light-weight 

method 

13 

 

 

5    

89% 

 

             94 

 

Proposed 

system 

Quantization 

method 

3 96% 

 

Note: The time and space complexity were measured using the 

weight of the models and the accuracy gotten. The evaluation 

of time and space complexity in deep learning models, crucial 

for deployment on edge devices with limited resources, 

involved measuring model weight and accuracy. A 

lighter-weight model consumes fewer resources, enhancing its 

suitability for edge deployment, while accuracy ensures 

reliable performance. Achieving both a lighter weight and 

improved accuracy signifies a successful optimization effort, 

potentially involving techniques such as model compression 

and fine-tuning. By striking a balance between computational 

efficiency and predictive capability, the proposed system 

demonstrates promise for efficient deployment in edge 

computing scenarios, offering a solution that meets the 

demands of real-world applications while operating within the 

constraints of edge devices. 

 



Taylor, Onate Egerton et al., International Journal of Advances in Computer Science and Technology, 13(8), August 2024, 99 - 106 

105 

 

 

 
Figure 8:  Compared results with other existing systems. 

 

4.4 Deployment 

The reduced model was deployed to edge devices. The web 

application interface of the system can be seen in Figure 9 

 

 
Figure 9: Deployed Model on Edge Device to Recognize 

Handwritten Digits 

5. CONCLUSION 

This study was successfully achieved through a systematic and 

comprehensive approach. The design of a system aimed at 

reducing both time and space complexity on edge devices was 

realized through the application of the quantization technique 

in deep learning. By reducing the precision of the model's 

weights and activations, the system achieved a significant 

reduction in memory footprint without compromising its 

inference capabilities. Additionally, the goal of enhancing the 

inference speed on edge devices was effectively addressed by 

optimizing the model's parameters. This involved fine-tuning 

key parameters to balance model accuracy and computational 

efficiency, resulting in a notable improvement in inference 

speed. This achievement is crucial for real-world applications 

where edge devices often operate under resource constraints, 

making faster and more efficient inference a paramount 

concern. The results demonstrated the superiority of the 

proposed model and highlighted its potential for 

outperforming other systems in real-world edge computing 

scenarios.  

APPENDIX 

Appendixes, if needed, appear before the acknowledgment. 

 

ACKNOWLEDGEMENT 

 

The preferred spelling of the word “acknowledgment” in 

American English is without an “e” after the “g.” Use the 

singular heading even if you have many acknowledgments. 

Avoid expressions such as “One of us (S.B.A.) would like to 

thank ... .” Instead, write “F. A. Author thanks ... .” Sponsor 

and financial support acknowledgments are placed in the 

unnumbered footnote on the first page. 

REFERENCES 

1. D. Zhang, L. Cheng, and R. Boutaba. Edge computing: A 

promising computing paradigm with IoT, IEEE Netw., 

vol. 33, no. 1, pp. 4-5, Jan. 2019. 

2. W. He, Y. Huang, Z. Fu, and Y. Lin. Iconet: A lightweight 

network with greater environmental adaptivity, 

Symmetry, vol. 12, no. 12, pp. 2119, Dec. 2020, doi: 

10.3390/sym12122119. 

3. M. Maruf and A. Azim. Optimizing DNNs model 

partitioning for enhanced performance on edge devices, 

presented at EAI ICICN 2023, 2023, doi: 

10.21428/594757db.acb1ea67. 

4. X. Wang, Y. Chen, and L. Gao. Edge computing: A 

survey, IEEE Internet Things J., vol. 6, no. 5, pp. 

8340-8362, Oct. 2019, doi: 10.1109/JIOT.2019.2920713. 

5. W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge 

computing: Vision and challenges, IEEE Internet Things 

J., vol. 3, no. 5, pp. 637-646, Oct. 2016, doi: 

10.1109/JIOT.2016.2579198. 

6. J. Hu, Y. Li, G. Zhao, B. Xu, Y. Ni, and H. Zhao. Deep 

reinforcement learning for task offloading in edge 

computing assisted power IoT, IEEE Access, vol. 9, pp. 

93892-93901, Jul. 2021, doi: 

10.1109/access.2021.3092381. 

7. R. Stahl, A. Hoffman, D. Mueller-Gritschneder, A. 

Gerstlauer, and U. Schlichtmann. DeeperThings: Fully 

distributed CNN inference on resource-constrained edge 

devices, Int. J. Parallel Program., vol. 49, no. 4, pp. 

600-624, Aug. 2021, doi: 10.1007/s10766-021-00712-3. 

8. K. Thonglek, K. Takahashi, K. Ichikawa, C. Nakasan, H. 

Nakada, R. Takano, and H. Iida. Automated quantization 

and retraining for neural network models without labeled 

data, IEEE Access, vol. 10, pp. 73818-73834, Jul. 2022, 

doi: 10.1109/access.2022.3190627. 

9. C. Chen, Y. Huang, Y. Li, Y. Chen, C. Chang, and Y. 

Huang. Identification of fruit tree pests with deep learning 

on embedded drone to achieve accurate pesticide 

spraying, IEEE Access, vol. 9, pp. 21986-21997, Feb. 

2021, doi: 10.1109/access.2021.3056082. 

10. J. Xiong, Z. Huang, and Y. Zheng. A survey on edge 

intelligence for the internet of things, IEEE Trans. Ind. 

Informat., vol. 16, no. 4, pp. 2449-2467, Apr. 2020. 

11. Y. Zhang. Intelligent edge caching and computing for 

scalable information systems, ICST Trans. Scalable Inf. 

Syst., 2023, doi: 10.4108/eetsis.vi.3021. 



Taylor, Onate Egerton et al., International Journal of Advances in Computer Science and Technology, 13(8), August 2024, 99 - 106 

106 

 

 

12. S. Liu, D. S. Ha, F. Shen, and Y. Yi. Efficient neural 

networks for edge devices, Comput. Electr. Eng., vol. 92, 

pp. 107121, Oct. 2021. 

13. Y. Zhang et al. Data-model-circuit tri-design for 

ultra-light video intelligence on edge devices, in Proc. 

28th Asia South Pacific Design Autom. Conf., 2023, pp. 

745-750. 

14. R. Loureiro. Efficient deployment of machine learning 

models on microcontrollers: A comparative study of 

quantization and pruning strategies, presented at 

SIINTEC 2023, 2023, doi: 10.5151/siintec2023-305873. 

15. R. Singh, J. Kovács, and T. Kiss. To offload or not? An 

analysis of big data offloading strategies from edge to 

cloud, presented at AI-IOT 2022, 2022, doi: 

10.1109/aiiot54504.2022.9817276. 

16. W. Miao, G. Min, X. Zhang, Z. Zhao, and J. Hu. 

Performance modelling and quantitative analysis of 

vehicular edge computing with bursty task arrivals, IEEE 

Trans. Mob. Comput., vol. 22, no. 2, pp. 1129-1142, Feb. 

2023, doi: 10.1109/tmc.2021.3087013. 

17. Z. Zhou, C. Xu, E. Li, L. Zeng, K. Luo, and J. Zhang. 

Edge intelligence: Paving the last mile of artificial 

intelligence with edge computing, Proc. IEEE, vol. 107, 

no. 8, pp. 1738-1762, Aug. 2019, doi: 

10.1109/jproc.2019.2918951. 

18. A. Brecko, E. Kajáti, J. Koziorek, and I. Zolotová. 

Federated learning for edge computing: A survey, Appl. 

Sci., vol. 12, no. 18, pp. 9124, Sep. 2022, doi: 

10.3390/app12189124. 

19. D. Kolosov, V. Kelefouras, P. Kourtessis, and I. Mporas. 

Anatomy of deep learning image classification and object 

detection on commercial edge devices: A case study on 

face mask detection, IEEE Access, vol. 10, pp. 

109167-109186, Oct. 2022, doi: 

10.1109/access.2022.3214214. 


